J O U R N A L

OF THE

ASIATIC SOCIETY OF BENGAL. 11

VOL. LXIX.

PART I. (History, Antiquities, \&c.).
(Nos. I and II.-1900.)

EDITED BY THE
Honorary Philological Secretary.

" It will flourish, if naturalists, chemists, antiquaries, philologers, and men of science in different parts of Asia, will commit their observations to writing, and send them to the Asiatic Society at Calcutta. It will languish, if such communications shall be long intermitted; and it will die away, if they shall entirely cease." SIR Wm. Jonis.

CALCUTTA:
printed at the baptist mission press,
and published by the
asiatic society, 57, park street.
1901.

CONTENTS.

OF THE

JOURNAL OF THE ASIATIC SOCIETY OF BENGAL.

Vol. LXIX, Part I.- 1900.

No. 1, (issued 15th August, 1900).
Jangnàmah of Farrukhsiyar and Jahāndàr Sh aah, a Hindi poem by Crī̀har (Murlidhar) Brahman, of Prag.-By William Irvine, late of the Bengal Civil Service 1
A Nev Copper-plate Inscription of Laksmanazena.-By Babe Akshay Kdmar Mitra, B.L. 61
The Manahali Copperplate Inscription of Madanapäladeva.-By Babi N. N. Vase 66
On the identification of Kusinara, Vaisali and other places mentioned by the Chinese pilgrims. -By W. Hoer, Esq., Litт.D., I.C.S. (With an edition of a new Copper-plate Inscription of Jayādityadera II.—By Dr. T. Bloch) 74
No. 2, (issued 28th February, 1901).
An Epigraphical Note on Palm-leaf, Paper and Birch-bark - By A. F. Rudolf Horrnle, Ph.D., C.I.E. 93
A collection of Ladakhi Proverbs.-By The Rev. H. Frances, Moravian Missionary, Leh. Communicated by the Philological Secretary 135
A primer of the Asur dukma, a dialect of the Kolarian language. -By
The Rev. Ferd. Hahn, German Evangelical Lutheran Mission, Chofā Nagpur. Communicated by Dr. Grierson, C.I.E. 149
An Inscription of the time of Kapilëndra Deva of Orissa, from Göpinaäthapura, District Cutback. (With an Appendix on the last Hindu Kings of Orissa).-By Babi Mon Moran Cearratarti, M.A., B.L., M.R.A.S. 173
An Inscription of the time of Nayapāla Deva, from the Krona- dvärika Temple at Gaya. -By Babi Mon Moran Chakravarti, M.A., B.L., M.R.A.S. 190
Index to Journal, Vol. LXIX, Part I. 196
Page.
-
,

Under orders of the Council the following system of transliteration will be adopted for the future in all publications of the Society. Authors of papers for the Journal, Pt. I, are particularly requested to adhere to it in their contributions.
A. FOR THE DEVVANĀGARI ALPHABET, AND FQR ALL ALPHABETS RELATED TO IT.

In the above the viräna has been omitted for the sake of clearness.
In Modern Vernaculars only; $\overline{\text { T}}$ may be represented by r, and \boldsymbol{E} by rh.

Avarraha is to be represented by an apostrophe, thus षो sषि so 'pi. Visarga is represented by h, Jihvāmülìya by h, and Upalhmänìya by h. Anusvära is represented by \dot{m}, thus संसमे samisarga, and anınāsika by the sign " over the letter nasalized, thus $\mathbb{\|} \tilde{a}$, $\bar{i} \tilde{\tilde{a}}$, and so on. The udàtia accent is represented by the sign' and the svarita by ". Thus, afy:

B. FOR PERSIAN (INCLUDING ARABIC WORDS IN PERSIAN) AND HINDÖSTĀNI.
(The system is not applicable to Arabic when pronounced as in Arabicsperking countries):-

Vowels.	Consonants.	Sounds only found in Hindūstānī.
i a	b	+ bh
$1{ }^{1}$	- p	* ph
1 i	- t	* th
ى1 i		\because
$4 \dot{\theta}$		* th
1 :	* s	
وf \mathbf{u}	c j	ه jh
210	E 0	合 ch

Vowels.	Consonants.	Sonnds only found in
Hindüstāni.		

JOURNAL

OF THE

ASIATIC SOCIETY OF BENGAL.

Part I.-HISTORY, LITERATURE, \&e.

No. I.-1900.

Jangnāmalb of Farrukhsiyar and Jahāndär Shah, a Hindi poem by Çrīdhar (Murlidhar) Brahman, of Präg.-By William Irvine, late of the Bengal Civil Service.
[Read April, 1899.]
The following long poem of 1630 lines, on the above subject, was lately traced for me by Maulvi 'Abdu-l-'aziz of Bhitri, through a natire of the same place now resident in Bentres, Bābū Rādhā Kiṣn Dās. It was found in the library of the late Bābū Haris Cand of Mahallah Caukhambah in the city of Benares. For this gentleman see No. 581 of Grierson's "Modern Vernacular Literature of Hindūstēn," (1889). After four months' efforts permission to make a copy was obtained through the influence of C. L. M. Eales, Esq., C.S., District and Sessions Judge, to whom I am much indebted. A Hindi copy was made for me by the Judge's Registration Mubarrir in his leisure hours, and one in the Persian character by M. 'Abdu-l-'aziz.

The work is so long as to debar its reproduction in full, nor is it throughout of equal interest. While he is expatiating at more or less length on the heroic virtues of the nobles and officers who have gathered round Farrukhsiyar's standard, the poet allows his narrative to stand still; and as a consequence, in spite of the copious vocabulary at his command, he repeats himself considerably, and the epithets soon begin to recur with "damnable iteration." I therefore propose to submit to J. I. 1

2 W. Irvine-Jungnāmah of Farrukhsiyar and Jahāndār Shāh. [No. 1,
the Society no more than extracts (680 lines in all) giving the nariative, and including at least one specimon of each kind of verse. For the rest I append an alphabetical index of the persons, tribes and places introduced.

There are a few, though not many, unhistorical statements. For instance, (lines 31, 32.) 'Abdullãh Khãn is made out to have been at Paţnah when he was really at Allāhābād; in lines 39-42 Mir Jumlah's nsserted opposition to Jahāndār Shāh is pure myth; and the dates in lines 883-886 are liopelessly wrong. On the other hand, some of the details as to localities add to our previous knowledge, and the copious use of actual names shows, to my mind, that the author either was present in the army or wrote immediately afterwards.

In sereral instances the introduction of tribal names is not only ingenious but effective. Here is one example :
> 1. 1133. Rajpūt sohāe sāje ãe, Hād̄ā, Gaur, Sombamisi Caumihãn, Caíndem̀le, Bais, Baghele, Gaharwär au Raghubaìisi Kachwāha, Sulà்ki, Haihayabaìsi, Sirnete, Parihäran்sī, Gaídharb Simin Rājā sajyo, dal, Bum̀lelo, Sūrajbaíssi.

The kinds of verse used are thirteen in number and are as follows, stated in their order of frequency. Kabit, lines 1109-1248, 1465-1576, 1579-1630 (304 lines), Bilăs Chand, 895-1108 (214), Pädānkul Chand 171-376 (206), Gìta Chand, 695-894 (200), Häri Gìta Chand, 1309-1464 (156) Madhubhār Chand, 423-548 (126), Doharā, 1-20, 39-70, 389-422, 637-656 (108), Hari Gìtā, 71-170 (100), Bhujang Prayāt Chand, 549-636, (88), Hì•a Chand, 1249-1308 (60), Ardhik Chand, 657-694 (38), Tomar Chand, 21-38 (18) Chappai Chand, 377-388, (12), total 1630 lines. As there seems some irregularity or oversight in the numbering of the stanzas, I have substituted an enumeration by lines.

On the evidence of the work now brought forward, two emendations may be suggested in the work by Mr. Grierson above referred to. First, the entries No. 156 (Murlidhar) and No. 157 (Çridhar) on p. 65 may be united into one of Cridhar alias Murlidhar. Secondly, the date assigned to lim, 1685 A.D., may be made at least thirty years later, for the present work, at the very earliest, belongs to 1713 A.D.

In the pursuit of meanings, sometimes hard to catch, I have treated the poet's spelling with scant respect, making aspirated and unaspiraled, dental and cerebral letters, l 's and r 's, freely interchangeable. I hare, in fact, chosen "whatever suits the line."
1900.] W. İvine-Jangnāmah of Farrukhsiyar and Jahändär Shāh. 3

Since I began this paper, I have received a second poem by the same poet, a sort of supplement or continuation of the Jang-nämah. It is on 133 folios, and at a rough computation reaches 3560 lines in length. As it is made up of nothing bat laudatory stanzas on various nobles, I shall content myself with stating the headings into which it is divided :-

fol. 1a.	Ratan Cand ke Kabita	verses	15
3b.	Rāo Ras ke Kabita, Phulwāri barnan,	"	9
5 .	Kabita Bahādur Ji ke, Phāg barnan	"	12
9 b .	Māhārājā Chabile Rām ke Kabita	"	18
11a.	Mir Mughrif ke Kabita	"	11
13a.	Rājà Jaswant ke Kabita	"	5
16a.	Kabita Sher Muhammad	"	30
$20 \mathrm{~b} .$ $26 \mathrm{~b} .$	Kabita Mahārājā Chabile Rām ke Qutbnol-molk Hasan 'Ali Khān	"	36
27 b .	Husain 'Ali Kbān ke Kabita	"	43
48	[No heading]	"	167
71 b .	Kabita Muşlih Khān ke	"	100
82	[No heading]	",	100
95a.	[Doharā-No heading]	"	88
104a.	Çri Rām Jí	"	100
116 a.	[No heading]	"	51
123a.	[No heading-Stanzas 37-52 wanting]	"	84
132b.	[No heading]	"	2
Total verses			871

After looking through this portentous production, one feels appalled at the enormous facility with which Hindi verse can be written.

दोघरा।

5 अीधर मुरलीधर उखफ बिजवर वस् प्रयाग ।

दंचिर कथा यछ्ह पाषि की बष्यो कथन खणुराग ॥
मादक्ियर से पूरि को वरनो प्रसका प्रवंध ।
बत करतूलँ सवन को जे बमोर समकांध ।
चोठी चसी महाजनी भई एका एक चारं।
10 ₹ांड़ि दे हें दुरसोक को गए बह्दादुर घाध्ध॥

4 "W. Irvine-Jangnämah of Farrulkhsiyar and Jahāndār Shäh. [No. 1,
सनो घवर्वर एकवारगो परासियर उदार। राषि पौज एकंसगारहों चलिये यदे बिचार ॥ बकसो बाजम खान को कीन्हो उकुम बोलाइ। मौन राषिये जाय ब्बब जेतो राषो जाइ।

तोमर घंद्ध।

यह्छ घवरि पडंचा तस्य तब पायकसियर समत्य fसगे बोलाद कमीर सब सो द्वापा करि बौर सब सो दियो परमाद बब भौग राषज्ड बाइ यछ्ह उक्रुम करि सभ वष्त धरि छच्न वेठो तष्त सब घार्धि के दिससोज
तब लगे राषम पौन
सजि ब्यवटुस्क्रत्ह घान
किय प्रथम कोपि पायान
जब घूर्शि को इरघाद
पञंचो द्रलाहावाद्
सूवा व मै सरकार सब किषो समस उदार
रनवां कुरावल वाल
करि रह्यो कायम थान ॥
1900.] W. Irvine-Jangnāmah of Farrukhsiyar and Jahāndār Shäh.

दोहरा।

तह मोर जुfमला बोर बुध्धि गंभीर बाइड विसास।
40 मड़ि रघ्यो मौन्जुदोन की कटक गहि करवास।
स्बवा सवे मनसूब वाजवि डारी चाल।
क्य प्राहि को सिंगरी छकीकति लिषत तब तत काल।
तब मोर जुमिसा बोर बरज सिष्यो सुपन्न उदाए
इून सैद् राजे षान कौनो प्राग सुवेदार
45 वह चल्यो साजि हिरौब कगे सैद् बतुसगामार पौके पठायो महादलु दे एजदौन कुमार॥ यक्छ मौर जुमिषा बोर सब क्ररज पञंचो तत्य पार्दनलाह जहां पनाह सु परकासयर समत्य सुनिके बमीरन कोर हेरो कोपि कै समरत्य
50 बोल्यो चुसेग क्षलीय खां रमवां कुरा गजह त्य। एकबाल़ पाष्वपाः को दूस में न ब्राग को बान उग को बकेलोवै सैयद् ब्यदुद्ताष्छ घाग
तिब को द्रिपा करि वेग सो लिष भेजियो परमान वह मारि भौज ववदाशि दस रन मारि है घमश्राल ।
55 घाष्ह नश्याष्ट लिख्यो जवे परमान पडं चो काद्र तव सैद् बवदुद्वां घां लीमो सुख्मटव वराइ
वह्ह उक्रम सिर धरि दे नगारो सु मिटि प्रभु को पाइ
डेरां सु कालल चंद् कारि करि राए रोक्यो जाइः
पुनि बापु स्यिर कारि रह्यो थानो गत्मो प्राग करार
60° भाई पठयो जंग को सव संग दे सरदार
सै सव सब्यो सैफ़ादी क्षली घां वंक वोर उदाए
सान्यो निभामुद्दी क्यली षां कोपि गहि कर तरवार।।
साब्दो सिराजुटी खक्षो षां बैर वलवान
fिार सब्यो राजा रतम चंद गबंद ग़ि किरवान

6 W. Irvine-Jangnāmah of Farrukhsiyar and Jahändär Bhah. [No. 1,
65 पिरि मीर मुछ सल बाल बाज्यो वौर ब्रनवर घान साब्यो समुदर खान ष्घय हदगार वेग जवान । मीरजा वलो वहराम वेग चद्यो गहे कर चाप जेहि वाप वरकंद्धाज षां सु किताव पायो क्याप बब सब्यो त्यो दरवेशूलो षां सैद वोरत काप
साजे बली सरदार केते सतु दारन दाप ॥

इरिगौत।

इत बरे बालम चंद उत कोछ उन देरा कियो
भिगसार छोत टुंं टिसा दुषं दलपती डंका दियो
हू ए चदे उत वे बढे मक बढ़े दुकं वांगॉ लियो दल भार सों विकरार महि रजधाम स्दरजो पियो ॥
75 तव मयो देखादेष दुडं दल दुज्डं दल चापे चढ़ो वाजी वंदूषै रछ कले ₹थनाषा घूम घटा मढ़ी तव वीचु धमकनि भरकि त्यो समसेर म्याननिं ते कढ़ो बातार भाराभार ग।नु गटपट बधिर को सबिता बढ़ी॥ बलकारि ₹ांक निदंत सावंत दपट दुजं द्ब धावशें
80 गरवी मगरबी कार गहे भुंकि भपटि चोट चसावहों Єिन जात धाई उठाइ एछिन बटस बरि वरषावछों कि पह्र उसला पसक भटरण सिंधु पारण पावर्षों $\|$ $\times \quad \times \quad \times \quad \times \quad x \quad x$
99 यह्ह वारहे के वालक्षनि को लषो बति गाढ़ो हियो
100 बैसट सिराजुही बली घां तव सह्छादति कों सियो
हरघंत दरनीि छाथ को पुर प्रेस सो प्याष्या पियो
करि हाष विमकः साल बोप सिपाह दूरूि को टियो।
यह्छ सोर मो चडकं बोर ते दौर सवे सरदाइते
बित छारि ঢाबै टारि कूटे पारि जिरत्ष बगार हैं
1900.] W. Irvine—Jangnämah of Farvıkhsiyar and Jahāndar Shãh. 7

चमके चฐं नेजामुने भमके घनो करवारहें।
रहम दौसके चइं बोर ते पर पौज हेरी जाबके
तं तोर बरछा वार गोलो घंग बंग रबंगाइ के समसेर बार भराभरी कर कर बहारवि घाइ के
110 भुकि भूपटि भूरमुट बेति बहि दल दियो महिवि थरायो।
बोटि बिति भूमे परे कोज घाइ सो घूमें घरे
कोर मये मुरकावंत उर सो ते विषा मारे मरे सरदार बबदु बगपार के बंग घंग घल घाएकि भरे रब भूर्म में पायो वरों जानै कहां किधिं लै घरे।
[Line wanting in original]
$x \quad x \quad x \quad x \quad x \quad x$

8 W. Irvine-Jangnimah of Farrukhsiyar and .Tahãıdār $\underline{\text { Sh} h a ̄ h . ~[N o . ~ 1, ~}$
139 दिव घोर कुतुवुलुमुलुक बोके वोजि साेेत राय सो
140 सिखि कर ज प्राहन प्राह को सव भेद वात वगाए सो भाई जसेव बलो खां को लिषो सव समभाइ सो जिधिं बाह ह्वां एलगार पड्ने साज पौज उपाए सो। सुनि लिष्यो साहेव राय माथुर करण पन्न तहां तवे सप जंग की सव वात जैसो भर्ट जौग जहां जवै
पटनि पकाधों मौज की बादम बमीरण को
जौ पिरि लिषो उसेग बणोय घां जू कों सवै।
$\times \quad \times \quad \times \quad \times \quad \times \quad x$

यह्ह क्षरज पन्न सवे लिख्यो पटना सो पुडंचो जाइ के पहिले इसेग बसोय घान बीम्रो लिषा सुु पाद के वांचो सिराजुटी बलो षां की द्सा पकताइ के रिस घंटि क्बरज पष्यो सो बायुछि घूर्षा के ढिक्षाह के। वोल्यो कोवो क्षमीरल उम्मराव सु करज घाष्त, वाए सो रिस रह्हति रोको गाहि क्चों छं कनुज को दुष दाह सो पाऊं इकुुम इसगार पडंचो जंग जैतक चाइ्ह सो लसकारि के कु क् करि पेरों एजदीवषि राह्ह सो ॥ तव उक्कुन कोन्हो प्वाएि दिन कै बव त₹ मुल कीजिए वांके वनैत बमोर तिन को बिदा क्यागे दोजिए बव ऐजुदी सो रिस कांटं तबवोर सो गहि बोजिए पिर मोजुदोग पर साजि के चतुरंग मौज चलि बोजिए।।

पादांकुष छंद्ड।

बौर रोज मिबसार भयो जव सज्यो पा पाहि दौवान षास तव मिसिल मिसिस ठाफे बमोर सव लियो मुबतुजा घांन वसि बवव
1900.] W. Irtinem Jangnamah of Farvukhsiyar and Jahandàrr Bhah. 9

$x \quad x \quad x \quad x$

चध सकल मीर बमीर सष्निय
बरसखा घां कों नुद्रुम किय
पेश्यााओो बै भयान्द्र

बरकणा बां उड्रुम धारो
चस्बो बणि द्ण द वमारो
पेश्रषनो से पबानेडं
पाँच कोस पयाग ठाथेंड
पणिर प्राश्रमाह साेिड
सकाष षंट गयंट गानेड
वजो गौवति गए गही वव
मंह गौबत रावरी बब
घोर धौंसा धनि धकारित
पतेत्र पते मत्र प्रकारव
हो ज हो करणाह काजत

J. I. 2 सगुण सो सरनाह वाजो सिद्धि राम करोजु साजो भाए भाबव भांभा भवकत घनन लागिधि घंट बवषक्रत फोलवार लिभाल भम्रत मनह्न बगा परूह पहरत जात पन्न बलूप राजत
दंध सें प्रभुता विराधत भालरो मुकु ता सु लघ्छक मबड़ तारा कन्न रत्तक घ्चापताववी छासकें कर मनह्ड रत्तक संग fिनिन क्रार

पषकसियर समत्य शूाए शाएां दल सब्बेउ पष्ष्र पष्षहि वहल वारवारन गल गस्जेउ शोधर धैंसा धमक चोर दसहं दिसान भर चमकत नेजै फछरखान वेरष fिशालवर भुव दबत मलत ज़ेहि ₹िसि चलतक सोर चह्न चक्ता एव ब्वतिबक्ब धुंधुरित धृरि मी़ ब्वागताव धुवसोक धुव । कौन सवल उत्यपिहि काएि निवल वल थम्पिहि के हि महोप को मुलुक मोड़ि कारि समप्पिशि
385 काहि पाए गज रीज करिहि केहि पोल fिह्डो पर बमा धनो केशि थरिहि दरिएि केषि तमकि तेग तर अववहि मंडििह घंडि सो केशि बढ़ गढ़ गढ़ पति चरथरेउ

1900.] W. Trvine—Jangnāmah of Eurrukhsiyar àud Juhandầ Shãh. 11

दोरा।

हरम सजि साछनगपा जू कियो कोपि पयान
393 एलगारनि के कूष्च कों कियोषि एंठिक ठान।
दूच दूष एलगारं सो बजुरां पडुचे बाद्र बाजमं षां सजि पौज सो दरसे प्रभु के पाइः साजि कर्हादुरपुर मिल्यो सैद् मुषतजा षाक उतरि वनारस ईट् करि एसगार कियेड पयान ।
395 बानि वसेरे बोज अंसी कियो मुकाम बाए संग महावसो हटि गे fिमकह़राम ॥ सयद बवडुक्षं षां की मुलाभिमति काद को मुलाभिमति संगष्ठी जेतक संग सहाइ।। हाथो घोने पासको टंको फिरंगी कोर सरोपाड सरपेच सज नेगा मनसव बोर ॥ घाइलघ्याष्हि दोगो तिने कुतुवुमुलुक किताव दियो दिजाफो जौन नेखि मगस्व को बसवाव। सेतु वांधि मुरसरि उतरि प्राग त्ठ पष्थिम बोर चाटि सुकाम तहां किए बागें दौरादौर॥
405 मिब्या तिते परउंट बां जगतणासु किरवान सवस स्लावति षां मिब्यो सेफ घान वलवाल ॥ करे निकट मःथा मिल्यो बाह्र छबौले राम चारि चजारो राज पद तिम्द को मयो सलाम ॥ बलो बसगर बान जू मिस्यो बानि चथिग्राम
410 थौ हुाटि मगसव बच्षो बाल धमाक चाम।
पूरव छध्धो क्ञुवरप्रह विंदुको पष्थिम बोर
वोच घ्याष्टि डेरा किषो भषो डुवा दल सोर।
पचिम पतिश्षाबाद तजि पूरव बिंदुको माम
एज्रीण देरा वियो स कटक किते मुकाम ॥

12 W. Irvine-Jangnämah of Faırukhsiyar and Jakānday 题础 [Na 1,
415 घार वेद घंदक षणो कटक चरिशं बोट डुने बरावे बवगने भरी मौब विधिं बोट।
दुर्ट महावस पौँ सों तोगि बोस के वोच रचो वोच रणभूमि वित मचो दंति मट कोच।
 सके दलपति चित घार्हा एते की ति तित चाह्ड। बवदुक्नह षां बंकरण कुसेणली षां माल रण थंभ बागें भए कुतुव कू बरीवाल।

मधुभार इंद।

सब्यो बवदुक्नह खां जित
सभ उसेंग क्षलोय घां तित
fित छ्ववातुक्षाष्ठ घां संजि रिस मुधाएति बषो बां रणि।
$\times \quad \times \quad \times \quad \times$

शुजंग मयात पंद्ध।

दुर्ट बोर साजे मत्रामत दंतो
सने पष्षरो सम्ब को पूर घंतो
नढ़ा दार घेरे रिषिए बहावंटा
मन मेष्याजो क्चे घोर घंटा।
घटा श्गाम सो दोर तांविं बधि माये
परा पकरत अखरी मूल भांजै
खे पष्षहों मष्परों सम्ध घोरे
मयो घण्नु बो के र्थी कोर जोरे
चखे चाह बौं घंचे चाल बांको
दजाई तुष्को तनो ई ईंरिको
करै पौन सी थौन की पालहारी

1900] W. Irvine-Jangnāmah of Farrukhsiyar and Juhändār Shäh.: 13

खर्धी यरख्बो षुरोले घंधारी।।
वे ता बाढ बो पटी के घन्दावो कारी घोठ पूठों घदे गीरराबो सके संवलो बौ समुंदे सएंगे
कवूतो बके मूषबारी स्खंगे।
जसे बीच संजाप बोले हरोके
मुद्यबो बके पंचव्वसाग पोजे
बड़े छोल के काल छोटे बबोने सु चौरो खुरो चाक्षरे घासु सोने। बड़े चंचसे नैन के मुष्ष सांचि
घुरों वाब्ब भूमै घणो दोष वांच्चे सके साचिबों चारिंइं बोर थोध्ध
सजे साज कोरा बटो कर कोधा ॥
सिद्ने चारिं बोर रूने गहरी
जिज्हो वार की सचु की फौन चूरो
क्रों णोंकछों पौन मे सूर राजे
कतने को वबोसे वंबूषे गरांजि
सब दूरिवां वेर वांके ब बेते
समें साज वाजी घढे इंख्त देते
कढै बौन तों दांकि धोरे ध्याषे
किते फरंक्षे क्षैसु भाति विराप्ति।
बघो पूटरी बोर माप़ी ब्योको
चथो बोपि के पूत दिछ्चो धणी को
कुषं बोर ठाढ़ी चमूं वाइरटरें
दुंक्ष बोर के कौन ठाढे विसोक ।
हु फलुक्तिविर शाहि के जोर सूवे
पिसे चरहं बोर सजे बधूने

14 W. Irviue-Jangnāmah of Farrukhsiyar and Jahāndär Shā̄h. [No. 1,
वजो दोह धौंसानि बावाज बघंतो
चइं घां बषो जे बरही बरहछो।
कुटे त्यों बरावे डठो धूरि भाटि

धुंवां बी उठी धुंधुरारी बंध्यारी वढै रोसनो ऊपरी वाण छ्टूटे मआो बासमाणो मछालूक्ब ट्टे॥ पिसे चोट कों षोट के घाईि पेरे पिले बोपची तोपचो तोपो घटेरे
चूं मौन की बोर ता को बड़ाई
चमूं सन्र का चूर कौ के छटाई ॥
वसो उतरी फौज के गवरेठे
मता मोरचा मोड़ि के पेषि पेठे
बष्यो एश्र वार छूटो डुवारो
परी भाग भाग्यो तका कोष्ह कारो।
समारै व घोरे रथो हेम हाथी
सम्हार व कोऊ कहू संग साथो
किंूं इासि घोरैनि डाछो हथ्यारो
किझं मागि सों बागे हो पथ धारो।
करे बोड हा हा परै कोऊ पैबां
चसे रामर्रेंगा व मौमा व कैभा
घुसे बाहरी भासि केते निष्कामो
कोते बो बरे वंदि गामीनि बामी।
कोते को सुयुमाली गहरेनि छाए
बढें हौसका के तिया संगब्याए
तिज्रू छोफ़ि भागे छुटो चाल बांबो
गए पूट्टि ताबे पटी हैसनाबो ।
छरोवै बसोले पसोबे सछेषो
1900.] W. Irvine—Jangnamah of Farrukhsiyar aml Jahãıular Shah. 1:

पुकारि घोदा बाप दाकोण मेलो
गरो ढावरो भांकि भोवै सरोस़
सवै मैजदी कों भर्रे नैन कोसे ।
कह्ट वैदराको वड़ी धूमधाई
चूं लुण्ब लुंबांगि लै बागि बाई
वरै छंशंधनो इंचं डेरा सु भारी
मछा भौम पेलो धूंवां की बध्यारी।
कांड बांच के तेज सों लाख फूटै
कां वैद्रा वोर वाजार लूट
कांद बांस की गांठि पूटू पटक्क
चटाचट्ट पाषान भारी पटक्षे॥
लुटै केसरौ दाष दाजौ छोहारो
लुटै चार कात्तूरी का घघ्न सारो
करं होत मोती वरें चूर चूना
कां बैट चुटेरें करें मोट टूना।
जरै चार बाचार चूरी चिरोंजी
कर्षं कौंब गटै कसे करींजो
जर्ं बी सुटें चैर चीरा जरीके
परे भोट के मोट लूट्टे परीके.ा
भए वैदरा जौंछरी लूटि लटे
किटे ज्वारिबों मोट मुक्तानि कटै
कितो तोजरे हाए हारद्ट लागो
कितो कामिनी दामिनो हूप भागी।

दोशा।

एहि विधि द्ल सव भंโगयो एजुदी को जान सोधर कवि ध्घागु सनो क्चव सव करो वषान ॥

16 W. Irvine-Jangnãmah of Farrukhsiyar and Jahändar Shih. [No. 1, बरज कियो हमत्वाज काल प्रभु को पाह प्रक्षाद
 कियो घाल दौरा उतो उन को बंग हर णंग जौसेरी कां बंद हूत हु हो हिरौब रव रंमा बवटुलसमुद् सबीब्य थां राने बाग बमौर सादिक बुतपुल्धाए बां दिर्लादसेर षां पोर।
645 मौजदीव के ए उते हेतवारो उमराइ हलरति के एकवाल सो रहे व रण ठछराई । एजदोल को जवरर्द लै सब गए पराइ मीन षह ब्वाए हुते पानि पगए गंबाह॥ हाथी घोरे चतरर रथ महल वहल सुपाल तोप नगारे रह्कले ब्रतरमाल हथगाल ॥ मोहर जबाहर को गये ढेर ठौर ही ठौर ठादे बुटे सराइधे करो वैदरणि दौर। तहं ठोढे पुमताज का हजरति विकट बोलाइ शाहनशाए कोनो हुकुम तुम देषो बयक जाए। मदमोकल हाथो तुदै तोप कगारो बेड बोर लूटि मे शो बहे तोल वाहि को देउ।

चर्धिक घंद्।

करि पतेष्ष घाष्ठनशाष्ट ज़
हिय भयो परम उब्वाँ जू बेठे प्रभात देबाल के सव बोलियो सनमान क् ॥ तहं वजत गैवति चोरचे
रह दोप दोप दोरचे
किय कंड्ड को हूतमाम कों
क्वाए कमीर सलाम को ॥
1900.] W. Irvine—Jangnämah of Farrukhsiyar and Jahänlar Shah. 17

665 मुकाता जंवादिर बारही
बंजुरी निसे पिटकारहों
मुंति भांति भांतिक्द बजरि दै
ले मिसिस ठाढे में सवै ॥
छुतुवुषमुसुक ब्राजी भए
डमराए बोकि दु बोलाए
मिलिब्बो मुजपूर्पर घां तसां
कोगो क्रा सहेव जहां ॥
दोगो किताव धुरां धुरो
घाने जत्रांन वहाहुरो
मिल्यो रहमति षां वबो छद
मुत्तहैवर घं बद्बों पद ॥
चिरि प्राषि वक्षशिस साचियो
सिगरे बमोर नेवाजिब्यो
छाथी मधामद के टए
घोरे दंरांक जएगए।
सुम सरोपांए अ्रणाम्रसी
किय कणक वार सभा घसी
नेगा करंगो भ历ल अनस
सरपेच साज भले भले ।
समसेर भूषन जाहिरो
सज करो फौन जवाष्टिरो
तेषि भूमि चारि मुकामु को
सव कटक कों विसरामु की।
फिरि हूप कूप बगार को
जहं पूर्ट पारि मदार को
पडंधो तहं दणु वैर को
किय दरस परसन पीर को ॥
J. J. 3

गौता बंद।

fिfर मोर जुमिला बोर उत सों बरजपन्श पठाइयो कासीर कागन कर लए दरवार दारे बाहयो मुमताज घान लिषान ले सु भ्याईि चि पञंचाइयो वह्ष ले तकरबब बां तहां मजमून वांचि सुवाइयो। ख्याकिल वकोल वगोर सेयद बवदुस्ल़्ट घांल को काएथ ससरोमीि दास राए महोप सांडी थान को fमलि रह्षो मािलिसि मौजुदी की सचक तब विधान को उन लिष्दो क्रतुव्लमुलुक को सव भेद्ट भो परवान को ॥ दूत मौजदी मगहर मक्न बल मस्न बमलै खाइ के fसगरे कलांवत है ब्कमीर मरे रहो चितचाह के कानेन कानै मरवि मैं पलेरहैं इक भाइ के माहो मरातव अलम पंभा तोग नोवति माइ के। दाह सु दाए मरत गोली कमल गोली रंग की fमरदंग ढोलक तोप कौ सरनाइ रीति तुपंग की प्याला पलोता सु भरके तहं जोति मौचै भंग की
दिन रात यह्छ घरचा रहे ततवोर कौर रव जंग की। सव कमल लोपन टुःख मोचव काम हरप बगोहरा बति चतुर चृयक लानमे मघवान भंजिलिसि वोष्रा
ब्बनुराग उपजत राग स्षवि सीव कवित रस के दोहरा मनु ढरे सांचे नवल बाचें बटामन के कोहरा।
कहं समा मस्त कलांवंतो कहं पातुरणि के गाएको
कर्शं नचत हरषे होजरा भरि बगीज छिखबाषि की
1900.] W. Irvine-Jangnāmah of Faırukhsiyar and Jahändār Shē̄h.

कांदों कोरे वागे वोे दरवार कुं जरी न राहकी बह मौचदो की मौन हे गति छौर भार्ह निवाह की ॥ बघत्यार कोकिसताश्य षा ब्र्य रुलिभिकार का वियो दौऊ रही द्रवार में वर वैर बापुस में कियो ज्यों कटिव कर्ष गोव रोगी मूंदि बांधिम घूटियो [Fourth line wanting in original.] ॥ रह्यो माजियु्द्री बां वष्षो मष्मद बमी षां पूटि है बवडुष्बमुद् घां कमबदी षां जकरिषा घां 巨्टि है तछं रछम रछमां षांग बत तूरानिषा सब टूटि हैं पर पंच कोगो मोर जुमोबा जंग एरधिं जूटि है। इक रोण बेठे मौनदी मदिश बफ़ायो मौज कों उतसाद्ध सो चित चाए भरि करि उकुम भव चष रोज को तेशि वोचि बाबो षवति: बाएका परकणाहि कणोज को
 यह्ह छकत ए खुदोण भाग्यौ थौन संगरी मगो तं सक्ल मभिजिए मौश मैं छकवारगो द्ध सो परी तव ल़ागो सुष विष सी विरी बत गोत गारी सी सगो घंग क्षमक की बालो घटो तसवोर ज्रो उर रिस अयी। कहां बों रिषिए कथा सब होति कहु देषि परो गर्द हरें कषांवत fिटि गए मेह रानि को मुख्वा भर्ई काड परी ढनगति ढोणको दुधि ताल घुघुख की गाई सव गबो मद बुटि छाक्र सोरट ऊहि बाहि दर्ह दर्त बति रिस मखो मन मौजदी वरि डठत वारहि वार है
यह्ठ काम चूकि कियो दियो करि छोकरा सरदार है पिर वे तमीज बमोर विगरे कै गए बबत्यार है मक मे ब बांई मसबत्हति बपनो बता को हार है। बोने उसेन न जंग चानक वात की कथजो कथो कहं बरो चुतमुक्षाश साटिक सांधुते पागोपथी कारि संग दीने बौर सिगरे मसलहत ति तिग को ग थी। सफ घंग जीते सैद सो ₹मराह कौन मदारथी ॥ बव में चलो सषि सामुनें कहि कौन धों ठछराईगा मेरी बवार्ई सुनत सव द्ब एक एक पराइगा सव बोस लो तरिक उदित स्दरण बूंद बूंदू विलाइसा रहिं बचा दें हों भागें रं भाडि को कित जाहगा। बब भोर सों करि दौर पडंचत एक एक हिमारिहों कोड जियत धाग थ पाइ है दरवार कार पछारिहीं करि सेर दैहों मस बहारिक्र टूक टूक बंटारिदों पिरि वारषं की इंट उषारि जस में बारि हों। मेरे भुजावक प्राहिजादेग सों वर्ंों सर्क गई तरवारा के बल थौज के बस हिंद की प्रभुता भर्ष रण मारि तौवो पातथाह हि पातथाएति मैबई सुलिता चाहत सो दिषि वह्हकाइ ब्याए बौरई ॥ यह्ह उकुम पठयो ताष्टि बे पज्ञंचे भगोरा बागर्रें वैठे रहो उतहों सवै मिकि घाट घाट धराधरें पुल सीनि बेगि बंधाइयो म जबूत वालंभपुर तरे इसगार पडंचत बाद्रों सम जंग साज महा करें। वकरी बोलाइ कच्षो सबारहिं साज सिगरो कोजिए सव कों दु मार्हो पेश्रगी गनि रालिधिं दोजिए करि मोर मंजिष कों विदा किरि बवर सव थन लीजिए तबबोर ऐेसी साधि जो परं भाति राति चलोजिए।। पिरि उक्रुम कोग्रो निकट के सिगरे बमोर बोलाहक्ते तसबीर चथे को कारो सम राति रातिशिं धाइके सब साणि पौन प्रभात होतनिं होड हाचिए बाइके इसाए जतरो बामरो मारों दंटाएं धाइतै।
W. Irvine—Jangnānah of Furrukhsiyar and Jahāndār Shā̄h. 21

यह्ह उकम निकसतरिं एकाएक सह्र बरमर सोर भो साने बमीर सजो सवारी बजी बौबत भोर मो जव खार मो घुट घटा घुमबी परे पाह्त घोर भो वद सग्युन बषि सब कहे है त्र काषिका को कोप भो। दाष्हिने पर चीच्ह सनमुष वाम वोल्यो काग है च्चत गई काटि गबो विषो चित राहरोत घराग हैं बात पन्र निप्राग घंडित दंड्ड परम बभाग है जब सार मौणुदोग मो बद सगुण बागासाग है। दिश बटका माभ उस्बूक वोषत लबू टू तरात है कह्ट खान रोवत ष्रूनि सों कां स्यार गब फिकरात क्रे मड्रात सिर पर गोध्ध के गनयो वढो उतपात हैं ह्रे बिपाहो सुपन में सव भागिवो वर रात है। उतपात बौ वद सग्रुण सिगरो मूढ मय वहराइकौ एबगार पडं चो बागे ठछ चो समोमर जाइथें
तं मिले एणुछ्छीव बौ सिगरे भगोरा बाइके सम जंग को कथरो क्थी बति वात वरक क्जाइके। विकरार वोल्यो मौजदी बव सैयदों सों वूभित हों रग माटि लेंडं गणोम कों तव वारहाहि बर्मि हों सिगरो मिसाद कीयो इज्रो दिल मांह कीज्रो सूभित हों एक्ष बगो हर घंग के द्रणको बगावत बूलि हों। क्वादाति बां मारा जिद कों मानि कात।वता परणंद षां नतस का पिसर सजि पौर बागें घ।वता यह्ह भयो जो समसामदौषा तेग पर पर कावता एक माभ मेरे सांमुदे बब कौन धों ठछ्षरावता। पहिखे छवोसे राम एछुह्दोण सो मोजरा कियो पिरि जाइकें उतछों मिब्यो बदवष्त् मोशि दगा दियो बत बषो बखकर षां मिस्यो उत जाइकें बागें त्रे लियो

मब में व ल्याए मोजदोवरिं देखिए हूको छियो ॥ यों कहि मोह्ह ला लेग लाग्यो पांच लाष सवार भोधुरि धरा धसकत मेख मसकत सवल यों दन भार भो। यों सिषि सिरोमकि दास गएए उसांब वेनग पठाइयो दरवार कुतुतुलनुसुक के कासीद जोरी बाइयो सव घरथ साहेव राम माथुर प्रगट वांचि सुाइयो यह्ह सुलत नैम रंगे मए बति वोर रस चित छाहयो। हंसि कप्तो बबटुक्षाह वां गलवा मयो उत प्राए का
 एकवाल परकासियर को बड करम एक दूलाह का इन दौरि तोरों बाफुहों वस्य मौबदी को वाह का ॥ मजमून सुवित तजवोज कार करि पोरि बपने कर बयो खारी तयार भर्ई र्ई घसवार सैयद्है भघो छुश्रत्राब मोकनि चाथ फोरत पार्षि के मोजरें गयो सब बरज कोवो घरच प्राहनकाए को टिय हर रयो। वह्छ मीर नुमिषा को लिख्यो बरज सैद्योर को दोऊ वरावर सो विदो वरवात मीर बमोर को बंधियानि सरस्यो वैर रस साहेव जछां रनधोर को पर तेग वा₹्रक हाथ परक्षो बरी मोलै वीर की। वर वारहांपवि वोर सैघद् वझोर त्यें बरजो भयो बायो महमद षान वंगस साजि साज बयो बयो बसवार वोस त्रार वषतरपोष्र ब्यों घन उनयो सषरैत वोर बजो सवै पषरैत हाधी कौ ₹यो । तब उक्नुम कोज्डो पाष्टि परक वा को कियो कूच करार है मिजिषो मह्रमद षां मोष्छात्षा दै चल्यो दूसगार है
1900.] W. Irvino-Jungnamalh of Farrukhsiyjnr a*d Julānulār Shāh. 23

825 इमराए वोर षमीर जंगो साज तेज तयार है गष्हि बरसका षां पेक्षषानो चसत बास्षे बगारं है ॥ खारी तयार भर् प्रभात शि शाष्टथां सवार भो fमिियो मछमद घां स्शी क्रसवार वोस ह्जार मो षुद्ध बापु पंज छजार बव सरदार मवसवदार भो हमराः हिरडष के कियो एसगार वोर बगार भो॥ करि दूच दूच लगार को एसगार पह्डुंधो बागरें जब पियत जमुना को दुष्बो दल स्वल वालमंपुर तरे तित पार वार मोष्हार सों fमाल दबम दोउ देशा करें ए पेसि चाछत पार उत्ष वे घाट वाट धराधर्ंरें।
83: टुर्डुं घोर बौवत घोर घुमरत सक्रल जब है कंजिन्यो दुछ्ड़ं बोर भांडे भकमलें पह्हरानि उड़रान भंपिब्बो रजधान भागु विमान वे लषत ब्यसमान सु ढंपिक्धो दुछ्ड़ं बोर दल भर सह्षस पनिपन तुरग घरनि घंपिस्मो।। टुश्रों बादल सूदल सूर मयूर ध्यों हरषा कहै दुज्ड बोर तोपग को सबंगों गाज गरज रषा करे टुज ब्बोर चात कपिक गुनो गव किfत्त सों कषा करे उष्ष बोर गोला वाम वंदनि राति दिण वरषा कर्है॥ दुछ्ड बोर भट ठट मव बढे सप जंग को ब्यति मनमनो दोड पेलि चाए त पार भो नित टठत ठाठ टुब्घो बनो
845. सडि गीर बावत कुक्ष उड्डत द्लप दोऊ दिस्कोधनो विकरार ध्रार महानदी मक्तात तो दोऊ पवो।
 प्रभु राज चच्चु प्रतच्च लषि थब घवरि कानि है में टियो कहु दूर पस्तिम बागरे थाह अमुणा को कियो
8.50 पायाव परहं्टुं वार सों हुनि भाषि को छिय हरषियो ॥ कार भाठू दौन्छो गुस्युसा तिरि भोंजदो उरवार भो

24 W. Irrine-Jangnāmah of Farrukhsiyar and Jahändār Shãh. [No. I, यह सोर भो चंड़ं बोर जोर दिसेर दल तैयार भो कब पौंच मेजि गवौम सुष पर श्राए्वश्राह तयार भो बव राति रातिति दौटि सैयद् चश्रि तरि करि पार मो॥
86.5 तेहि वोच सरिता fिकट भोकुषिक कटक को ठेरा घरो षणते बवाद मौधदी की पौन मे षरमर परो॥ यह घवर छुते मौचदो मक में मत्रा रिस सो भरों वकि उब्यो यारणु देषता स्यद दौरि जोवतहि धरों वांचे व कोज भागे寅 गाहि एक एकाः संघरो
870 इन्द कियो ढाठ से के ढिठाई सो सजाई हूऐे करो।। काहियो करें नैन करि करिसि ठेरणि ते कष्यो समसेर सरकत षुनिस षरकत मोळ परकत मब वप्यो चतुरंण बंगी साज जंगो मक्त मेगल में चघ्यो धौषा धोकारत धरनि धुकि धुवसोक धुरिक सो मष्यो।『मरा हैवै भट पाच लाष भिषाष मष रब के भरे सव जिरह वषतर पोश्र मष्षर बारहें पर पष्षरे एश भांति राति वस्यो वबो चलि बौर दच्चिम बागरे दिशि भोर छोतथिं दौर करि ठेरा करे हूसक़ंदरे।
1900.] W. Irvine-Jangnämah of Farvukhsiyar and Jahãndär Shäh. 25

रण भूमि वोच रचो च बंतर कोष वै दुड पौज सों चित पूरवो पर बोर बोपरवार पूरव बौग बों दोज वोर वांके हरीि हांकै तों बमीरनि सौस बों पर भोर खणु संधारिए मषू जमष की मौच सों। संबत स सन्न तै बोन्तचरि पूस पू व्यो वुध तहि सम बो बग्यारह तेतिसा माहे मोछरम चौदहों
बब पातसाशो माए बाजुर वाएसो कोधर कहो सक जंग को साएत सधो साहेव जरां कौनो सशी। तित भोर सो बfग पर्र हे वरवारि धर वरषा कियो जब बुले बादर एरष सों दितो धनो ंंका दियो दल बके बोर बमोर सैषद बभोर तोरिए य₹ रवियो चतुरंग घंग उमंग रल भूषि पिषि परिसे कियो। पर वोर चढि ठाढो भयो रमराछ सव सारी ठटो जिधिं बोर जो दलु चाहिए तिशि बोर बों मौंजें बंटो बरिए मिसिल सिगरे बयुपरे रअधान सो सरिता पटो बति द्वर भांपत कुम्म कंपत सेष जो वलता घटो।

विस्षास शंद्।

895 उडुूम श्राशि को से गब गच्केड
ऊुतुक्षसुसुक दाराशे सक्जेउ
बसतर पोख बोर हमराशो
काल वारहें बाल सिपाधी

900

बालों ठोबो धरो घोरें दप करि मब में भरि सप घंग मवे

दोचालाक बोदी बोचायो
J. I. 4

26 W. Irvine-Jangnāmah of Farrukhsiyar and Jahãndār Shāh. [No. 1,

छरिगोता घंद्र।

1310 बांजे बगारे फोलवारे घम धुनि धुव कंपए छुंट धार भार दुद्वार सों छढटि छार सूरण भरंपए
 दुक्डु बोर मौजै साजियो गलगाजि मट ठाढे मए

दुड बोर पौ₹नि बौन सो रम मौं देषादेष भो हथष्ता तों वान जाल विसास गरण घनेष मों
1815 धोरगम धोर बंदोर दुक्ह दल रत्षकसा सवि सेष भो पर वर्ञों वह्छ कि वंदुष बगनित तित वनैसनि सेष मो।
कह कह कहा कह सो बरावे हुटे तट पकनि टाप को चर्टु बोर घोर घटा मढी धुंव ध्षार ताप तराव को वर वान वगरत बोचुरी सम गोल बोला थाप को
1820 वहि पहरके एक पिछानि का इरही पर को बाप की।
द्जटि मयो धुंधुकार त्यो भिनुसाए सो दुंद्ध दिसि भयो बजकारि वोर बमोर सांवत चापसर कर वर सयो दप करव बागे वाजि वागों मौज मोदमने मयो बजि उठे माब माब माब बंदोर र下 मंबल बयो॥
1825 तरे तोर तर तर वाश सर सर सु भर भर गोला घले
 माट धाल सुष सुष भरे पोरे रंग कायर हताइसे धिमि देखि जाचक दानि हुष स्रूम मुष टुष मुष वेकले। हू उत दुह्ट द्न के जित ने वोर वोर वोरों बिरे
1830 ते करणसाके वर्विक वांके होंकि भट भट्सों भिरे समसेर सरकि सिरोे्दारार सण्हार हांवत्त सिए चिरे दोगी भामाभम कि भर्म भूमि भूूमि बेते गिरे। $\begin{array}{llll}x & x & x & x\end{array}$

1433 कल लेंग देतन रहक्े छचनास घन घुरनास है तूपानं पहरत तुपंग को पहरात वान विसास है
1435 वएं तोर सरांम समूट्र सम सरसोक तरस रजाल है घसमाग मानु विमाण गोरंकि भयो धुद्धु काल है है तब बोर बोर विरां विरे मनु गह्वरे भट भट भिरे बजि ज्ठे माए माए माए पुकार करि करि मुख भिरे

28 W. Irvine-Jangnã̀mah of Farrukhsiyar and Jakändar Shah. [No. 1, वालैत गबोरे बर बो वोर गयो कर धिरे
1440 तहं त्रोत क्र क्ष काष की पर सुषक काइ पिरे।
$x \quad x \quad x \quad x \quad x$
1453 च⿱宀ं बोर पौजनि मौज सों मब मौज माब मत्षा परो हचियार भार छुधार भर मनु मघा मेघणि की भरी
1455 जिर जिथम कुंक् छुरु दुरो किरि गई वषतर को करो करि माब माठ सल्डाब यार सण्हात चुनि बतलल करी। धमन घटा घोर घमंड सो खम घुमक्ठि पर पौन रहों धौंसे धोकारत गरण गशि तरवारि चमका छटा सही भार तीर गोणिय वार गोणा परत बोला स त़्रो महि मची मेदनि गूद कोच ब्वाए सैयद जव गही। मद भरे भूमत षरे घाद बधाद करि बरथरि बते सिर सरत घ्रोनि ध्वार मनड्ड पहार सो भरता भर्ते वढि चली बोडक् को गदो बह्रे बसें कहि को तरे तेषि तौर दल द्ब मास को वल पठान कांत्रो को परे।

कविफ घंट् 1

वकसत का़ मौन रोज रोज काि गकत काहेते करत वांका बौरम की कर है
हिम गिरि बरि हद के हट को वदेस लंग कोण एवे दे के जोतो चस सो मयंडु है
च्रोधर भनत पंच मुष को परम प्यारो पंच सुष विक्रम भर घारे पांच्चि बहु है
कोरति मर्शेपनि बाल रुुसाब हू को काहैते बढति विर
दातानि क जंड्ड है
$x \quad x \quad x \quad x \quad x$
1900.] W. Irvino-Jangnämah of Farrukhsiyar and Jahāndār Shạ̈̆. 29
 मातथाधेहेव मे
बो धर बजत मार बाषे बाजे बोर सुत्ठ गाई बतमें रे केतल व चेत मे

बंमए बो बडो माद्याएति प्यटि डालौ एवो एवो
बाजम षां बवक वनैत मे
मत्रा हत भारष को कमवैतो घारण को चैबो मोम भुज
बज माबो ऊुर्षेत मै।
$x \quad \times \quad \times \quad \times \quad \times$

1545 घौधर बवार्ह देषि परकषिषर हू बी बायो मत्त मौनदी बनेक बामलाष क्ष

राम टाजा मब माब के
माटि पर द्ब हर्वायो शूच जो fिभी को करत बडाई
सिवा बंकर कि साष से
एके बोर कौषो बाषें एककैष बान्धो मक एकरो गचत

> बैसो थाष्ष क्।
$x \quad \times \quad \times \quad \times \quad \times$
1599 जादी क्षादवामह को उछात्र घति मतरण को बंम बंग
वाढो एंग बाढोतों रषत के

बरषत के

जवर घघत के

बषत तबत के।

 षैट्बो छाथ लायो है
 （1．
 पस्ताँछ वढायो है

पातथाहि केव पायो है।
घेरी बारा वूतार मीरी स वदार दल बस घूंद
कीयो पीन एघुरो की
धाषा कौरे पूरवं ते हावादाए मौरनि को मीला सो
वकर कोगो हर्टाज जीच का

सू पेगार्ट दीड दौंज की

गब्बर हरां बढ्यो दोत को ॥
बोज ঢ்ंचो कोज दाए बात्र में ब गुण भारो कोज
वारणारों वस में न बायिो दे

मूर्री एक तोषि विधि वय वगायो है

पाषंकासियर वात⿱亠𧘇卜र भर पायो है
1614 वारा मातथारीस सों पूर बरि करते तोलि देष
रीमा चे नै माला पष्हराइयो है।
$x \quad x \quad x \quad x \quad x$

1900.] W. Yrvine-Tangnāmah of Farvukhsiyar and Jahāndar @hah. . 31

Translation.
[Lines 1-4, Invocation.]
5 Gridhar alias Murlidhar, twice-born, lịves in Prag, By telling this pleasing tale of kings he inoreases infection;
Farrukhsiyar the king is young, strong, elpquegt, And the giver of gold to all the nobles:
A trader's letter came, suddenly arose desire,
10 Having vomited, Bahādur Shāh went to heaven. Hearing the news, forthwith the generous Farrakhsiyar Decided to raise a force and make a rapid march, He sent for his Bakhshi, A'znm Khan, and gave order :"Now lett troops be raised, as many as can be got."
15 Then, after ten days or so, onme the trastworthy news, Zā’lfiqār and the nobles had all gone over to Mu'izzu-d-din, Zülliqār Khän lead astray all the army, using deeeit, Otherwise who could overcome in battle one so powerful. Ma'izzu-d:din raised the umbrella, ordered the pablic prayer perversely,
20 Set out for Dihli, wrote and sent out reseripts to the four quarters.

Tomar Chand (21-38).
When this news came
Then the wise Farrukhsigar
Called for all the nobles,
Conferred gifts on all the heroes.
25 To all he gave the order-
"Now get together an army."
After this order, the nest morning,
He raised the umbrella, sat on the throne,
All the king's friends
30 Then kegan to enlist soldiers,
'Abdullā̀ Kān made ready,
He fell into a great rage,
The king's order issued,
He reached Allăhābăd.
35 Of $\boldsymbol{q} \bar{u} b a h$ as well as $s a r k a \bar{r}$,
Of all he took full possession, The hepoic head of the vanguard
\therefore Set up his armed posts.
W. Irrine-Jangnāmah of Furrukhsiyar and Jahändāir Shah. [No. 1,

Doharā (39-70).
Then Mir Jumlab, a noble, clever, deep, strong of arm,
40 Fought Ma'izzu-d-din's army, grasping the sword, Arranged all the sübahs, walked circumspectly, And reported all the facts to the king, where, when, and how. Thus Mir Jumlah, the hero, reported in a long letter"They have made Sayyid Rāji Khān governor of Prāg,
45 "He lins started, his avant-garde is Sayyid 'Abdu-l-ghaffâr, "Behind comes a great army led by Prince 'Izzu-d-din." When all these details from Mir Jumlah, the hero, arrived Before the king, shelter of the world, the powerfal Farrulh siyar,
Hearing them and looking at the nobles, with fitting anger,
Spoke Husain 'Ali Khān, the fighter of Kürā, strong as an elephant,-
"By this the fortunes of the king of kings are not one moment threatened,
"To meet him 'Abdullāh Khān singly would be enough,
"Let grace be shown him quickly, send him a written command,
"That wretched army will he rend, will overcome it in battle array."
55 When the rescript that the king of lings had written arrived, Sayyid 'Abdullāh Khān took it, carried out the usages of respect,
He placed the order on his head, with his drums remembered his Lord,
He raised tents towards Alam Cand and blocked the road.
Then he stood fast, making Präg his fixed place,
60 Sent on his brothers to battle, under them all the leaders, Thas joined Suifu-d-din 'Ali Khēn, brave, beroic, liberal, Najmu-d-din 'Ali Khān, the fierce, started sword in hand, Sirājn-d-din 'Ali Khān, too, joined, the brave and strong;
There also came Rāja Ratn Cand, the wise, armed with sword,
65 Mir Mubsan Khăn also joined aud brave Anwar Khān, Then joined Samandar Khān and Yädgăr Beg, the fighter, Mirzā Walī Bahrām Beg, mounted, grasping his bow, (He whose father is Barqandāz Khān, a title he too obtained), Darwesh 'Ali Khãn joined, the Sayyid marked for victory,
70 There came many brave leaders, severe and proud of nature.

Harigit (71-170).
This side halted at Alam Cand, that side encamped at Kohun, On both sides when day broke both lords of battle beat their drums,
As these mounted, those adranced, full of zeal both seized their reins,
The whole army was in agitation, and the court belored of the sun;
75) When the armies came in sight, they both cocked their guns, Muskets, swirel-guns, elephant-picces sounded loud as thnnder,
Then lightening gleamed and glistened as the swords left their scabbards,
It began like heavy rain of sorts, in the mêlée blood ran in streams,
Urged on with unceasing cries, the brave warriors galloped, both armies rushed,
80 Seizing their swords, jumping and springing, they delivered blows,
One moment down, then up again, and the next moment on without flinching,
For six hours, in confusion, the heroes braved the clonds and strenms of war.
[The Saygids fight on (83-98) till Sirāju-d-din 'Ali Khān is killed].
99 Having made firm his heart, the Bärlaah boy,
100 Sayyid Sirāju-d-din 'Ali Khān, received his martyr's crown, Joyous from the Hurri's hand he drank the full cup of love,
He did his duty loyally, bestowed lustre on the illustrious army.
Thas noise arose on every side, all the leaders rushed,
Adrancing they threw down buckler, cast off head-pieces, tore their shirts of mail,
105 Quitted brenst-plate, broke their scabbards, laid hand on dagger,
Lances glittered everswhere, the strord blows fell many and thick.
Meanwhile men ran from all sides, surrounded the whole army,
There arrow, spear, rocket, bullet, reddened body after body,
Swords shone and glittered, daggers wounded with a "karkar,"
110 Tossed to and fro the crowd struggled, the chiefs of the army stood fast.
J. I. 5

Many lay on the ground writhing, many wandered wounded, Many were like to faint from fear, and died without being struck.
The leader, 'Abdu-l-ghaffär's, body was covered with wounds, In the battle-field he knew not where nor how to hold his footing.
115 Then the army made off, the scamps rob the money bags, He whose foot had no shoes was exalted on horseback;
Rushed the famous one, shouting the king's name, threntens with thumps,
Wherever he goes the hero bears the decree of victory.
When Mirzà Manzär told all the story to Qutbu-l-mulk,
120 The drums beat with long throbs, delight blossomed in his breast,
Hearing of Sirāju-d-din 'Alī Khān's fate, he fell into a rage,
His eyes stared, he twisted his monstache, his teeth bit his lips.
'Then spoke 'Abdullāh Khān, "Now will I fight a great fight,
"'To cut to pieces the whole western army I draw my dagger,
"As many leaders as are come, their souls shall pay the penalty,
"None shall be let go till I am revenged for Sirāju-d-din 'Alī Khān;
"In a battle-field like Kūrukhet, I will raise a contest of swords,
"By strength of arm when I and my kindred have been wounded unto death,
"Then may I be styled a faithful follower of Farrukhsigar."
[Line 130 is wanting. (Lines 131-138) The Sayyid's brothers return to Allahābād; they and their commanders are commended and rewarded.]
139 Next day Quthbu-1-Mulk called for Şāhib Rāe, and said,
140 " Write to the king of kings the news, telling the whole story;
" Write to brother Ḥusain 'Ali Khan, instructing him of all,
"Wherever he is, let him harry here, gathering a sufficient army."
Șāhib Rāe, the Māthur, heard and wrote there and then a letter,
'Told of the battle array, all things as they happened-how, where, and when,
14.) The repulse of the western force, the advance of the nobles; Again he wrote to Husain 'AlīKhān the whole story. ['The contents of the letter are then given (lines 146-158).]
1900.] W. Irvine-Jangnämah of Farvukhsiyar and Jahändãr Shäh. 35

159 This humble letter was sent off and reached Paṭah,
160 First Ḥusain 'Ali Khān took the letter and was pleased, Read of Siräjn-d-din 'Alī Khan's fate and sorrowed, When his anger had decreased, he read out the petition to the king.
Thus spoke the noble of nobles to the king of kings:-
"When angry, none can stop me; my grief burns for my young brother,
165 "Give me orders, I make forced marches, I am ardent to fight, "By calling " hish-hish " I will turn 'Izza-d-din back."
Then the king gave orders-" Please wait a day or two,
" Let some smart, loyal noble be sent off ahead,
" What good is rage at 'Izzu-d-din now, better take counsel,
170 "Then let as start with a perfect army against Ma'izzu-d-din."
Pādānkul Chand (171-376).
Next day when morn appeared Then the king held privy audience, Group by group stood all the nobles. Murtazạ Khān took the lead.
175 Sayyid Murtazạ. Khān advanced, The king of kings addressed him,"See to getting ready an army, "You be the first to start to the west."
Instantly obeying, the hero went.
180 Sayyid Martazạ Khān took an army,
Set out by forced marches,
Made Bahādurpur his fixed camp. Again His Majesty gave an order,
A'zam Khān was despatched.
[Here follow (185-228) the names of many men who joined. Darbars were held daily. Ashraf Khān arrives and is made Khān Daurān, 229-236. Ibrāhim Husain was sent towards Bhāgalpur, 243, 244. Ghairat Khān was left in charge of Paṭnah, 251, 252. The following couplet, 257, 258, is worth quoting for the quaint inversion in the second line :-

Sajyo Husen Alie Khän, bal, Mahäbīr, Umrät-amìr-al.
He took command of the vangaard. We come next to Farrukhsigar's march from Paṭnah.]
All the nobles and chiefs got ready,
The order was given to Arslän Khān, -
W. Irvine-Jangnāmah of Farrukhsiyar and Jahändār Shäh. [No. 1,
"Take out the advanced tents,
350 " Count the forced marches exactly." Arslān Khān obeyed the order, Mounting took his army with drums beating, He took out the advanced tents, Marched five kos and encamped.
355 Next morning the king of kings started, The throng of elephants roared, The royal march was beaten loudly. Then played the music of His Majesty, The big drums shook with matterings and growlings,
360 Men shouted "Victory! Victory"! The trumpets brayed " ho-hū-ho," The king of kings' good omens appeared, The hautboys sounded happy augury, Rāma aud the sages joined the throng.
365 "Clash, clash," clanged the cymbals, Jingling bells began their " tinkle, tinkle," The elephant-riders displayed their standards, In front ran men shouting "Victory"! Everywhere incomparable brightness reigus,
370 The splendour is as that of Indra's heaven, Fringes lang over their faces, Guardians of stars and umbrellas, Sunscreens waving in their hands. Hearts full of joy shout for the Faith,
375 Yak-tails, sundar, the fish-dignity, Give evidence of happy augury.

Chappai Chand (377-388).
Farrukhsiyar, powerful, king of kings, led his army, Many armour-clad elephants trumpeted and roared repeatedly, The lordly drums resound and thunder, filling all the air,
380 Lances glitter, peunants flutter, as also the ensigns, Soldiers wherever you turned, uproar every where, It was very dark from mist, the sun hidden, the sky covered.
No strong man failed to arise, the weak ones gathered up strength,
Many rulers came from afar to couquer kingdoms,
385 Many were lords of elephants, many sought that rank, Many swordsmen stood, holding proudly sword and sabre, Now from every hut and corner throngs of men confusedly jostled,

To join Farrakhsigar, king of kings, whose good fortune called aloud.

Dohā (389-422).
Meanwhile the king of kings marched in extreme rage,
390 Made forced marches, halted at several places. By harried stages he reached Khajurān, A^{\prime} zam Khān rejoined and beheld the face of his lord.
At Bahādurpar they found Sayyid Murtazạ̄ Khān;
Crossing to Banāras they observed the ' $\bar{I} d$, then hastened on,
395 Came through Baserí, encamped in Jhūnsi, The valiant followed, the faithless vanished.
Sayyid 'Abdullāh Khān did homage,
With him made obeisance all his followers;
Elephants, Lorses, litters, swords, shields, weapons,
400 Robes, jewelled aigrettes, and high rank
The king of kings gave with the title of Qutbu-l-Mulk, Gave promotion and all things pertaining to rank.
He made a temporary bridge, crossed to the west of Prāg, There halted four days, then rushed again onward.
405 Then came Farzand Khān, world-renowned swordsman, Strong Ṣalābat Khāu came and Saif Khān, the valorous, Acting ever a leader's part Chabila Rām appeared, As his welcome he was made Rājā and Carr-hazari.
Next joined 'Ali Asghar Khān, who came to Hāthigrām,
410 Received the rank of Cār-hazāri and the name of Klān Zamān.
Passing east of Kumwarpar and to the west of Binduki
The king encamped between them; there was tumult in both armies.
Leaving Fathābād on the west and on the east Binduki village, 'Izzu-d-din placed his tents and encamped his army,
415 Fenced himself and dug a ditch, made a fort round his army, Collected countless carts, made of them a bulwark to his force.
The two strong armies lay three kos apart,
Kept the battle-field in the midst, the mad elephants trampled it into mad.
The prince was sent in advance by the ruler, the king of kings;
420 When the king's army arrived, they had forthwith desire.
'Abdullā̀ Khān, quick in battle, the champion Husain 'Alī Kb ān,
In front of the battle-pillar went the upholder of the Axis.

Madlubbhàr Chand (423-548).
423 Then joined 'Abdullāh Khān
Also Ḥasain 'Alī Khān,
425 'Inājat Khān, too, joined, And Shujā'at 'Alī Khān, the fierce.
[Then follows (427-548) a long list of chiefs and nobles, each with some epithet.]

Bhujangprayāt Chand (549-636).
549 On both sides were ranged the raging tuskers,
550 Clothed in armour, row upon row,
The mace-bearers surrounded them, their heads were lacerated,
The dusky ones screamed, the loud bells rang.
Their bodies like lowering clouds, great beyond measuring, Bearing iron armour, covered with fringed housings.
555 Thousands of armour-clad horses came clattering, It seemed like the sun's chariots gathered together.
Eagerly, with playful gait, went the spirited ones, Streams of Turki, Tāzi, Irāqī horses, They steadied each other, foot close by foot,
560 Arabs, and western ones, sportive Qandahäris. They leapt like acrobats, their forelocks plaited, Flanks, backs, loins, eyelids, free of fault, Cream-coloured, bright bays and chestnats, Handsome shapes making a flower-garden.
565 Like the splendour of borders, blue and green, Dark bays, with the five lucky marks, and light duus,
Great in girth, small-eared, full of youth,
Their hoofs large, their chests broad.
Restless-eyed, their heads good-tempered,
570 Hoofs and coat shining, compact, ready for fatigue ;
Warrior allies came from all quarters,
All the iron-clad heroes joined, boiling over with rage.
Every where proud governors jostled each other,
A crowd enough to pulverize the enemy,
575 Wherever you look the army is full of kings and heroes, Many strutting about discharge their guns.
All the valorous, heroic, active, loyal,
Came with harness rattling, mount with shouts,
1900.] W. Irvino-Jungnतmah of Furvukhsiyar and Jahandar Shnh. 39
Issue from the army, and shouting urge their steeds ;
580 How relate the twirling of their spears!Behold on the other side, rare and andaunted,Advances raging the ruler of Dihli's son;
On two sides stand the enemies like flower-beds,
On two sides the armies stand looking.
585 With king Farrukhsigar are the governors of provinces,
A wondrous crowd of allies jostled everywhere,
Loudly resounded enlivening music,
Everywhere spears thick as gathering clouds.
As the field-pieces fired a great dust arose,
590 There arose from the smoke great clouds and darkness,
Flashes of light came where the rockets flew,
It was as if the great vault of hearen had burst.
They threw their missiles, doing harm every time,
Armed men and ganners fired many cannon,
595 The heroes of both armies adranced,
They dispelled and trode into dust the enemy's array.
Verily that army's conceit deserted it,
Taking the chief batteries they crowded in,
'Izzu-d-din's men began to quit the walls,
600 Turned and fled on beholding those wrathful men.
They abandoned horses, carriages, gold, elephants,
No one collected aught of his belongings,
Some left their horses, threw down their weapons,
Some fled, taking the road in front of them.
605 Some moaned " hā, hā," some fell at the men's feet,
They went creeping and crawling, as best they conld,
They ran out and fled, those miserablo wretches,
Many stood calling aloud the names of God.
Many mighty men abnted their pride,
610 Valorously abandoned all they had,
Learing all they fled, forgot their strutting gait,
Their star had set, their wits had fled :
Everybody, servants, learned men, waiting maids
Calling " Lord ! bestow on as some helper" !
615 [Garo ḍhāwaro jhāṇki jhībai surosai,]
All piled on Ma‘izza-d-din fitting curses.
Some seized on money-bags with great glee,
Everywhere the camp plunderers ran with torches,
Lighted the thatches and the mighty tents ;
620 Great fear spread, the smoke made a darkness.

Here from the liot flames red light broke forth, Elsewhere the heroes of the bāa \bar{a} r stole the money bags, There the bambū knots split with a splattering sound, Crashing aud snapping, the heary thatches crackled. "Cannon, kettle-drums, swivel-pieces, camel-guns, elephantguns,
"Gold coins, jewels uncounted, in heaps strewn everywhere,
"The racant enclosure stands, surrounded by bags." There stood Mumtāz Khān; His Majesty called him near, The king of kivgs gave order-" Go you now and see, They plundered saffron, wine, spirits, dried dates, They took all the bags of walnuts and musk, At places pearls were barnt into powder and dust, Everywhere squatted plunders tying huge bundles. lickles, powders, and cironjī nuts were burnt, Elsewhere jujube fruit, tubers, and fever-nuts, They burnt or took clothes and turbans of gold brocade, 'There lay about many bundles, women were robbed. 'The jeweller's bigs were carried off, The jewellers dispersed, their bundles lay scattered, Crowds of traders cried, "Alas! we are undone," Numerous lorely women fled, their faces veiled.

> Dolıarā (6:37-656).

Know then that thus fled 'Izzu-d-din and all his men, Listen to Çridhar, the poet, as he tells the whole story. Imtigāz Khãn reported, bringing a good gift for his lord, "My Lord! may this rictory be of good fortune to the king of kings!
"'Tliey sent Khān Daurān ns chief, one fit for any enterprize, "Nansheri Khān, his son, was sent with the vanguard to battle.
"'Abdu-s-ẹanind Khān, Rāje Khān, the noble,
"Lutfullāh Khān, Ṣādiq, Dildiler Khān, the brave,
"Such were the nobles trusted by Mn'izzu-d-din,
"Agninst your Majests's good fortane they could not stand in baitle;
"From 'Izzu-d-din's harshness all went wrong, "They came to eat pañ, they threw away hand and foot, " Elephants, horses, camels, ox-carriages large and small, litters, "Take the war elephants, trumpets, cannon and drams, "All the rest of the plunder leare with whoever took it."

Ardhik Chand (657-694).
The king of kings liaving gained a victory, His heart sas filled with supreme delight; In the morning he sat in audience,
All spoke words of reverence. Then sounded the rogal music loudly, It sent forth its loud, shrill cries, They summoned dancing women, The nobles came to make obeisance.
665 Many jewels shone, White, blue, and crystal, They offered giftis of many sorts, They all stood group by group. Qutbu-l-malk made his petition,
670 Asked for two nobles to be called; Then Muzaffar KhĒn was presented, The Lord of the World conferred favours, Gave the title of the very ntmost degree, " Khān Jahān" with "Bahādurī":
675 Raḥmat Khān, bravest of the brave, attended, And received the title of Mutahawwar Khān.
Then the king bestowed gifte, Rewarded all the nobles, Gave elephants, fierce in battle,
680 'Iräqi horses with saddles.
Auspicious robes of honour glistened, Made the assembly a golden garden, Turban ornaments glittered, plumes flattered, Lovely jewelled bands and trappings,
685 Jewelled swords were displayed, The whole army was covered with jewels; On that spot they made four halts, All the army took repose. Then began again the long marches;
690 Where stands the town of Shāh Madar,
There the lord of the army arrived,
And worshipped the wonder-working saint, Some ten days they halted there, Many gifts were given in the audience hall. J. I. 6
W. Irvine-Tangninmah of Farrukhsiyar and Jahãndār Shāh. [No. 1, Gitã Chand (695-894).

700 The Kāyath, Siroman Dās Rāe, lord of Sānḍi town, Frequenting the audiences of Mu'izzu-d-din he learnt the truth, He wrote to Qutbu-l-mnlk all the news of importance.
" Here Mu'izzn-d-din, puffed-up, maddest of the mad, goes on drinking,
" All the|musicians are made nobles, they do what their heart desires,
Again Mir Jumlah, the hero, forwarded thence a report, The runner with paper in hand came to the darbār door, Mumtā冗 Khān took the writing, delivered it to the king, Trqarrub Khān took it, and forthwith read out the contents. The clever agent of the Wazir, Sayyid 'Abdullāh Khān, "At every moment in their mind arises joy for some brother, "Who has' got fish-dignity, flag, hand, gak-tail, and kettledrums.
"They load with wine, their bullets are opium pills,
"Long and short drums are their cannon, long horns replace muskets,
" Instead of a gun-match they fill cups, they conquer floods of bhang,
"Night and day are thus noised abroad their plans for war and battle-field.
" All the lily-eyed, pain-quelling beanties are collected,
"The cleverest dancers wave in the hall their dusky locks,
" Passion kindles by their songs, he hears sweet poet's rhymes,
" He beholds attentively the dances of the pretty juggler boys.
" Here a group of drunken players, there the overtares of loose women,
" Here dance joyous eunuchs, moving with great quickness,
"There boys run about, making the darbär a sodomites' resort,
"This is Mn'izzu-d-din's madness, he attends to nothing else.
"Power is usurped by Kokaltāsh Khān and Zū'liqār Khān,
"Both attend the darbär, there is great enmity between them,
"As a sick man shuts his eyes and gulps down bitter jaice reluctantly,
[Line wanting in original.]
"Brave Ghāzia-d-din Khān and Muḥammad Amin Khān have been gained,
"'Abdu-ş-q̧amad Khān, Qamru-d-din Khān, Zakariyā Khān, have come over,
"Then Rahīm Khān and all the Tūrānis have bepn got at.
1900.] W. Irvine-Jangnāmah of Farrukhsiyar and Jahändär Bhah. 43
"They have made Mir Jumlah referee, will join and fight for him.
" One day Ma‘izzu-d-din sat, streams of wine were flowing,
"Full of happiness to his heart's desire, he gave new orders for each day;
" In the midst of this came the news,-'Farrukh Shāh is at Kannauj,
"' And 'Izzu-d-din has fled, taking with him all his army.'
" Hearing of 'Izzu-d-din's flight, that all his army had fled,
"The whole drunken gathering was forthwith immersed in sorrow,
"Then began their mouths to burn as if poisoned, the songs sounded like curses,
"Their drunken joy subsided, thought and fear and anger awoke.
"' This affair has mis-carried because I made a child into a leader,
." Furthermore, power was granted to a group of injudicious nobles,
"، My mind conceived not wise plans, the defeat is through my own error.
" ' Khwajah Hasain knows naught of war, nor the intricaciea of affairs;
"Where did Lutfullāh Khān ever fight, he of Pānipat, the True One?
"، With them went many others, none of whom could give advice,
" Amoug them who was skilled to overcome the Sayyid in battle array?
"' Now I start with my followers, say, who will stand fast, aud how?
"'Hearing of my approach the whole army will fall to pieces,

41 W. Irvine-Jangnamah of Farrukhoiyar and Jahändar Shäh. [No. 1,
" " All the dew, every drop of it, is dissipated by the risen sun ; "' I will not spare one rebel; who will there be to appear in the field?
"' Now to-morrow 1 will run and arrive with all my followers,
"' Not one will be let go alive, I have thrown down the door of audience,
"'Like a tiger I will devour their flesh, I will divide them into little bits,
" 'Then rooting up Bārah brick by brick, I will throw it into the water.
755 "' By my strong arm I obtained superiority over the Princes,
"' By strength of sword, by strength of war 1 became lord of Hind,
"' Defeating throe Kings in battle, I took the sovereignty,
"' He claims the throne and to seize Dihli by stratagem.'
"This order was sent, when the runaway reached Agrah, " 'Stand fast there all together, seize all the fords and ferries, "'Quiakly erect three strong bridges below Bālambhpur,
"' I come by forced marches, collect supplies for a campaign.'
"He sent for his Bakhshi and said ;-' Make ready the horsemen,
"' Count out to all a two months' advance, give them supplies, "'Send off the quarter-master-general, then see to every place, " "Make such plans that you may start in good order this night.'
"Next orders issued to send for all the nobles near at hand,
"He enforced on them the order, they must move that very niglt;
"As morn arose the whole army must gather in splendoar,
"Must harry on to Agrah and occupy Iț̄wab,
"As soon as the order went forth, at once arose confusion and shoats in the city,
"The nobles armed, the horsemen made ready, at dawn the kettle-drums sounded;
"When he himself mounted, thick clouds gathered, great dread arose;
"It was an ill omen, all said-' Alas! Kāli is angry'!
775 "On the right a lite called, in front to the left a crow croaked,
"And a cow's throat was cut, cats spat, and wrangled,
"The standard caught, the staff broke, a very bad omen,
"When Mu‘izzu-d-din started, evil omens suoceeded each other.
"In daylight an owl screeched amidst the camp, and foxes called,
"Here a dog howls like a surani, there a pack of jarkals yells,

[^0]On hearing the news he made a resolve, he went the rounds, His retinue having been made ready, the Sayyid rode forth, Joyous, with hand on moustache, he went to see the king, Reported everything, made glad the heart of the king of kings.
815 What Mir Jumlah wrote in his report to the Sayyid Wazir, Both were of like contents, the degradation of lord and noble;
The ejes of the World Lord were filled with heroism, the steadfast in battle,
His sword trailing at his side, the hero's hand played on his monstache till it bristled,
When the lord of all the Bärhahs, the hero, Sayyid and Wazir, had told his tale,
Came Muḥammad Khān, Bangash, and joined with new equipments,
Twenty thousand mail-clad horse came, looking like a cloud, All heroes and strong, all hard of heart and hand.
Then king Farrukh gave him orders: "I have decided to march,
"Mub̧ammud Khān ! parade your men and march at onee, the front this very day."
The retinue was made ready, at dawn the kiug of kings mounted,
Then came Muhammad Khān, verified twenty thousand horse, He was made a panj-hazāri, all his officers became manṣabdärs, They joined the vanguard, the hero hurried to the front. March by march they hurried on, quickly came to Agrah, Both strong armies drank Jamnā's waters below Bālambhpur, They met face to face on opposite banks, both armies pitched their tents,
These wished to cross and attack, those on that side held all paths and passages.
On both sides the drums resounded, all the waters were moved and trembled,
On both sides flags fluttered, the pennants blazed to the stars, The royal tents, lustrous as the cars of the gods, hid out the heavens,
Throughout both armies were thousands of brisk movements, the horses stamped their hoofs.
1900.] W. Irvine—Jangnāmah of Farrukhsiyar and Jahñndतr Shāh. 47

On both sides handsome tents, like suns and peacocks, delight the oye,
840 On both sides cannon are fired, keeping up their thunder,
On both sides all kinds of crash and thump set up all sorts of sounds,
On both sides, night and day, the bullets and rockets fall like rain-drops.
Both sides are full of spirit, with eager desire for the contest,
Both desired to cross and try their fortune, one constantly harassed the other;
As they draw near, the armies of the two Dilhi lords leap and bound,
The waves of the great river were restless, the waters grieved for both.
At this time the hero, Sayyid and Wazir, reported as soon as he came,
"My lord! Incarnation of Deity! they have come to tell us of firm ground,
"Not far to the west of Agrah, the Jamna has been forded,

The army standing in the enemy's face to bar the way was recalled,
It marched some four kos, and for three or four hours halted,
When the morning dawned, both parties mounted, with music playing,
In great haste the Lord of sword and bow came to the Jamna crossing.
When the strong, valiant army arrived, the lucky time was fixed,
It was a swift stream, very powerful, full of tricks, hundreds of twists and turns,
The heaven-seated court fixed a bridge on the ocean,
First they found firm ground through the water, then they crossed the stream.

In this way the king of kings crossed the Jamuā without hindrance, Then next day at dawn, a kos or two east of Sikrandah, In that place, near the river, the hnngry army pitched its tents;
Learning their approach, confusion fell on Ma'izzu-d-din's army.
Hearing this news, Ma‘izzn-d-din's mind was filled with rage, He talked idly, "Friends, behold! now I rash and take him alive,
"Not one rebel shall escape, drawing I seize every one, "I will torture those who have had the effrontery to join him." So saying he rolled his eyes, drew his dagger from its sheath, Flourishing his sword, trembling with rancour, twisting his moustaches, full of rage,
Sheathing every limb in armour, he mounted a war elephant, The deep drums rumbled, in fear and trembling the fixed-pole turned on its axis.
Five lakhs of fighters followed, filled with eagerness for battle, All clad in hauberk and breast-plate, themselves hard as steel through and through,
Thus the heroes passed the night, then marched forward south of Agrah,
Then as morn broke, they hastened to their camp at Sikandrah.
The field of battle lay between, the two armies were some two kos apart,
These on the east side, and on the further side from the east in splendour
Both heroes shouted with joy, along with their nobles,
Then at dawn moved to slay their enemy, like the waves of Jamnã.
Wednesday, the full moon of Pūs, Sambat seventeen sixtynine,
In the year eleven hundred and thirty-three, the fourteenth of Muharram month,
And of the imperial month Azar the twenty-third, Çridhar avers,
The lucky hour for battle was fixed, the Lord of the World approved it.
Then next day for six hours Krishen sent rain in torrents,
When the clouds dispersed, the Sun Lord joyfully struck up his drums,
1900.] W. Irvino-Jangnāmah of Farrukhsiyar and Jahāndār Shäh. 49
The army followed the hero and noble, the Saysid Wazir, as he did this,
Entirely filled with the joy of battle, he made the first venture into the battle-field.
Then the heroes mounted and stood, all the horsemen followed and stood,
Wherever troops were needed, thither they were despatched,
All the groups adranced, the king's camp was filled like a river,
The sun hastened, the tortoise trembled, the snake-king lost his strength.

Bilās Chand (895-999).
Receiving the king's orders with shonts, Qutbu-l-mulk rode to the right,
Followed by the steel-clad heroes,
Death-dealing and death-receiving warriors.
The Sayyid was followed by all the death-dealing warriors, full of efforts,
On the king's order they drew their swords, shonted, "Strike, Strike," roared hoarsely,
Throwing down their reins, full of courage they galloped their horses into the battle,
The big drums of 'Abdullāh Khān, the Sayyid, boomed deep and loud to the south.
Dilāzāk, Lodi, Lohānī,
Panni, Tarin, Sür, Sarwāni,
Dāūdzāi, Khweshgi, Gabī,
Mahmand, Bitttani, Pabi,
Bițtani, Pabi, Matti, Gabi, holding their Arab horses,
Clad in brenstplate and shirt of mail, fall of heart, joint in death or victory,
Youthful, bold Pathāns, iron-covered, renders of mountains, in crowds,
Thus with 'Abdullah Khān advanced the hero Muḥammad Khän, the Bangash.
[Lines 911-999 deal with episodes in the battle, introducing in each stanza the name of some chief. About twenty-eight men are mentioned, the only verse of special note is one (951-958) bringing in some tribal names:
Gutrānī, Tarin, Tì̀āhī,
Sarwänī, Mattani, Enwāhī,
Nassur, Giljī, Kãsab, Kākar,
J. I. 7

Arab, Sūr, Niānjī, Nāgar,
In front the Bhanār, Käsi, Āgar, Panī, Ujägar, Roshānī, Mahmand, Bit!ani, Jepharmanni (?), Chabi, Lodì, Lohäni, সlakhtiyārī, Rohelah, Yūsuf-khaili, Dilāzäk, and Sarucāni, These formed the brave array of Zainu-d-din Khann, the Dāūdzāi. Then the metre changes to Dohara (1000-8), and two more names occur, those of the Nagar leaders. Again from lines 1009-1248 we change to Karitta, the verses being of the same character, the heroes of them being chiefly Chabila Rām, Şamẹāmu-d-dnulah Kbāu Daurān, Sādāt Khān and Amir Khan with their relations and followers. One verse will suffice as a specimen :

Then Mu'izzu-d-din waxed wroth, Put on all sides active troops, In the ranguard Kokaltāsh Khān, Strong, alert, heroic, used to victory.
[In a similar manner the names of various nobles are introduced into the next fourtcen verses (1253-1308).]

Harigita Ohand (1309-1464).
13(9) On both sides the armies were ready, shouting the fighters stood,
1310 Then bent the kettle-drums on the elephants, the haughty north-pole trembled,
A mist spread, white as milk, the sun's brightness was hid, Meru tottered and stooped, its sides mored, its rery being was threatened.
1900.] W. Irvine—Jangnāmah of Farrukhsiyar and Jahāndār Shāh. 51

On both sides the splendid armies were emulous in the battlewaves,
Elephant-pieces, caunon, rockets, often kindled, thandered inexpressibly,
1315 Fire-locks raised dust and darkness, both sides fired all their field-pieces,
Next spoke uncounted matchlocks, then the faithful fell in heaps,
The field-pieces went off " kar, kar, karā, kar," striking with a sharp blow,
On all sides the drum-beats rolled, smoke and dust floated, with great heat,
Many rockets sped like lightuing, the bullets struck like hail,
1320 No one's garb could be seen, whether the fighter was of your side or the other.
Then the veil of mist lifted, to both sides it was like the dawn,
The valiant nobles and heroes shouted, they took their bows iu their hands,
They galloped onwards, their reins moved like stormy waves, Loud cries arose, "Strike, Strike, Strike," a darkness covered the field.
1325 Their arrows flew "tar-tar," rockets hissed "sar-sar," bullets whistled " bhar-bhar,"
With foot advanced, onward and onward went many excellent heroes and lords,
The valiant with reddened faces, full of joy, the cowards all pallid and trembling,
Just as seeing a beggar the generous look happy, the miser, uneasy and displeased.
On both sides, in both armies, brave fought with brave most bravely,
1330 The scamps were driven off by the valiant forcibly, hero fought with hero,
Swords whirled, scimitars were grasped, the heroes cut heads open,
With a flash came a wound; how many fell smarting !
[Lines 1332-1432, these describe the doughty deeds of each leader, one by one, bnt do not adrance the story.]
1433 Death giving and taking, the field-pieces and elephant-guns roared and sounded,
There was a tempest of matchlocks, the strong rockets twisted about,

52 W. İvine-Jangnāmah of Farrukhsiyar and Jahãndār Shāh. [No. 1,
1435 There arrows, eager, bewildering, brought to many the hopedfor mercy of Paradise,
The sky-chariot of the sun reached its setting, the time was clonded.
Then hero straggled with hero, with angry looks brave strove with brave,
Cries arose, "Strike, Strike, Strike," shouting they fell in heaps,
The loyal, comely Arabs, the comely heroes, stood fast,
1440 Where there is meeting and assembly how could they turn away their faces.
[Lines 1441-1452 are devoted to a recital of the names of fighters.]
1453 Everywhere the armies, full of zenl, caused much slaughter,
Weapons, heavy, two-edged, numerous; fell like torrents of rain,
1455 Chain-mail, vizor, helm were beaten soft, the plates of the fish-scales fell off,
Calling "Strike, Strike," hearing "Stand fast, friend, stand fast," they made effort.
Growling and dark like lowering clouds the proud army moved in circles,
Great drams roared and rattled, drawn swords glanced and glittered,
With a swish fell the arrows, bullet upon bullet came like hail at that time,
1460 A mire of brains collecled, when the Sayyid drew his sword.
He stauds full of anger, tossing lis head, causing many wounds, holding his ground,
Heads are lost, ears drop, bodies were collected in mounds, Blood began to flow in rivers, the stream began to flow on, The flesh-rending arrows carried destruction wherever they fell.

Kavita Chand (1465-1576).

1465 When waves expand day by day, how can the poet keep count, 'tis the work of the mad-like fighters,
To the edge of the snowy hills he drives the invader, who can come that he overcomes not at will,
The well-named leader, the loved lord of prowess, the great chief and peerless,
Of the famous king, Lord Shatrusāl, great, brave, liberal, he tells the lustre.
1900.] W. Irvine—Jangnämulı of Furvukhsijar and Jahāndār Shäh. 53
[1469-1532, Chattar\&ăl, Muṣlị̆ Khān and some others are introduced. We draw near to the end of the battle.]
1533 King Farrukhsigar and Jahāndār Shāh both fought for the throne in front of Agrah,
The conqueror beats his drums, the defeated fled, the warriors forgetting all turned their bridle-reins,
1535 Resolutely, verily diverting rivers, did A'zam Khān, strong and loyal, uphold the cause of his king,
As in the Mahābhärat the weak king was chased away by Bhim, strong of arm, at Kurukhet.
[Lines 1537-1544 give the praises of A'zam Khān.]
1545 To see Farrakhsigar, the conqueror, full of delight at Mu'izzu-d-din's defeat,
Beating drums, turning his reins, cnme Chabila Rām
[Märi par dal har khāso jūth jogini ko karat baḍài siwā sañkar hiläkh hai]
One hero many thousands has slain in one moment, counting them one.
[Lines 1549-1576 relate varions phases of the fighting, and introduce the names of many leaders. A doha, 1577.78 is of the same nature.]

Kavita (1579-1632).
[Lines 1579-1598 are mere catalogues of names.]
1599 A festival of joy and gladness heightened the delight of all, the colour of things had brightened,
1600 Thy reign adds lastre to sovereignty, the fruit of fortune and felicity;
The happily-named king of kings, Farruklbsigar, the man of the lucky star,
In his day the throne was adorned, when he sat on the throne, the good fortune of that throne was enhanced.
Shaking the south, conquering west and east, this unparalleled man has come with strong hand,
The fortunate king of kings, Farralksiyar, has brought the seven isles within the realm of Hind,
1605 Daily he increases, also the Faith, he has extended his sovereignty over faith and the world,
When a king is adorned with sovereignty, he should thus obtain it.
His horsemen herded them like a flock of sheep, the army rent, he robbed the nest of $A^{\prime} \mathrm{azzu}$-d-din,

54 W. Irvinc-Jangnämah of Farrukhsiyar and Jahändär Shā̄h. [No. 1,
Rushed from the east, scared away like starlings the army of the pretender, Mu'izzu-d-din,
The fortunate king of kings, Farrukbsiyar, defender of the two faiths;
1610 From realm to realm ran the news of victors, the haughty feared, the humble were enraptured,
Some pod, some pea free from weevil, some one not the slave of a harlot,
Handsome, graceful, brave, excellent, joung, a man beyond compare,
Fortunnte, a second King Akbar, has Farruklesigar obtained sovereignty,
He wields sovereign strength, to see him is delight, wearing the garland of victory.
[The remaining lines are devoted to Najmu-d-din 'Alíkūn, Sayyid Anwar Khān, Sarbuland Khān, and Mir Mushrif, ending with line 1630.]

Notes.

Line 18, the allusion is to 'Azimu-sh-shān, Farrukhsiyar's father. -1 145, ädam for àmad, (Persian) "coming, approach,"-1. 394. This is the 'IId of the Jst Shawwāl, $1124 \mathrm{H} .=31$ st Oct., 1712. According to Kämwar Khān, the prince observed the 'İd on the right bank of the Ganges, opposite Benares, and crossed the river on the 2nd Shawwàl. Farralksiyar was at Jhūsi on the 13th (12th November, 1712)-ll. 411, 413, Kumwarpur and Binduki are both named by Kāmwar Khān; Fa chāā̄àd is probably a name for Kajwah-l. 422. The "battlepillar" is possibly an allusion to the ran-khambh, a wooden post said to have stond in the midst of the Kurukhet at Thānesar-1. 615, I have failed to make auything of this line-1. 706, "hand" = panjah, the figure of an open band, one of the honorary distinctions granted by the Emperors-1. 744, Sämichuhai, "the true one," a Hindi equivalent of the epithet $S \bar{a} d i q$, borne by Latfullāh Khān, in token of his descent from one of the twelve Imāms, Ja'faru-я̣-sādiq.-l. 780, Surani, a long horn, to the sound of which a dog's howling may well be likened. ll. 883-85. Not only do these dates seem wrong, but they are hopelessly irreconcilable with each other. If we take the day of the week, Wednesday, as correct, then the battle was fought on the llth January, 1713, N.S., which by the usual computation ngrees with the 13th Zu'l-Hijjah 1) 24 H., the date given by the historians. The $14 t h$ Muharram (1125) was a Thursday or Friday, not a Wednesday. As for

1900.] W. Irvine—Jangnänah of Farrukhsiyar and Jahãndãr Shāh.
 55

the tetisā (33) of the text, this may be a clerical error for teisa (23); but the lntter year (1123 H .) is equally impossible, for Bahādur Shāh did not die till the 21st Muharram, 1124 H ., more than a year afterwards. Then the Sanibat year 1769 began, according to Cunringham's tables, on the 28th March, 1712, and Pūs püranmāsi, being the 290th day, comes out as the lst January, 1713 (3rd Zu'l-Hijjah ll24 H.), or ten days too early. Nor does the poet's Mahomedan date, l4th Muharram, ngree, as will be seen, with this Sambat date. So with the Ilăhi era. $\bar{A} z a r$ being the 9 th month, and the year beginning on the 20th March, the 23 rd of that month is the 270th day of the year, equivalent to the 15th December, 1712, agreeing neither with the Hijra nor Sambat date. I make out the synchronism, to be, 13th Zu'l-Hijjah $1124 \mathrm{H} .=22$ nd Das of the Ilāhī era =S. 1769, Mägh badi 10th=11th January, 1713.* Khäfí Khān, II, 721, has 13th Zu'l-Hijjah = 19th Das.-ll.905, 906, I am not sure whether $G a b i$ is a tribal name, or a mere epithet used to fill out the line. The Pubbi are a sub-division of the Afridis, see "Dictionary of the Pathan Tribes," Calcutta, 1899.-1. 1547, I can make nothing out of this line.

INDEX. (Persons.)

———

A.

'Abdu-l-ghnffär (Sayyid), 45, 113, 1259, 1432.
'Abdullāh Khān (also Qaṭba-l-malk and Sayyad Fazir), 31, 52, 56, 119, 123, 130, 896, 902, 910, 918, 926, 934, 1261, 1421, 1428, 1441, 1452, 1579, 1583.
'Abdullăh (Khwäjah), 345, 460.
'Abdu-r-rasūl, 988.
'Abda-p-samad ('Ali) Khān, 643, 724, 1258, 1285, 1431, 1445.

Afrasyäb $\underline{K h a ̄ n, ~ 311, ~} 521,1162,1168$.
Afzal Khān (also Ashraf K.), Sadru-sSudür, 301, 1169, 1176.
A ḥmad Khñn, Sarwänī, 1492.
Akbar (Emperor), 1613.
Akbar 'dli Khān, 334, 480, 1054.
Akram (Mir), 218, 500.
'Alamgir (Emperor), 1095.
'Alī Asghar Khān (Khān Znmān), 149, 409, 410, 467, 797, 969, 1337, 1354. 'Alī Naqi Khān, 253. A minu-d.din Khān, 459. Amiru-1-Umarā, see Husain 'Alī Khān.

* [By Prof. Jacobi's Tables, pablished in Epigraphia Indica, Vol. i, pp. 443 ff., I find that Bamvat 1769, full-moon day of Püs fell on Wednesday, 11th January, 1713, N.S., as required. Mägha vadi 10 corresponds to Sunday, 22nd January, 1713, N.S., according to the pürnimänta scheme of lanar fortnights, or to Mondny, 20th Febraary, 1713, N.S., according to the amanta scheme of lunar fortnights.Ed.]

56 W. Irvine - Jungnaimal of Farrukheiyar and Juhãnlär Shäh. [No. 1,

Amir Khān (Governor of Käbul), 303, 1093.

Amir Khīn (son of A. K. Kãbulì), 305, 497, 1100.
Anwar Khän (Snyyid), 65, 85, 335, 439, 531, 534, 928, 1177, 1184, 1193, 1425, $1150,1619$.
Arslīn Khīn, 348, 351, 525, 826, 1211, 1216.

Asad 'Ali Khān, 269, 433, 945.
Ashraf Khan, Şadrn-ş-Ṣudūr, see Af\%nl Khān.
Ashraf Khān, see Khān Daurãn (Khwājnh 'Assim).
Ashraf or Sharaf (Mir), 267, 429, 968, 1334, 1349.
Xtash Khān, 271, 43t.
'Aziz Khīn (Mir), 195.
A'ram Khān (Mlyd. Māh, son of Fidảe Khān), 13, 184, 185, 192, 193, 392, $462,464,976,982,1255,1277$, 1281, 1372, 1374, 1405, 1409, 1413, $1414,1430,1442,1535,1538,1543$, 1558, 1564, 1567, 1572, 1576, 1585.
'Azima-sh-shān (Prince), 1246.
'A'azzu-d•din (Prince), 46, 147, 166, 169, $231,414,599,637,647,730,731,785$, 795, 1595, 1607.

B.

Bahãdur Dil Khan, see Ilāicin Beg.
Bahādur Khān, 246.
Bihādar Shāh (Emperor), 10.
Bahram Beg, 67.
Bairãm Khān, 339, 541, 1218.
Barqandäz Khān, 68, 8f, 441, 927.
Bení Rīm, Nägar, 1399.
Blangauti Dās (son of Chabila Rām), 1003.

Bhagwant Rāe, Käyath (of Käxori, diwãn of Chabila Rām), 1397.
Bhim, 1536.
Bhopatī Rāe, 1629.

C.

Chabilı Rām, 148, 407, 457, 795, 992, 1013, 1018, 1279, 1374, 1385, 1389, 1546, 1551, 1553, 1589, 1597.
Chattarsāl, see Shatrusãl.

Cin Qilic Khān, see Ghīzīu-d•din Khān.
Ģridhar (Murlidhar), 5, 638, 885, 1108, 1112, 1127, 1376, 1411, 1507, 1559, 1576, 1620, 1627.

D.

Darbūr Khān, 331, 523, 1193, 1200.
Darresh 'Alī Khān (Snyyid), 69.
Darvesh Mubammad (Sayyid), 415.
Dī̄̀d Khīn Dopatṭe-bīz, 297, 513, 1139, 1140.

Dayã Bahādur, 1005.
Diläwar Khīn, 201, 1055.
Dil Dilāwar Khān, 482.
Dil Daler Khān, 614, 1273, 1371.
Dost 'Ali Khīin, 284, 477, 10 17, 1052.

F.

Faqīullāh Khān (Mirzā), 154, 249, 535, 1220.

Farrukhsiyar (Prince), also Shāhan-Sliāh,

- Pädshāh, Shāh, Hazrat, and Suāhib-ijuhān, $7,11,22,48,129,140,163,167$, 172, 176, 183, 205, 233, 235, 239, 275, $355,362,877,388,389,401,585,653$, 654, 657, 672, 677, 697, 729, 809, 814, $823,827,850,853,863,886,1348$, 1525, 1533, 1541, 1545, 1570, 1587, 1601, 160t, 1609, 1613.
Farzand Khān, 206, 405, 493, 498, 502, (son of Sādāt Khān), 792, 1071, 1076, 1078, $15 \div 7$.
Fath 'Alī Khn̄n (Saysid), 315, 431, 519, 962, 963, 968, 1339, 1356, 1360.
Fatḥallāh Khān, 310, 518, 1217.
Fidāe Khīn, 975, 1484.

G.

Gandharb Singh (Rājah), Bundelah, 317, 529, 1129, 1136.
Ghairat Khān, 251.
Ghāzia-d•din Khān, 293, 511, 1137, 1144. Ghāzīa-d-din Khān (Cīn Qilic Khān), 723, $1288,1579$.
Ghȧzīa-d-din Khān (Firūz Jang), 1287. Ghulām 'Alī Khān, see Zu'liqqār Khān.
Ghulām Muḷia-d-din Khān, 191, 463, 983, 1405.
1900.] W. Irvine-Jangnamah of Farrukhsiyar and Jahāndar 伿तh. 57

Girdhar Lāl, Bahādar, 1007, 1393, 1524, 1588.

Gulāb Rāe (Rão), son-in-law of Chabila 11ām, 1014, 1390, 1895.

H.

Halim Khãn (Dilảzāk), 198, 501, 1128, 1128, 1581.
Hasan Khān, diwān of Prāg, 447.
Haqrat, see Ferrukhsiyar.
Hizbar Khān, 838, 588, 1192.
Hnsain 'Al̄ Khān, also Amiru-l-umarñ, Sayyid, and Bałhahi, 50, 141, 146, $100,163,257,273,421,424,937,950$, 966, 1265, 1340, 1341, 1345, 1303, 1579, 1588.
Hasain (Khwajah), 743.

I

Ibrāhìm Husnin, 157, 243.
lftikhär Khān, 537, 1201.
Ikhtiyàr Khān, 343.
Ilāicin Beg (Bahādar Dil Khān), 341, 342, 543, 614, 1203, 1204, 1208.
Imim (Bayyid), 1400.
Imtiyāz Khãn, 327, 507, 639, 1118, 1120.
'Ināyat Khin (Shaikh), 283, 476, 1045.
'Inàyntullāh Khān, 261, 425, 943.
'Ināyat Bhāh, 1584.
I'timād Khān (Miyān Nihāl), 1241, 1242.

J.

Jahāndār Shāh, see Ma‘izzn-d-din.
Jai Krişn Dās (dīwān of Najmu-d-din (Alī Khān), 1424, 1449.
Jalālu-d-dīn, see Akbar.
Jãnbāz Khān, 162, 247, 455, 1219.
Jānī Khān, 1269, 1369, 1412, 1413, 1416.
Jān Niṣã Khān, 1271, 1369.

K.

Khīn Daurin (Khwajah 'Asim, Aehraf Khān), also Şamsimu-d-daulah, 220, 236, 277, 278, 280, 286, 472, 474, 483, 484, 485, 486, 487, 641, 798, 1029, 1031, 1038, 1037, 1052, 1082.
Khān Jahān, see Ma;afier Khăn (Sayyid). Khänehsiad Khān, see ShIiotah Thin.

$$
\text { J. I. } 8
$$

Khīn 7 Zamin, sec 'Ali Agghar Khïn.
Khairu-d-din 'Ali Khān, 200, 481, 4055.
Kokaltigh Khān, 719, 1251, 1490, 1441.

L.

Luthfullāh Khān, Sādiq, 644, 144, 1272, 1370.

M.

Madā Shāh (saint), 690.
Mahdi 'Alī Khān (Phandi A. K.), 87.
Māhyār (or Mahpār) Khān, 164.
Manzūū (Mirza or Miyān) 119, 446, 932.
Maşlih Khān (son of Fidāe Khãn), 1475, 1430, 1484, 1488, 1489, 1493, 1499, 1504, 1507, 1509, 1514, 1517.
Mir Jnmlah, 39, 48, 47, 215, 499, 695, 726, 815, 1291, 1301.
Mir Khān, 306, 497.
Muhammad Khān, Bangash, 820, 824, 828, 910, 1422, 1442.
Muḅammad Amān Beg, 202.
Mhd. Amin Khēn, 723, 1283.
Mbd. 'Askarī (Miyãn), 1566.
Mḥd. Bāqir, 985.
Mbd. Elaigat (8aygid), 198, 205, 498, 970.
Mbd. Назан, 188.
Mbd. Husain, 188.
Mḥd. Imām, 985.
Mhd. Shäkir (Mir), 1403.
Mbd. Shujäa, 187.
Mhd. Wasi' Khēn $, ~ 314,522$.
Mu'izzu-d-din, also Jahāndār Shāh, 16 $19,40,170,230,616,645,701,703$, 717, 727, 739, 778, 787, 798, 810, 851 866, 867, 1015, 1020, 1248, 1248, 1249, 1581, 1525, 1531, 1583, 1538, 154, 1545, 1554, 1557, 1561, 1569, 1507, 1595, 1008.
Mahsin Khän (Mir), 65, 84, 440, 988.
Mukäram (Mir), 217, 499.
Mukhlis Khān, 844, 538, 1802.
Mughtar Khän, 1274, 1809, 1891, 1892.
Mumtāz Khān, 323, 505, 508, 653, 697, 1102, 1108, 1118, 1121, 1127.
Murlidhar, see Gridhar.
Murtaça Khān (Sayyid), 174, 175, 180, 393, 527, 1225.

Jnshrif (Mir), 263, $268,427,967,1333$, 1349, 1353, 1629.
Mutaḥawwar Khān (Raḥmat Khān), 435, 436, $675,676$.
Muz̧affar 'Alī Khān, Turrah-bāz (properly Zafar Khān), 153, 449, 450.
Muzaffar 'Alī Khān (Khān Jahān, Sayyid), 333, 479, 671, 674, 026, 1053.
Mazaffar Khān (brother of Khān Daurān, Simṣàmu-d-daulah), 279, 473, 1038.

\mathbf{N}.

Najmu-d-dìu 'Ulī Khān, 62, 88, 132, 1424, 1449, 1579, 1617.
Nansheri Khān (son of Kokaltāsh Khān), 642, 1253, 1432, 1443.
Neknām Khān, 199.
Nihül (Miyän), see I'timād Khān.
Nizā̀mn-1-Mnlk, see Ghāziu-d-din Khän (Cin Qilic Khinn).
Nūrallāh Khān, 281, 475.

P.

Pādshāh, see Farrnkhsiyar.
Phandi 'Alī Khān, see Mahdi A. K.
Pir Mahammad (Shaikh), 1400.

Q.

Qamara-d-din Khān, 724, 1284.
Qāsim Beg Khān (Mirzā), 308, 1146.
Quṭba-1-malk, see 'A bdallāh Khān.

R.

Haḥmān Khān, 725, 1289.
Ralnmat Khān, see Mutahawwar Khān.
Kaḥmatullāh (Shaikh), 221.
Raḅatullāh (Khwājah), 346, 470.
Rāji Khān (Sayyid), 44, 643, 1257, 1431, 1445.

Rashid Khān, 340, 542, 1217.
Rasükhiyat Khān (Sayyid), 1375, 1407, 1410.

Ratan Cand (Rājā), 64, 83, 437, 918, 1423, 1446.
Rustum Khān (Rastam Dil Khān), 295, 512, 1138.

8.

Sādāt Khān, Māzandarini, 209, 287, 491, 496, 504, 791, 1061, 1068, 1069, 1077, 1085, 1092.
Şaff Shikan Khān, 319, 539, 961, 1339, 1356, 1360.
Ṣāḥib Rāe, Māthar, 139, 143, 805, 1451.
Saif Khān (third son of Sādāt Khān), 208, 406, 495, 1087, 1092.
Snifu-d-din 'Alī Khān, 61, 131.
Saifullāh Khān, 307, 432, 515, 969, 1145, 1152.

Şalābat Khān (second son of Sādāt Khān), 207, 406, 494, 1079, 108 .
Ṣālih Khān, 187.
Şamṣãmu-d-danlah, see Khān Daurān.
Samūdar Khān, 66, 85, 443, 928, 1425, 1450.

Sangi Beg, 220.
Sarbaland Khān, 1624.
Sayyid Wazir, see 'Abdullāh Khān.
Shàdī Khīn, 1422, 1443.
Shāh Madār (saint), 690.
Shāh or Shāhanshāh, see Farrnkhsiyar.
Shāistah Khān (Khānalızād Khān), 291, $292,509,510,1155,1156,1160$.
Sharaf, see Ashraf (Mir).
Shatrusāl (Chattarsial), 1468, 1469.
Shujā'atullāh Khān (Mir), 262, 426, 944.
Shujä‘atullāh, 219, 500.
Sirāja-d-din 'Alī Khān, 68, 89, 97, 100, 121, 126, 161.
Siromani Dās Rāe (Kāyath,) 700, 803.
Subans (Rāe), son of Bhagwant Kīe, 1398.

Sulťān Beg Khān, 309, 516, 1148.
Sulțān Jahān (Saysid), 1558.
Sulṭān Qulī Khān, 197, 984, 1375, 1406, 1410.

\boldsymbol{T}.

Taimūr Khān, 226.
Taqarrub Khān, 299, 465, 698.
TTikā Rām, 1233, 1240.

w.

Wali (Mirzā), 67.
Wali Mubammad, 285, 478, 1046.
Wasi' Khān, 522 (Mḩd. W. K., 314).
1900.] W. İvine-Jangnāmah of Farrukhsiyar and Jahāndār Shah. 59
Y. Zainu•d-din Khān, 151, 245, 453, 958, 1338, 1355, 1360.
Zakariyā Khän, 724, 1286.
Zo'liqär Khān (Nuşrat Jang), 16, 17, 719, 1842, 1861, 1364, 1625.
Zn'liqqär Khān (Ghuläm 'Ali Khänn), 321, 540, 959, 960, 1266, 1335.
Zabardast Khān, 1146.
Zufar Khän, see Mazaffar Khän, Turrahbāz.
Zefar Jang Khān (Muşlih Khān) 1508, 1618.

INDEX. (Places and Tribes.)

A.

Afghān (tribes), 1124, 1125, 1401.
Agar (tribe), 955.
Agrah, 759, 770, 784, 831, 849, 877.
Allāhābād (1lāhābād), 34 (see also Präg).
Alam Cand (sarāe), 58, 71.
Ang (country), 1592.
Arkbang (country), 1592.
Arabi (horses), 907 (swords), 1021, 1023.
Arab (tribe), 954.
Atak, 304.

B.

Baghelah (tribe), 1134.
Bahādurpur, 182, 393.
Bais (tribe), 1134.
Balghtiyārī (tribe), 957.
Bālambhpar, 761, 932.
Banāras, 394.
Bang (country, i.e., Bengal), 1592.
Bangash (tribe), see Muhammad Khān.
Bärhah (tribe), 788.
Basera, 395.
Bhägalpur, 244.
Binduki, 411, 413.
Bițtani (tribe), 906, 907, 956.
Bundelah (tribe), 1136.
C.

Caudelah (tribe), 1134.
Cauhān (tribe), 1134.
Chabi (tribe), 956.
D.

Dāūdzāi (tribe), 905, 958.
Dilāzäk (tribe), 903, 957, 1128, 1531.
Dilli, 20, 582, 758, 845, 1591.

F.

Fathäbād, 413.
Firang (country), 1592.
G.

Gabi (tribe), 905, 907.
Gaharwär (tribe), 1134.
Gaur (tribe), 1133.
Ghilji (tribe), 953.
Gutrani (tribe), 951.

H.

Häḍă (tribe), 1133.
Haihaya-bamé (tribe), 1135.
Häthigräm, 409.
Hind (country), 756, 1586, 1604.

I.

Irān (country), 1094.
Itã wah, 149, 170.
Iwāhì or Eminwāhī (tribe), 952.

J.

Jamnā (river), 832, 849, 858, 863, 882, 1473.

Jhūsi, 395.

K.

Kābul, 304, 1093, 1098, 1592.
Kachwāhah (tribe), 1135.
Käkar (tribe), 953.
Käkorī, 1497.
K3ling (comntry), 1592.
Kannauj, 729.
Käsab (tribe), 953.
Kāsī (tribe), 955.
Khajarä̀, 391.
Khweshgi (tribe), 905, 1055.
Kohün, 71.
Korah, 147.
Kumwarpar, 411.
Karukhet, 127, 1536.

L.

Lodi (bribe), 903, 956.
Lohāni (tribe), 903, 956.

15.

Maghribi (sword), 1023.
Mahmand (tribe), 906, 956.
Maṭtani (tribe), 952.
Mațtī (tribe), 907.
Mazandarān (Persian province), 210,
222, 492, 1062, 1068, 1070, 1084.

N.

Nägar (tribe), 954.
Nasar (tribe), 953.
Niäzi (tribe), 954.
P.

Pabi (tribe), 906, 907.
Panni (tribe), 004, 985.

Pänipat, 744.
Parīār (tribe), 1135.
Paţnã (Pattan), 155, 159, 251.
Prāg (Allāhābād), 5, 34, 44, 59, 403, 447.

R.

Raghubamisi (tribe), 1134.
Räjpat (tribes), 1138, 1133.
Roheli (tribe), 957.
Roshāni (tribe), 955.

s.

Samügarh, 784.
Sarwäni (tribe), 90t, 952, 957, 1401.
Sikandrah, 864, 878.
Sirnet (tribe), 1135.
Sombaúsi (tribe), 1188.
Sulanki (tribe), 1185.
Sūr (tribe,) 904, 954.
Sürajbaringi (tribe), 1136.

T.

Tarin (tribe), 904, 951.
Tïrähi (tribe), 951.
Tarāh (Tīräh ?), 304.
'I'arāni (tribe), 725.
U.

Ujägar (tribe), 955.
Y.

Yüsuffheail (tribe), 957.
Z.
Tafarmani (tribe), 956.

A New Copper-plate Inscription of Lakṣmapasena.-By Babu Akshay Komar Maitra, B.L.

[Read, June 1899.]
The copper-plate - bearing this Inscription, was discovered in the month of Bhädra 1898, in the village of Anulia, near Ranaghat, in the District of Nadia. It has been edited previously in my journal, the Aitihäsika Citra, by Pandit Rajanikanta Cakravartti of Maldah. I now re-edit it from the original plate.

The plate measures $13 \frac{1}{4}^{\prime \prime}$ by $12 \frac{1^{\prime \prime}}{}$ and bears on both sides a Sanskrit Inscription in 56 lines partly in prose and partly in verse. The writing is of the Bengali variety of the North-East Indian Alphabet of the 12th centary and intimately agrees with the characters of the other well-known documents of the Sena Dynasty. The spelling is on the whole very correct, and no remarks as to orthography are called for. The seal, bearing the image of a ten-armed deity, is attached to the top of the plate.

The Inscription opens with the words Oim! Namo Näräyaṇäya, and an invocation to Çambhu and the Moon, after which the well-known genealogy of the Sena Kings from Hemanta to Lakopanasena is recorded in exactly the same words as in the Tarpan Dighi Plate, ${ }^{1}$ but with this exception only that instead of verse VIII of the Tarpan Dighi Plate, three other verses are added (ll. 18-24) in praise of the liberality and bravety of Lakqmanasena, which, however, do not mention a single historical fact.

The object of the Inscription is to record a grant made by Lakşmanasenadera, who is styled as Parameģara-Paramavaisnava-Paramabhattdraka-Mahärajadhiraja and who is described as meditating over the feet of Maharajadhiraja-çi-Vallalasena. The grant was made

[^1]by him while he was staying at his camp in Vikramapura (ll. 27 ff .), and consisted of a portion of a field in Matharaṇ̣iy \bar{a} (Mätharaṇdiyā-khandak setra; l. 38) which is described as lying in Vyäghratati, a place or district belonging to the bhukti of Paundravarddhana (ll. 37 ff .). This piece of land was given to a Pandit, Raghudevaçarmman by name, the son of Devadäsadevaçarmman and grandson of Çajkaradevaçarmman, and great-grandson of Vipradāsadevaçarmman, who belonged to the Kauçikagotra, and studied the Kaña-¢ $\bar{a} k h \bar{a}$ of the Yajurveda (ll. 70 ff .).

The grant was made on the 9 th day of Bhādra, in the 3 rd year of Lakşmanasena's reign (l.56). This date taking the year 1119 A.D., the epoch of the Lakspmanasena Era, as the beginning of his reign, corresponds to A.D. 1121-22. The Minister for piece and war, Närāyanadatta, acted as dūtaka (ll. 54-55).

Historically we gather no new information from this inscription. I am unable to identify the exact position of the localities mentioued in the grant.

I now edit the Inscription from the original Plate :-

Obverse":

(l. 1,) Ọ̈n namo.Nārāyaṇāya ॥ Vidyud́́=yatra mani-dyutị̣ phaṇipater $=v v \bar{a}(b b \bar{a})$ lendur $=$ ind $r-\bar{a} y u d h a \dot{m}$ vāri
(l. 2,) svargga-tararggiṇi sita-çiro-mālā valāk-āvaliḥ|dhyān-ābhyāsa-samiraṇ-opani-
(1. 3,) hitaḥ çreyo-ŋjkur-odbhūtaye bhūyād=vaḥ sa bhav-ārtti-tãpabhidurah Çambhoḥ kapardd-āmvu(mbu)daḥ ॥
(1. 4,) Ānando=mvu(mbu)-nidhau cakora-nikare duhkhacchid= ātyantiki kalhāre hata-mohatā Rati-
(l. 5,) patāv=eko=ham=ev=eti dhih | yasy=àmi amrt-ātmanah samudayanty=āçu prakāçāj=jagaty=A-
(l. 6,) trer=dhyāna-paramparā-pariṇatam jsotis=tav=āstām=mude॥ Sev²-āvanamra-nrpa-koţi-kiri-
(l. 7,) ta-rocir-amv(mb)-ūllasat-pada-nakha-dyuti-vallaribhib | tejo-vişa-jvara-muṣo dviṣatām=a-
(l. 8,) bhūvan bhūmībhujaḥ sphuţam=ath=auşadhi-nātha-vamę̧e ॥ \bar{A}^{3}-kaumāra-vikasvarair=ddiçi di-
(l. 9,) çi prasyandibhir=ddor-yaçah-prāleyai ripu-rāja-vaktra-nalina-mlānị̣ samuumilayan | He-
(1. 10,) mantä sphuṭam=eva Sena-janana4-ksetr-augha-puṇy-āvali-çāli-çlāghya-vipāka-pivara-gunas=te-

1 Metre: Q̧ärdūlavikridita; and of the next verse. \& Metre: Vasantatilaka.
8 Metre: Q̧ärdūlavikrídita. the second na has been inserted later.
(1. 11,) sām=nbhūd=ramę̧jah n Yadiyair ${ }^{1}=a d y=\bar{a} p i \quad$ pracita-bhuja-tejas-sahacarair=yaçobhiḥ çobhante
(l. 12,) paridhi-pariṇaddlıā iva diçaḥ | tataḥ kāñcī-lilā-catura-catur-ambhodhi-laharī-parit-orvvi-
(l. 13,) bharttā=jani Vijayasenah sa vijayin Pratyūhaḥ² kalisampadām=analaso vedāya naik-ādhvagah
(I. 14,) saŋgrāmaḥ çrita-jaŋgam-ākrtir=abhūd=VaLLĀLASENAS=tataḥ। yaç=cetomayam=eva çaurya-vijayi
(l. 15,) da[t*]tv=auṣadham tat-kẹaṇād=akṣin̄̄ racayā̃̃=cakāra vaçagāḥ svasmin pareṣàm çriyaḥ ॥ Sambhukt-ā-
(1. 16,) nya-dig•aŋganā-gaṇa-guụ-ābhoga-pralobhād=diçām=içair= amęa-samarppaṇena ghatitas=tat-tat-prabhāva-sphu-
(1. 17,) taih | dor-uṣma-kṣapit-äri-saygara-raso rājanya-dharmmäçrayah çrimal-Lakṣmanaskna-bhūpatir=a-
(1. 18,) taḥ sájanya-simā=janill Amnāyah praṇināya yāni manayo yāny=asmaran samistutāny=ā-
(1. 19,) cāreṣu ca yāni tāni dadire dānāni dainya-druhā | hriṇattre ca tath $\bar{a}=p y=a n e n a$ niyamam kā-
(1.20,) leṣu sam̉khyātatān=deyeṣv=artthinam=antareṇa ca phal-āçamsā-vidhau çrrụatā ॥ Samayam ${ }^{3}=a p i$ sa-
(1. 21,) muddhatam numas=tam tad-asi-mah-auṣadham=udva(dba)bhūva yatral bhavati para-pura-praveça-siddhiḥ kara-vi-
(1. 22,) dhrte sakrd=eva yasya mūle ॥Yān ${ }^{4}$ samva(mba) ndhya jagat-trayi-vitaraṇe mittrair=Vva(Bba)lir=vvāritoyaiḥ sa-
(l. 23,) ŋgamya na Gaŋgayā kṣanam=api svarggo=pi samsmaryyate। tān=uccair=atiçāyi-çāli- vasudhān=̄̄.
(l. 24,) rāma-ramy-āntarān=viprebhyo=yam=adatta pattana-gaṇān bhümipatir=vbhū (bbhū)yasa(ça) ḥ ॥Sa klıalı çri-VI-
(l. 25,) Kramapura-samāvāsita-çrimaj-jaya-skandhāvārātןMahārājā-dhirāja-çri-Vallälasena-
(l. 26,) deva-pād-ānudhyāta-Parameçvara-Paramaraiṣnava- Pa [ra*]-mabhatṭ̄rraka-Mahārājādhirāja-çrima-
(1. 27,) l-Lakṣmașasenadevaḅ kuçali samupagat-āçeṣa-rāja-rājanya-ka-rājñī-1'ānaka-rājapu-
(l. 28,) tra-rājāmātya-purohita-mahādharmmādhyakọa-mahāsān-dhivigrahika-mahāsenāpati-

Reverse :

(l. 29,) mahāmudrādhikrta-antaraygavr(br)haduparik̊-mahākṣa-paţaliká-mahāpratihāra-mahā-

1 Metre: Çikhariṇi. ${ }^{2}$ Metre : Çardūlavikrị̣ita; and of the next two verses.
8 Metre : Puspitägrā. 4 Metre: Q̧ärdūlavikrị̣ita,

64 A. K. Maitra-Copper-plate Inscription of Lakṣmanasena. [No. 1,
(1. 30,) bhogika-mahāpilupati-mahāganastha-danssādhika-caurod-dharaṇika-nau-va (ba)la-ha-
(1. 31,) sty-açva-go-mahiß-ājāvik-ādi-vyāprtaka-ganlmika-daṇ̣apā-çika-daṇḍanāyaka-visa-
(1. 32,) yapaty-ādin । anyām̆c=ca sakala-rāja-pādopajivino s dhyakşa-pracār-oktān=ih=āki-
(1. 33,) rttitān। catṭa-bhaṭta-jätiyān janapadān I kşetrakarāṇ̃ç=ca vrā(brā)hmaṇān $\operatorname{vra}^{(}$(brā) hmanottaxān yathā-
(1. 34,) rham mānayati vo(bo)dhayati samādiçati calmatam=astu bhavatäm I yathā çri-Pauṣpravarddiana-bhukty-antah.
 jala-pillă simál paçcime Ç'̄.
(l. 36,) ntigopi-çāsanam simā |uttare mālāmañca-vāṭi simā litham catuh-sim-āvacchinnam vrẹabha-ça-
(1.37,) ŋkara-nalina-sakākinika-sapta-triṃ̧ad-unmāu-ādhik-ādh-āvāp-ānvita-nava-dron-ottara-bhū-pāta-
(l. 38,) k-aik-ātmakam sam்จatsareṇa kaparddaka-purāna-çat-aik-

(1. 39,) ta-vitapam ${ }^{1}$ sa-jala-sthalam sa-gartt-oṣaramin sa-guvākanārikelam sahya-daç-ēparādham paribrta-sarvva-
(1. 40,) piḍam a-catta-bhaṭta-praveçam a-kiñcit-pragrāliyam trṇa-yūti-gocara-paryantam Vipradāsadeva-
(l. 4l,) çarmana h prapauttrāya Çankaradevaqarmmanạ pauttrāya Devadäsadefaçarmmañay puttrāya Kau-
(1. 42,) çika-sagotrāya Viçvāmitra-Va(Ba)ndhula-Kauçika-pravarāya Yajurvveda-Kānva-çākh-ādhyāyi-
(l. 43,) ne Paṇdita-çi-Raghudevagarmmane pap̣es hani vidhivad= udaka-pürvvakam Bhagavantam çriman-Nā-
(1. 44,) rāyapa-bhattārakam=uddiçya mātāpitror=ātmaną̧=ca puṇyayaço s bhirrddhaye ${ }^{8}$ ntsrjsa \bar{a} -
(l. 45,) candr-ārkkam kşiti-sama-kālan ${ }^{8}$ yāvat bhūmi-cchidranyāyena tāmraçāsani-krtya pradattam=asmes-
(l. 46,) bhiḥ I Tad=bhavadbhih sarvvair=ev=änumantavyami I Bhävibhir=api nrpatibhir=apaharaye nara-
(1. 47,) ka-pāta-bhayāt pālane dharmma-gauravāt pālaniyam I Bhavanti $c=a ̄ t r a ~ d h a r m m-a ̈ n u c ̧ a n-~$
(l. 48 ,) sinaḥ çlokāḥ। Bhūmim ${ }^{4}$ yah pratigrhṇāti yaç=ca bhūmim prayacchatil ubhau ${ }^{6}$ tau punya-

1 This reading has been first pointed out by Prof. Kielhorn in Epigraphia Indica, Vol. V, p. 185, note 1. \& Read punya-yaço-bhivrddhaye, withoat avagraha sign.

8 Read ei-candr-ärkka-kpiti-sama-kälam. Metre: Anaş̧̧bh (Cloka); and of the next two verses. $\quad 5$ The letter u ham been added later.

[^2]
The Manahali Copper-plate Inscription of Madanapaladera.-

 By Babd N. N. Vasd.[Read, Maroh 1899.]
The subjoined edition of a new inscription of Madanapāladeva has been prepared from a copper-plate kindly presented to this Society in 1899 by Mr. N. K. Bose, C.S., then Magistrate of Dinajpur. The plate on which the inscription is engraved, was discovered in excavating a tank in 1875 within a park of the village of Manahali,' in District Dinajpur, Bengal.

The Inscription consists of 58 lines of writing, engraved on the two sides of a single copper-plate, measuring $15 \frac{3^{\prime \prime}}{4}$ by $16^{\prime \prime}$. At the top of the plate the Seat is soldered on. It shows the usurl emblem of the Pālá kings, viz., the Buddhistic wheel of Law with a deer kneeling on each side, facing it. Below this we may still recognize the king's name : Çi-Madanapalah, and on the top of the seal traces of small Stūpa are still visible. The writing belongs to the Bengali variety of the Nagari Alphabet of about the 12 th century; as compared with the earlier inscriptions of the Pāla Dynasty, it shows a marked development towards more modern forms. Its execution is on the whole done fairly well; in one place, however, it has been impossible to make out exactly the meaning of the letters; unfortunately, this passage contains the name of the village, granted by the king (ll. 32-33). The avagraha sign is frequently used in this inscription; final letters are marked by the sign of virama, which, however, seems to have been left out by carelessness in some instances, where in order to avoid unnecessary corrections in the subjoined transcript the letter has been put down as final. In regard to orthoaraphy, I desire to draw attention to the spelling ttajan, for tyajan in 1. 14; prattarthi, for pratyarthi in 1. 24; and also punair, for pusyair in 1. 16. Instances of this kind may be taken as originating from a pronunciation of the compound letters tya and nya,

[^3]which almost closely resembled the modern Bengali pronunciation of the same. The language is Sanskrit, and with the exception of the introductory benediction (in line 1) and the portion containing the grant (lines 27-49), it is in verse. At the top of the inscription, we find the letter $n i$ engraved four times in one line; this appears to be the official endorsement of the document, ni probably being an abbreviation of the term nibaddham used in similar cases.

The Inscription divides itself into :-
(a) a genealogical portion, in verse, giving the names of 10 princes of the Päla family of Magadha, 17 of which appear to have been reigning kings (11. 1-27) ;
(b) the portion containing the grant, in prose (ll. 27-49);
(c) the usual benedictive and imprecatory verses; this portion ends with the mention of the name of the person who acted as dütaka and of the engraver ; it is in verse throughont (1l. 49-58).

With reference to the Genealogy of the Päla kings as recorded in this Inscriptions, I need merely point out that up to Vigrahapala III. it almost verbelly agrees with the corresponding passage in the Amgachi Plate (Indian Antiquary, Vol. XXI, p. 100). The only notable difference is that the verses beginning with yam sodminank rajagunair=anünam (11. 18-14), and with deçe präci pracura-payasi (11. 19-21) have been left out in this Inscription. I may also note that by the reading of this Inscription it is now possible to correct the passage read doabtfully as viçua-priye in 1.15 of the Amgachi Plate and in 1.20 of the Dinajpur Plate of Mahipāla (this Journal, Vol. LXI, 1892, Part I, p. 83); the corresponding passage in the present Inscription (1. 13) distinctly reads netra-priye, which appears to be the correct reading. From Vigrahapala III., onwards, we then have the following succesion of kings :-
(1) Mahīpāla II., son of Vigrahapäla III., (1. 18);
(2) Çũrapāla, son of Vigrahapāla III., and younger brother of Mahipāla II., (l. 20);
(3) Ràmapāla, another son of Vigrahapāla III., and brother of Mahipāla II., and of Çūrapāla (1.21);
(4) Komãrapāla, son of Rāmapāla (1. 23) ;
(5) Gopāla III., son of Kamärapāla (1. 24) ;
(6) Madanapāla, son of Rāmapāla and Madanadeví (1. 26).

The portion of the inscription giving the pedigree of these six kings, appears to be corrupt in some passages, and is not entirely intelligible to me. As, however, no real historical facts are mentioned in those verses, I trust that I will be excused in refraining myself from giving a translation. I merely wish to point out here, that the names
of the first two kings, Mahipāla II., and Çūrapāla, have been made known to us for the first time only very recently in a notice on the Rämacarita, a poetical biography of Rāmapāla, discovered by my learned friend, Mahamahopadhyaya Haraprasad Shastri, and published in the Proceedings of this Society, March 1900, p. 70 ff. They are omitted in the pedigree of Pāla kings, occurring in the Kamanli Plates of Vaidyadeva of Prāgjyotiṣa (Epigr. Indica, Vol. II, p. 350), from which record we have been already acquainted with the names of their two successors, Rāmapāla and Kumārapāla. Of Madanapāla, we possess a short dedicatory inscription, dated in his 19th year, while the name of Gopāla III., his nephew and predecessor on the Pàla throne, is entirely new to us. As to Madanapāla's time, I can only say that I believe him to have lived in the first half of the 12 th centary A.D.

The grant made by him on the occasion of his queen, the Pattamahādevi Citramatikā, consisted of a village perhaps named Kästhāgiri, lying in the Koțivarṣa-vişaya, and belonging to the Pauṇ̣̣ravardhanabhukti. It was given to a Brahmau, Vateçvarasvāmiçarman, son of Çaunakasvāmin, grandson of Prajāpatisvāmin, and great-grandson of Vatsasvāmin, an inhabitant of Campāhitṭi, student of the Kautthuma Çākhā of the Sāmaveda, fellow-student of Bhūşana, and belonging to the Kautsa Gotra and Çāṇḍilya-Asitadevala Pravara (ll. 42-45). The village was given to him as a daksiṇā, after having read the Mahābhārata for the benefit of the Queen. The passage recording this fact, is of peculiar interest; it reads (l. 45 ff .) : Patlamahädevi-gri-Citramatikayā Vedavyāsa-prokta-prapāthita-Mahābhārala-samutsarjöita-daksinātvena Bhagavantain Buddha-bhattärakam=uddi¢ya fásani-krtya pradattos smabhih. The order confirming the grant was issued from the royal camp at Rāmāvati, situated on the banks of the Ganges (l.30). It was given in the king's 8th year, on the 15th lunar day of Caitra (11. 49 and 57). The minister of peace and war, Bhimadeva, acted as dütaka (1.57). The engraver's name was 'Tathāgatasara (1.58). With the exception of the Pauṇ̣ravardhana-bhukti and the Koţivarşa-vişaya, the names of the localities mentioned in this inscription are new to us; I am unable to identify any of them.

I now edit the Inscription from the original plate.
The Seal:
(ÇRī-MadanapIlay.)
The Plate. Obverse:
 ratna-pramudita-hrdayaḥ preyasim sandadhānaḥ samyak-

[^4]samvo(mbo)dhi-vidyā-sarid-amala-jalaḅ(la)-ḳ̣āli-
(1. 2,) t-ājũāna-paykaḥ 1 jitvā yah kāma-kāri-prabhavam=abhibhavaற் çāçvatām(tī̀) prāpa çãnti(utim) sa çrimān lokanātho jayati Daçava(ba)lo s nyaç=ca Gōpāladeva-
 kọmābharum pakẹa-ccheda-bhayād=upasthitavatām=ekàçrayo bhābhṛtām I maryādā-paripālan-aikn-ni-
(1. 4,) ratah çaury-ālayo s smād=abhūt dugdh-āmbhodhi-vilāsa-hāsa-vasatih çrī-Dharmmapīlo nrpaḥll Rāmasy=eva grhīta-satya-tapasas=tasy=ānurūpo guṇaiḥ
(1. 5,) Saumitrer=udapādi tulya-mahimā VākPāla-nām=ānujah [${ }^{*}$] yah çrimān naya-vikram-aika-vasatir=bhrātuh sthitah çāsane çūnyāh çatru-patākinibhir=a-
(l. 6,) karod=ek-ātpatro ${ }^{8}$ diçah ॥ ${ }^{\prime}$ Tasmād ${ }^{8}=$ Upendra-caritair=jagatim punānah putro va(ba)bhūva vijayi Jayapālanāmā dharmma-dviṣāḿ çamayitā yudhi Devariàle ynh pū-
(1. 7,) rvva-je bhuvana-rājya-sukhāny=anaiṣit" Çrimad ${ }^{4}$-Vigraha-PĀLAS=tat-sūnur=Ajātaçatrul=iva jātaḥl çatru-vanitā-prasādhana-vilopi-vimal-äsi-jala-dhāraḥ $\$
(l. 8,) Dik-pālaiḥ ${ }^{\text {b }}$ kẹiti-pālanāya dadhatam dehe vibhaktān gụ̣ān çrimantam janayām=va(ba)bhūva tanayam Nãirãraṇaí sa tābhūm ${ }^{6}$ । yaḷ kṣoṇi-patibhị̣ si(çi)romaṇi- rucā=
 svair=eva dharmm-āsanam \| Toy-āçayair ${ }^{7}=j j a l a d h i-m u ̄ l a-~$ gabhira-garvbhai(rbblai) $r=$ dev-ālayaiç=ca kula-bhū-dhara-
(l. 10,) tulya-kakşaih[!"]vikhyāta-kirti(rtti)r=abhavat=tanayaç=ca tasya çrī-Rājyapāla iti madhyama-loka-pālah n Tasmā[t*] ${ }^{8}=$ pūrvva-kṣitidhrān=nidhir=iva mahasām Rē̃ṣra-
(l. 11,) кÜf-ānvay-e[n*]dos=Towgasy=ottunga-mauler=duhitari tanayo Beãgyadevyāì prasūtaḥl çrimān Gōpāladrvaç= cirataram=avaner=eka-patnyā iv=ai-
(1. 12,) ko bharttā=bhūn=n-aika-ratna-dyuti-khacita-catuh-sindhu-citr-ānçu($\dot{m} c ̧ u) k a ̄ y a ̈ h ̣ ~ ॥ ~ T a s m e ̄ d ~ 9 ~=~ v a(b a) b h u ̄ v a ~ s a v i t u r=~$ vvasu-koti-vardhī kālena candra iva Vigrahapāla-
(1. 13,) DRVA키 netra-priyeṇa vimalena kalāmajena yen=oditena

1 Metre Çärdūlavikrịita; and of the next verse.
2 Read ekëtapatro. 3 Metre Vasantatilaki.
4 Metre Āryā. 5 Metre Çärdūlavikriḍita.
6 Kead prabhum with the Augachi and Diuajpur plates.
7 Metre Vasautatilakā. 8 Metre Sragdharā. y Metre Vamantatilakā.
dalito bhuvanasya tāpaḥ y Hatal-sakala-vipakşaḥ saŋgare $\nabla \bar{a}(b \bar{a}) h u-d a r p \bar{a}\left(d^{2}=a\right) n a d h i-$
(l. 14,) krta-viluptam் rājyam=āsādya pitryamं। uihita-caraṇa-padmo blūbhrtām mūrdhni tasmād=abhavad=avauipālah çriMahípáladevah in Ttajan ${ }^{3}$ yo-
(1. 15,) ṣ-āsajgam çirnsi krta-pādaḥ ksitiblırtām vitanvan sarvoāçāḥ prasabham=uday-ädret=iva raviḥl guṇa-grāmyā* snigdha-prakrtir=inurāg-ai-
(1.16,) ka-vasatis=tato dhanyah puṇ[y*]air=ajani Nayapālo narapatiḥ и Pitaḥ ${ }^{6}$ saj-jana-locanaiḥ Smara-ripoh pūjä-nuraktah sadā snmgrāme dha-
(1. 17,) valo=dhika-grahakrtāní ${ }^{6}$ kālah kule vidviọāmicāturvvarụ-ya-samāçrayab sita-yaçaḥ-pūrair=jagal=lambhayan tas-mā-d=Vigrahapāladeva-nr-
(l. 18,) patih pụ̣yair=jjanānām=abhūt $:$ Tan- 7 nandanaç=candana-vāri-hāri-kirtti-prabh-ānandita-viçva-gitah \mid çrimān = Mahípāla iti dvitigo
(1. 19,) dvij-eça-mauliḥ Çiva-vad=vạ(ba)bhūva॥ Tasyā ${ }^{8}=$ bhūd $=$ anujo Mahendra-mahimā kandă pratāpa-çriyām=ekạ̣ sāhnsa-sārathir=guna-na(ma)yah
(1. 20,) çri-Çūraliālo nrpaḥ[1*] yah svacha(ccha)nda-nisargga-vibhrama-bharā $\left.n^{*}\right]$ vivblıra(bibbhra)t sarvv-āyudha ${ }^{9}$ prāgalbhyena manaḥsu vismaya-bhayam் sadyas=tatāna dviṣām ॥ E-
(1. 21,) tasy $\bar{a}=$ pi sahodaro narapatir=ddivya-prajā-nirvbha(rbbha)ra-kşobh-ähūta-vidhūta-vāsava-dhrtih çri-Rāmapālo s bhavatl çāsaty=eva
(l. 22,) ciram jaganti janake yah çaiçave visphurat-tejobhih para-cakra-cetasi camat-kāramin cakāra sthiramin Tasmād ${ }^{10}=$ ajāyata nij-ā-
(l. 23,) yata-v̄̄(bā)hu-virya-nispi(spi)ta-pivara-virodhi-yaçahpayodhiḥ 1 medasvi-kirttir=amar-endra-vadbū-kapola-karppūra-pattra-makari sa Ku-

[^5](1. 24,) mārapālaỵ in Pratta(tya)rtthi ${ }^{1}$-pramadā-kadampa(mba)-ka-çiraḥ-sindūra-lopa-krama-krị̣ā-pāṭala-pāṇir=eęa suṣuve Gopālam=ū(u)rvvi-bhujami I
(1.25,) dhātri-pālana-jrmbhamāna-mahimā karpūra-pāmç-ūtkarair= devaḥ kirttim=a-yonija[\dot{m}^{*}]vitanute yaḥ çaiçave kric̣itamin Tad ${ }^{8}=$ anu Madana-
(1. 26,) DEFI-nandanaç=candra-gauraiç=carita-bhu vann-gnrvbba(rbbha)ḥ prāṅçubhị̣ kirtti-pūraiḷ! kģitim=avaramatātas=tasya sapt- $\bar{a} \nabla d h i(b d h i)-d a m n i m=a b h r t a ~ M a d a n a p a ̄-~$
(l. 27,) Lo Rāmapāl-ātmajanmā। (॥) Sa khalu Bhāgirathi-patha-pravarttamāna-nānāvidha-nauvātaka-sampādita-setu-va(ba)ndha-nihita-çaila-
(l. 28,) ¢̧ikhar[i*]ṇi-vibhramān=niratiçaya-ghanāghana-kari-ghatā-çjāmāyamāna-vāsaır_lakṣmi-samārardha(bdha)-santata-jalada-samaya-sandehā-
(1. 29,) d=hdi(di)cin-āneka-narapati-prābhrtikrt-āprameya-haya-vāhinī-khara-khur-otkhāta-dhūli-dhūsa(sa)rita-dig-antarālāt parameçvara-sevā-
(l. 30,) samāgat-āçeşa-Jamvu(mbu)dvipa-bhūpāl-ānanta-pāda-bhara-namad-avaneḷ çri-Rāmāvati-nagara-parisara-sa-māvăsita-çrimaj-jaya-skandhāvā-
(1. 31,) rāt। Parama-sangato Mahārājādhirājaḥ̣ çri-Rāmapāladeva-pād-ānudhyātah Parameçvaraḥ Paramabliatṭārako Mahā-rājādhirā-
(1. 32,) jaḥ çriman-Madanapāladevaỵ kuçaliil çrī-Paunḍra-varddhana-bhuktan Kotīivarṣa-vigaye Halāvarttamaņ̣ale [Käşṭhăgiri-sam்vimęçatyāvādhikopetasa-
(l. 33,) kaivadārvvacaţtaraṭ̣ake] tr[m"]çatikāyāni bhảmau sa--mupāgat-āçeşa-rāja-puruşān rāja-rājā(ja)nyaka-rāja-putra-rajāmatya-mahāsāndhivi-
(1. 34 ,) grahika-mahākşapatalika-mahāsāmanta-mahāsepā(nā) pati-mahāpratihāra-dauḥsādhasādhanika-mahākumārāmātya-rājasthānī-
(l. 35,) yoparika-cauroddharaṇika-dāṇ̣̣ika-dāṇḍapāsi(çi)ka-çauni-ka-kṣetrapa-prāntapāla-koṭapāla-n $\eta g a r a k s ̣ ̊-t a d-a ̄ y u k t a-~$ viniguktaka-

1 Metre Çārdūlavikrị̣ita.
2 Metre Målini.
8 Read Mahäraijädhiräja-çri-Rämapiladeva.

- The reading of this passage remains very doubtful.

Reverse:
(1. 36,) hasty-asv(çv)-oṣtra-nau-va(ba)la-vyāprtaka-kiçora-vaḍavā-go-mahiş-āj-āvik-ādhyakṣa-dūta-preṣaṇika-gamāgamika-ati(bhi)tvaramāṇa-vi-
(l. 37,) ṣayapati-grāmapati-tarika-çaulkika-gnulmika-Gauḍa-Māla-va-Coḍa-Khasa-Hūṇa-kulika-Karṇṇāṭa-Lāṭa-cāṭa-bhata-sevak-ādi-
 vrā(brā)hmaṇ-ottarān malıattam-ottama-knṭnmvimé(mbi)-purogama-caṇd̄āla-paryantān ya-
(1. 39,) thārha[$\left.\dot{\mathrm{m}}^{*}\right]$ mānayati vo(bo)dhayati samādisa(ça)ti ca viditam=astu bhavatānín yath=opari-likṣi(khi)to=yam grāmaḥ ॥ sva-simā-trṇa-pluti-gocara-paryantah ॥
(1. 40,) sa-talặ s-oddeçah s-āmra-madhūkah sa-jala-sthalaḥ sa-gartt-oça(ṣa)raḥ sa-jhāṭa-vitapaḥ sa-darq-çāpasāraḥl sacauroddharaṇikah parihrta-sarvva-
(l. 41,) pị̄ah a-cāţa-bhatṭa(ṭa)-prāveçah a-kiñcita-paragrāhyah ${ }^{\text {a }}$ [samasta*]-bhāga-bhoga-hiraṇy-ādi-pratyāya-sanetah ratua-traya-rāja-sambhoga-varjjitah
(1. 42,) bhūmi-cchidra-nyāyena ā-candr-ārka-kṣiti-sama-kālam் mātāpitror=ātmanaç=ca puṇya-yaço-bhivrddhaye [Kautsa]sagotrāya Çāṇ̣i-
(l. 43,) Iy-Açi(si)ta-Devala-pravarāya paṇdita-çri-Bhūṣaṇa-savra(bra)hmacāriṇe Sāmaved-āntarggata-Kautthuma-çākhādhyāyive Campāhittiiyāya
(1. 44,) Canpāhițṭi-vāstavyāya Vatsaçvā(svã)mi-prapautrãya Prajãpatiçiã (sVā)mi-pautrāya Çaunakaçvā (svã)mi-putrāja paṇ̣̣ita-bhatṭaputra-çri-Vateçvaraçiã(siā)-
(1.45,) miçarmmaṇe Patţamahādevi-çri-Citramatikàã Vedavyāsa-prokta-prapāṭhita-Mahābhārata-samutsarjjitn-dakṣiṇātvena Bhagnva-
(1. 46,) ntam Buddba-bhatţārakam=uddiçya çāsanī-krtya pradatto s smäbhiḥl ato bhavadbhị̣ sarvvair=ev-ēnumantaryań bhāvibhir=api pa(bhū)mipati-
(l. 47,) blir=bhūmer=ddāna-phala-gauravāt apaharaṇe mahānanaraka ${ }^{3}$-pāta-bhayāc=ca dānam=idam=anumody-ānumodya pālaniyam prativāsi-
(1. 48,) bhiç=ca kg̣etra-karair=ājñā-çravaṇa-vidheyi-bhūyaḥ (ya) yathā-kālam samucita-bhāga-bhoga-kara-hiraṇy-ädi-pratyāy-opanayaḥ kārya iti $\|$

I Read sa-daç-äparādhah. \& Read a.kiñcit-pragrähyah. 8 Read mahīnaraka-.(1. 49,) Samvat 8 candra-gatyā caitrakarmma-dine 15 [n^{*}]Bhavanti$c=a ̄ t r a \quad$ dharmm-ānusa(ca)misinah çlokāḥ ॥ $\mathrm{Va}(\mathrm{Ba})$ -hubhir ${ }^{1}=$ vvasudhā dattā rājabhih
(1.50,) Sagar-ādibhiḥ [1*] yasya yasya yadā bhūmis=tasyà tasyatadē phalamin Bhūmim yah pratigrhధ̣āti yaç=ca bhūmimprayacchatil ubhan tan punya-
svarṇ̣̣am=ekañ=ca| bhūmer=apy=arddham=aygulani [1*]haram narakam ${ }^{2}=$ ājātil yāvad=ahūti(ta)-(1. 52,) samiplavamin Saştim(ṣtim) varṣa-sahasrāni svargge tişthatibhūmidaḥ [1*] ākẹeptā c=ānumantā ca tāny=eva narakevaset II Sva-dattāni pa-
, vişţhāyān் krmir=bhūtvā pitrbhih saha pacyatenAsphoţayanti pitaro valgayanti pitāma-
(1. 54,) hāḥı bhūmido ssmada(t)-kule jātah sa nas=trātā bhavisya- bhūya[h*] prārthayaty=e-
(1. 55,) sa (ga) Rāmah [${ }^{*}$] sāmānyo=yam dharmma-setur=narāpām kāle kāle pālaniyah krameṇa | Itic kamala-dal-āmva: (mbu)-vindu-lolām Çriyam=a-(1.56,) nucintya manusya(sya)-jívitam ca[1*]sakalam=idam=udâhrtañ=ca vu(bu)ddhvā na hi puruṣaih para-kirttayovilopyāḥ il Krtaḥ ${ }^{6}$ sakala-
(1. 57,) nītijño dhairya-sthairya-mahodadhiḥ[1*]Sāndhivigrahikah çrimàn Bhimadevo stra dūtakaḥ in Rājye Madanapālasya aṣtame
(1. 58,) parivaccha(tsa)re I tāmrapatṭam=imaḿnçilpí Taithãaatasaro s khanat \boldsymbol{n}
1 Metre Anastabh; and of the next five verses.
2 Read haran = narakam.
8 Metre Çalinī.

- Metre Paspitāgrā.
6 Metre Anaṣtabh; and of the next verse.

On the identification of Kusinara, Vaisali and other places mentioned by the Chinese pilgrims.-By W. Hoer, Esq., Litr.D., I.C.S.
(With an edition of a neto copper-plate Inscription of Jayädityadeva II.By Dr. T. Bloch.)
[Read, May 1899.]
The hitherto accepted identification of some places noticed by Fa Hian and Hwen Thsang must be subjected to a very careful re-examination becanse the discovery of the Lambini Garden has shown that Kapilavasta lies in a direction quite different from that indicated by General Cunningham and his assistants of the Archaeological Department, and I think it is incumbent on any one who has donbts and can propose points for discussion which may assist in determining the geographical position of ancient places of interest, to lay his views before this Society. It is purely because I am anxious to reach the trath that I venture upon this commanication. My main object at present is to show that Cherand and not Besarh is Vaisali and that Kasinara is Sowan itself or near it, but it is as well to use this opportunity to furnish notes regarding other places.

There is no doubt that the city referred to by Fa Hian as Ki -jou-i and by Hwen Thsang as Kie-jo-kio-she-kwo is Kananj, ${ }^{1}$ and I shall take this as my starting point. Proceeding from this the later pilgrim visited, or seems to have visited, Na-po-ti-po-kn-lo, which has been correctly identified with Newal, an ancient site a little north of Bangarmau in the Unao District. 1 I visited this place in 1876-77 and obtained Kusana coins and independently arrived at this identification. Fa Hian on leaving Kanaaj went in the same direction which Hwen Thsang subsequently took and he reached a forest which he called

[^6]A-li (var. Ho-lo, A-lo) and here he found traces of Buddha in the asual form of memorial buildings. He and Hwen Thsang probably visited the same place. Anyhow I have no doubt that Asi-vana is the forest of $\mathrm{A}-\mathrm{li}$, and the present pargana of Asiwan probably represents approximately the area of the forest of Fa Hian's time. The people have a local tradition that the town of Asiwan was founded by one Asan, a name which will be seen to be of importance when I recur later on to the roate subsequently taken by Hwen Thsang.

On leaving the A-li Forest Fa Hian proceeded to the country of the Sha-chi. He travelled direct, but Hwen Thsang on leaving Newal went to other places before he reached Pi-so-kia, which is, I think, plainly the capital of the Sha-chi. One is tempted to say that the Sha-chi must be the Sāketas (Sansc.), the inhabitants of Sāketa or Ayodhya, and to restore Pi-so-kis as Vi-sāka (not Vị̆ākha) so as to introduce a common root to connect Sa-chi and Pi-so-kia as Chinese renderings of Sanscrit names. The temptation is all the stronger becanse at the S.E. of Ramkot, the ancient citadel of Ayodhyā, we have the mani parbat ${ }^{1}$ (Orajhär), which might be thought to be a stüpa, and beside it there are numerons 'chilbil' (Sansc. civillika) trees. The twigs of the chilbil are largely used to serve the purpose of tooth brushes. All this bears a plansible resemblance to what both pilgrims record as to the place which they visited but doubt still remains. I bave been unable to find any trace of Deva-garman at Ayodhyã, but I do find that the hermitage of this sage is still pointed out near the Varaha sangam, the junction of the Sarju and Gogra rivers near Pasha, in the Gonda District, where there is still a shrine to which Hindu pilgrims resort. They attach sanctity to this locality because of the image of the Boar here placed which is said to mark the scene of the Varāha Avatära. I believe that Pasha will be found to be Pi-so-kia, the capital of the kingdom or country of the Sha-chi.

Proceeding from this both pilgrims went on to Çrävasti, which may be held to be Set-mahet antil something tangible be shown to apset the identification. It is true that Kapilavastu is said to have lain S.E. from Çravasti or rather the pilgrims went S.E. from that city to visit places on their way to Kapilavasta, whereas the direction of the supposed site of Kanakamuni's stapa is slightly N. of E.from Set-mahet, but we find so many instances in which directions given by the pilgrims do not tally with directions shown on modern maps, prepared on the basis of careful surveys with modern instruments that we must not argue too strennously on the directions loosely recorded and often

I This spot, however, may really preserve the name of Mani-oúda, one of the prohistorio kings of Ayodhyā.
palpably misstated by the Chinese pilgrims, who travelled over a country where impenetrable forest and dense jangle rendered an accurate estimate of direction impossible, and where even the distances stated cannot accarately correspond to those taken out by straight lines run across the maps of to-day. Roates were devious 1,250 years ago. A chinese pilgrim may bave left a city A by the S.E. gate and travelled for a time S.E. and then bave turned in the tortuous mazes of a jungle northward and traversed what he called 12 yojanas before reaching another city B. He would have recorded : ' Proceeding from this place A to the S.E., after travelling 12 yojanas, we reach B.' To-day it may be that there is a direct road and we should say, 'Leaving A and going E. along a metalled road for 60 miles we reach B.' I note this here simply to show that we have need to be very cantions in treating the directions and distances stated by the Chinese pilgrims as fixed data in themselves sufficient to enable us to determine locations. The descriptions of places and the names and objects which are said to have existed in their days are much safer data for identification.

From Çrāvasti the pilgrims proceeded to Kapilavasta. Of this eentre of intense interest I need now say nothing. Government has undertaken inquiries and I trust that the present examination of sites north of Basti will lead to satisfactory identifications. Meanwhile I have only to say that I recently obtained a copper-plate inscription which will enable the Society to test the nccuracy or probable correctness of the results reported. An edition of this plate will be faund in an Appendix to this paper. It will suffice here to note the recorded facts. The document is a deed of gift by King Jayäditya of certain land to a Kāyastha named Keçava. The area of the grant seems to have been considerable. It consisted of the town land Kumāragandikā including
 the Leddikā subdivision of the Daddarandikā district. The boundaries are given: on the east the Rohipinadi; on the soath the tilaka tree (P forest) ; on the north the kumbhi tree ($?$ forest) and on the west the Hastilandākhya khāta i.e., the Ditch or moat known as that where the elephant was thrown. The date of this inscription is Samvat 921, or 864-5 A.D. Thas we have the name of the moat where Buddha cast away the elephant still preserved about two centuries and a quarter after Hwen Theang's visit. The great captain, as he is described in the text, who brought the orders for the gift was Grahakunda, a name perhaps of importance with reference to the Grah Kund near Tirbeni. There is no other proper name which at present strikes me as relevant.

We do not hear of a ditch where an elephant was thrown anywhere save in connection with Kapilavasta, but unfortunately I cannot yet
trace the villages or territorial divisions named in the plate, but inasmach as they cantained mines of salt and iron the tract referred to mustbe near the lills. Is it not possible that Saina Maina (Çāyana Māyana : the dream conch), 5 miles S.W. of Butwal may be Kapilavastu? I think it may be near it at any rate, puless there were more than one sculptured or painted representations of the dream of Māyā which gave, to places their names.

I omit for the present the places between the Lumbini Garden and Vaisali but shall returu again to discuss them also.

I have long entertained grave doubts as to the identity of Besarl! and Vaisali. When Buddia left his home he visited Vaisali and he also consulted the teachers mentioned as Arāda Kalāma and Uravilva Käçapa before he reached Gaya. The Käsyapa here alluded to seems to have resided at the place known as Urwal on the East bank of the Son river, and as Uruvilva Käçyapa is Käçapa of Uruvilva we may conceive Aräda Kalāma to be Kalāma of Arāḍa aud Arāda to be the modern Arrah. In that case, any one will see that Buddha would have been gailty of making a foolish out-of-the-way detour if he went across, the Great Gandak to Besarl before going to Arrah, Urwal and Gaya. If, when he fled from his home, he went down country via Kasia and the Saran district, crossed the Ganges and proceeded to Arrab, then crossed the Son and took Urwal on his way to Gaya, we have a probable route and there is no ground for sapposing that he did not take as direct a course as reasonable. These considerations led me to believe that Vaisali mast be found in the Saran district, west of the Great-Gandak and north of the Ganges.

When Rāmn was proceeding from Ayodhyā to Mithilā with Vigvàmitra, he passed through certain places antil they reached the banks of the Son, but this river they did not cross. They crossed the Ganges and when they had landed on the other side they beheld the city named Vicāla, where they were entertained by the king Sumati. Vigvàmitra narrated the legendary history of the kingdom over which this king reigued. I need not quote it hore, but I refer the curious to the XLV and iollowing sections of the Bālakãpda of Vālmiki's Rämáyana. There is much that is suggestive in connection with the stories told by Hwen Thsang and I think that the reference by Vālmiki to CGakra justifies the suggestion that Saran may possibly be Chakra + aranye the forest of Cakra or Indra.

We know that when Buddha left Magadha for the last time he went towards Vaisali. The gate by which he left Pataliputra was afterwards called the Gotama gate and the place where he crossed the Ganges was oalled thereafter the Gotama Ferry. The Gotama Ghat is
still known east of Revilganj. We also have the story of Ananda's leaving Pataliputra for Vaisali and we read that when he reached the Ganges he discovered that the people of Vaisali had come out to meet him in the hope of obtaining his body as they knew he was about to die and they wished to do it honour : but he was pursued by Ajātaçatru's army which had been sent with the same object. He therefore surrendered himself to death (entered samādhi) on an island in the river and his body parted in two so that the rival claimants obtained equal parts. This story is preserved for us in the name Cherand, which is simply Chidra + ayga : the divided body.

It is very remarkable that there is a local tradition at Cherand based on this story. It is this. There was a king at Cberand named Moraddhuj (Mayüradhvaja) in the Dwāpara Yuga who professed great devotion to the gods. Krishna determined to put the king's faith to a test and came one day to his palace disguised as a mendicant and asked for the right half of the king's body for some sacrificial parpose. He explained to the king that his wife and son must each hold one end of a saw ($\overline{\mathrm{a}} \overline{\mathrm{a}}$) and saw him in two, but if he shed tears the gift would not be acceptable. The king agreed and the operation commenced but presently he began to shed tears from his left eye. The mendicant reminded the king that the professed gift was liable to rejection bat the latter explained that the left eye wept because the right half of the body was alone being taken and the other left. Krishna was so pleased with this devotion that be exercised his divine power, stopped the operation, restored the body to its former state and flung the saw away. It fell at Arrah in the Shahabad district, giving its name to that place. This story is certainly the same in origin as that told of Ananda. It is a Hindu version of facts underlying the Buddhist story.

The conclusion to which I come is that Vaisali did not lie on the east but on the west of the present Great Gandak. I shall presently fix it beyond doubt east of Chupra probably at Cherand itself. The whole of the northern bank of the Ganges from Hajipur right up to Manjhi (Mangchi in the Ain-i-Akbari) would repay careful and minute examination.

I may here digress for a moment to make some notes as to Saran Khass which I at first erroneously surmised to be Vaisali and visited for that reason. Saran Khass lies about 16 miles due north of Manjhi, and contains extensive ancient remains covered for the most part by cultivated fields. There is an abrupt rise at Makhdum Shah's Dargah, a little south of Harpur, which continues for a couple of miles south until it terminates somewhat more abruptly beyond Khwajah Pir's

Mazar. On the east of this elevated site runs a stream known locally by two names, Gandaki and Sarayu. This is well defined and may have been a channel made in ancient days for water supply. West of this and parallel to it the high ground extends for an average width of not leas than half a mile. As I passed from the northern end I observed nudulations with occasional very prominent heights and noticed that cultivators have taken out numerous bricks while ploughing. On approaching the southern end I observed a pile near a mound on which are the remains of a brick building. I learned that this pile is the Ganj-i-Shahidān or Martyr's Heap near the traditional Raja's kot. This indicates a desperate assault at some time on a Hindu stronghold. Further on I came to Khwajal Pir's Mazar and found two tombs in an open euclosure. In one corner there was a large black stone about $4 \frac{1}{2} \mathrm{ft}$. long on which I observed Hindn sculptures of the Navagraha or nine planets. On the back of the slab there was a long inscription in Tughra character of which I had not then the means of taking a rubbing. It is much worn and could not be read at sight. It is probably historically important.

A few miles west by north of Saran khass is a village called Bhikaband on the map. I visited this spot, also and find that there is here a large banian tree which is said to cover about ten acres. In the ground near there are brick remains and an old well lately reopened. Somewhat S. E. of this is an old temple and the attendant Brahmans wrote the name for me: Bhikaban, which is clearly the 'Bhikshu's Grove.' About a mile west of this are two villages bearing the name Kapia, which suggests the story of the service rendered to Buddha by the monkey (kapi) as mentioned by the later Chinese traveller.

I shall now proceed to resume my discussion as regards Vaisali itself. There are some suggestions based on a study of the Mahāparinibbāṇa Sutta which I must note. When Buddha had crossed the Ganges for the last time on his way to Vaisali he first visited Kotigāma and then Nadika, after which he arrived at the great city. There he was entertained by the courtesan, Ambapali, at her mango grove outside the city. From Vaisali Buddha went on to Veluva where he was seized with the illness which eventually terminated his life. This is probably the modern Belwa, N.E. of Cherand. Near it we meet with such remarkable names as Sārnāth Chak and Dharma Chak. Buddha then seems to have turned again towards Vaisali for he went to the Cāpāla Caitya, which the text would lead us to believe to have been near the city, if not in it. This name is probably either from Capala or capala (Sansc.), a loose woman, and thus alludes to the concubine
spoken of by the pilgrims; or from capa + abaya (Sansc.), the 'bowplace,' where the bow was deposited. Anyhow there can be no mistake as to the mound lying to the east of the town of Chapra, called Telpa. This is undoubtedly the sanscitit talpa 'a bower,' and is that built for the mother of the thousand sons and the site of Faisali is therefore fixed. It is the modern Cherand and was spread along the bank of the Ganges east and west of the present town.

The five rivers to the junction of which the Chinese Pilgrim Fa Hian proceeded was the mouth of the Son. The five rivers are the Jumna, Ganges, Rapti, Barayu or Gogra, and the Son. Fa Hian crossed at Paleza-Digha Ghat, and had only to go one yojana to reach Pataliputra (Patna). The distance from Cherand to Paleza Ghat is $18 \frac{1}{2}$ miles. This was four yojanas and gives a trifle over $4 \frac{1}{2}$ miles to the yojana. According to Hwen Thsang the yojana consisted of 4000 bow lengths, each 6 cubits, This means 8000 yards which give us 4.54 miles to the yojana.

We learn from Rockhill's Life of the Buddha based on Tibetan authorities that Buddha on finally leaving Vaisali visited a place called Amra, which may be Amnaur (Amranagara), Jambagāma, Bhaṇdagāma, Hastigāma, which may be the present Hathwa, and Bhoganagara. After this he reached Pāva.

I now come to speak of a place of which I have some personal knowledge. There is a village known as Papaur or Pappaur (Pāva + pura or Pāpa+pura) about three miles east of Sewan. I visited it some years ago. Near the present homestead there are the remains of a more ancient habitation from which I obtained some copper Indo-Bactrian coins. It represents a place of great antiqnity and must be the Pava where the goldsmith Cunda lived. When Buddha came thas far he went with his followers to the goldsmith's grove and while there he acoepted an invitation to dine with the goldsmith to whose house he went. There he was served with the sükara ${ }^{1}$ which aggravated the symptoms developed at Veluva and gave his illness a fatal tarn. This led him to resolve to pash on to Kasinara and he set ont with Ananda in that direction. He was then at least 80 years old and suffering from dysentery. He could not have travelled far and we observe that the Mahāparinibbāna Sutta represents him as halting under a tree at least once and reaching a river with difficulty. The salient points in connection with his last brief journey are that he left Päva, halted under a tree, moved on again to a stream called Kakuttha and having crossed

1 This is not boar's fleah, but Sūkara-kanda 'hog's root;' a balbous root found chiefly in mounds and junglea, which I have seen Hindus eat with avidity. It is a phalahar, permissible to eat on fast days.
a river bearing a name suggestive of gold, he reached the people's park near Kusinara and lay down under some sal trees. Possibly he had not come to Kusinara because he sent Ananda to bring the Mallas to him. After his death there was an imposing ceremony to do honour to his remains. He was laid out on a golden bier and is said to have been kept for seven days : and it is said that he showed his feet from out his winding sheet and he even raised himself and spoke. There was difficulty in moving his remains until Kāçyapa came. Thus the spot where his bier rested was one that must have borne a name associated with it. That name is Sewan, the Sanscrit pavayana: a litter or bier. There is something in names. It is remarkable that we have a particular tree of great age at a mound near Sewan Railway Station. This is known as Jagattra, the Protector or Deliverer of the world. One would expect Hindus to venerate this spot but they do not. They consider it ill-omened. The late Raja of Hathwa desired to enclose all this spot, but the Pandits told him that the act would bring him bad luck. He enclosed a large patch but left the tree outside the walls. He died soon after. This Jagattra is looked upon as the oldest place about Sewan, and its name and associations are significant. There is also a very high mound not far off which has not been explored. I can have no doubt that Kusinara lies somewhere close to Sewan if it be not Sewan itself.

The indefatigable Major Waddell has in the third number of the Journal of this Society for 1896, published an abstract of a Tibetan Guide Book to Buddhist sites in India. It is unfortunately a brief and vague vade mecum for the traveller and is absolutely unreliable in some of the directions which it gives, but. it tells us that the Bāla grove where Buddha died is in the N.W. of the Kamalla or Bāliya des, 'the powerfal country.' I find that the tract of country eastward from the Diha river near Sewan and stretching north of the Manjhi and Cherand tappas or parganas is called Ball. Sewan is in the N.W. of the Ball country. This is probably the country of the 'powerful' people (bala) and is possibly the same as malla (powerful, athletic). When Buddha left Vaisali and visited various places before reaching Pāva the places are said to have been villages of the Licchavis and the Mallas.

Hwen Thsang tells us two Jātaka stories in connection with the country of Kusinara. The one is that of the pheasant which tried to extinguish a forest fire by dipping in waier, flying aloft, and shaking its wings that the water might fall on the fire : bat the bird's efforts were unavailing and at last Cakra (Indra) put out the fire. This is not a misplaced story in Sewan, the Çakra-aranya. The second story is that of the deer which, when the forest was burning, helped animals across the river and last of all saved a helpless hare, and itself perished. Now, J. I. 11
both stories mention a conflagration and a river. There is one word in Sanscrit which expresses both conflagration and cremation. It is ' daha.' The river so named is the river of 'conflagration' and also the Çavadaha, the cremation river of the Malla or Balla people.

The Dnhn takes its rise N.E. of Gopalganj and in its course forms the sheet of water known as Sasa Mansa (Çaca-moksita 'the rescued hare') and then flows sonthward to Andur. Near this (at Faridpur) it is joined by the Sondi River and thence its course is S.E. until it falls into the Gogrn east of Manjlii. The Soudi is said to be an offshoot of another stream called Narayani bnt I cannot find this on the maps. It comes down past Manjha Mntkar and Manjha Mallaon. I have said that we must fiud the word for gold entering into the composition of a river near Kusinara. It is given in the Chinese as Hi-lian and Shi-lai-na-fa-ti. The latter is obviously Suvarnavati, which, anyone accustomed to note mutations from Sanscrit to Hindi will see, becomes Sona-vati, or Sona-nadi, or Sondi or Sundi.

I have not been able to visit any places near Sewan except Papparr, but a gentleman who has taken considerable trouble to help me in my researches tells me that there is a very extensive ancient mound covered with trees, locally called a fort of the Choroos, between Luhsi and Kulinjara about 3 miles N. W. of Sewnn. There are also remains of great age on the west bank of the Daha in Gosopali opposite Salannapar. This name suggests Sala-vana-pura, the city of the Sala forest. The mention of the Sāln here in nny form is interesting. These places should be examined.

There are also considerable remains and a large basalt image further down the Daha at Hnsanpur which should be looked to. From this place I received an inscription on a brass plate not yet deciphered.

Sonth-east of Kusinara and west of Vaisali lay the place where Buddha parted from the Licchavis. This is probably Manjhi, the Mängchi of the Ain-i-Akbari. It is the 'Mäng' or 'Mänjha', the middle line, the parting, and lies on the west of the Daha or Sundi where it joins the Ganges. The Sundi or Daha river wns probably the western boundary of the Vaisali kingdom, a narrow tract lying along the bank of the Ganges.

I now retarn to the Lumbini Garden and ask what were the points visited by the Chinese pilgrims between that place and Kusinara. It is not yet settled what the Rāmagāma Kingdom was or where the town called after Rāma lay. 1 may mention that the very old town of Kanapar near Dham is also called Ramnagar, but that is not necessarily significant. I can, however, with knowledge point to a very ancient mound called Ghagharra between Pipraich and Captainganj, which
should be examined as a possible Stupa cum Vihāra site. After the Rāmagāma stūpa, the pilgrims visited the place where Buddha performed the three great acts of renanciation, where (1) he sent back his horse, (2) he took off his crest-jewel and cut his hair, and (3) he pat on the kasaya robe of the ascetic. We know from the Lalita Vistara and the Romantic Legend that the memorinl stūpas erected to mark the place where these three acts were performed were close together. We also know that on his flight from home the Prince came to the country of the Mainas. Kasia lies on the Mainpur tappa, and I believe that the Prince crossed the Chota Gandak in the morning after he left home, and that a black stone image still lying ander a tree opposite Hetimpur is a remnant of some memorial there placed to mark the spot where he crossed. The Prince then entered the country of the Mainas, as I have shown above, and the remains at Māta Kunwar, at Ramabhar, and inside the cane-brake in Kasia town, are what we have left of the memorinl buildings placed to commemorate the Great Renunciation. Kasia is the place where the Prince received the kapaya garment or robe of the mendicant.

The Charcoal stäpa has yet to be found bat I am in hopes that it will be identifiable in the mound of Agarwn, N. E. of Taria Sujan which I have not yet seen. The name itself being obviously derivable from ajgarika, charcoal or embers, is promising.

Having located Vaisali at Cherand, I may ask: ' What then is Besarh P' Fortanately that is easily explained. When Hwen Thsang speaks of the country Fo-li-shi, north east of Vaieali, he means Pa-lā-sa or Parassa, ${ }^{1}$ the country of the däk tree, a name which was given to at least the trans-Ganges part of Magadha. He tells as an exaggerated story aboat a monster fish in this country and a stūpa commemorating the conversion of 500 fishermen by Buddha. Besarh is the Sanskrit word vasadhya, the Gangetic porpoise, and the remains at Besarh are those of the town or city of the Monster Fish.

The mere fact that an Asoka pillar may be found somewhere near Besarh does not make it Vaisali : nor are we entitled to say that Cherand is not Vaisali, because an Asokn pillar has not yet come to sight there. It would be interesting to know why Asoka placed his pillars in many places which he selected. I would suggest that he selected Kesaria and Araraj as pillar sites because they probably represent the places where Buddlia was believed to have been in former lives respectively a Kesari or lion and the Arindama Raja.

Let me now return to Kananj and take up Hwen Thsang's ronte. I assume that he visited Newal and we have to look for 'O-gu-t'o and

[^7]'O-ye-mu-khi. The first thing to observe is that the Life of Hwen Thsang shows that he travelled by boat on the Ganges. He must have used a boat to cross from Kananj on his way to Newal. He was certainly on a boat when attacked by the river-dacoits while on his way from 'O-yu-t'o to 'O-ye-mu-khi. No place that be mentions between Newal and Prayāga can have been very far from the Ganges. The Life differs from the Travels in important details. If we read the latter alone it would seem that H wen Thsang speaks as if he was reckoning from Newal to ' O -yu-t'o, while the Life represents as a starting point the Bhadra Vihāra where the pilgrims had stayed for three months, at Kanaaj. These apparently trivial variations are important, because they affect the position of 'O-yn-t'o with reference to the Ganges. Anyhow the distances are 600 li to ' O - yu-t'o, 300 li to ' O -ye-mu-khi and thence 700 to Allahabad. The direction of the intermediate length is described as East. The general direction of the Ganges between Kanauj and Allahabad is S. E. There is a stretch of the river roughly W. to E. between Baksar Ghat and Dalman. The last named place is the spot where Dālabhya Ŗ̣i spent his life and west of it a few miles is Chilanla, a name which recalls the Shi-lo-ta-lo of the pilgrim. This is the traditional abode of the Resi Cyavana, restored to youth by the Açvins. A little farther west is Gagason, venerated by Hindus as the agrama of Garga, a muni who left a host of descendants; and close to this again is Sinkaur, another place of great antiquity. Taking the Singhar Tāra crossing near Sinhaur crossing and crossing south of the river we reach 'Tāra Bhitaura or Bhati-ura, supposed to be a dwelling place of descendants of Bhrga, and proceeding a few miles east we rench Asni, opposite Gagason. At Asni is the shrine ${ }^{1}$ of the Agvins, the twin sons of Surya (the sun) who are represented by two brass images with their hair coiled over their heads. The myth runs that these deities were born from the nostrils of a mare. May not 'O-ye-ma-khi be Acua-mukha, 'the mare's Head,' and this cluster of sacred places be the kingdom referred to by the pilgrim. The story of the Rishi at Chilanla restored to youth by the Açvins may be another form of the narrative of the conversion of Buddha Simina and of the three pious Buddhists who made the bargain about reappearing after death. Anyhow these places are connected and mark what may have been regarded by H wen Thsang as a kingdom with its capital on the northern bank of the Ganges, that on which the majority of the shrines lies.

[^8]I have when writing about Asiwan referred to the significance of the name Asan as the founder of that place. Might not this name be the Asanga of the Chinese Traveller? We meet with a similar eponym in connection with Asoha, the chief town of Asoha pargana in Unao district, where the people call the founder Asa Rikh. There are some remains at this place where Bactrian Coins have been found : and these remains mny be Buddhist, but it would be rash to say as yet that Asoha is ' O -yu-t'o.

I need not say anything as regards Prayāga which can be no other spot than Allahabad. From this andoabtedly fixed point Hwen Thsang went to Kosambi which has been identified with Kosam cum Pabhosa on the northern bank of the Jumna. My learned friend Mr. Vincent Smith, has lately written dispating the correctness of this identification and I must admit that my faith was at first shaken by his argaments. I have a great respect for his acumen but I venture to say that, after considering all that he has written, I cannot but hold to the original identification. Mr. Smith has not himself visited Kosam.

As Hwen Thsang travelled by boat on the Ganges it is highly probable he moved by boat along the Jumna. In that case his first direction would have been S.W. and on his left at any rate we would have had forest as one can see who has traversed the Barah Tahsil of Allababad District and the adjoining parts of Bandah District. The journey by river would be long and tedions enough to account for the great distance recorded, 500 li . When the traveller left Kösambi and went north he passed through a dense forest. This may possibly be the present Atharban pargana. As we have the Antar-ved for the Ganges-Jumna Doab, the name may really be correctly Antar-vana. This point is worth examination. At any rate vana (forest) is beyond doubt.

In Rookhill's "Life of the Buddha" (page 74), where the account of the conversion of the king of Kosambi ${ }^{1}$ is given, we are told that at that time the king of Vatsala had assembled his army with the intention of conquering the city of Kanakavati. West of Kosam about 16 miles on the southern bank of the Jumna where it is joined by that Paisuni river, there are extensive ruins known as Kankotah or Kanak Kot. I have seen them. I excavated a part some years ago and found inscribed stone lintels. This is, I believe, the Kanakavati referred to, and the position of the two capitals recalls the similar location of Pataliputra and Vaisali.

[^9]There has not been much reliable result obtained yet by attempts to identify the places between Benares and Pataliputra. We have to find the kingdom of Chen-Cha, 'lord of battles.' General Cainninghnm's endeavour to make Ghazipur the equivalent of Chen-Chu is strained and unfortunately, I fear, does not rest on any solid fact. The form locally given of the ancient name is not, I understand, Garjapur but Gadhipur. The General might as well have said that 'Ghāzi' is equivalent to 'lord of battles.' The name of the kingdom or, may it not be, of its ruler, is translated into Chinese as Chen-Chu. Its capital was on the banks of the Ganges. This is, unfortunately, not a certain key to the place in modern times. A careful examination of local traditions in connection with existing ruins and names may lead to identifications.

I may illustrate the value of tradition by quoting a very curious history hauded down of a kingdom which may be that referred to by the Traveller. There was a king somewhere who had a daughter called Kanchavi for whom he could not get a husband. His pandits told him that it was written in her destiny that she should marry a man of low caste. He asked who this might be and they said he was a certain servant in the king's retinue who was a Piçvān. A Piçvān is explained in the story as being a Cheru and the Cherus are aaid to be represented now by the Dusadhs. The king resolved to send this servant to the end of the earth. He therefore wrote a letter and calling him up told him that Rāmacandra had been born and that he must take this letter, an invitation to Kanchavi's werding and find Rāmacandra and hand him the letter. He warned him farther that, if he retarned without delivering the letter, he would be sawn in two. The servant set out and endured great privations and hardships, wandering here and there from place to place, until he met a venerable man in a jungle, who was in reality Ramacandra and who asked him who he was and where he was going. The king's messenger then told him all about his mission and the letter which he carried. Rāmacandra informed him that he was a cela or follower of the person sought and he would nccept the letter for him. The messenger delivered the invitation which Ramacandra read and said: 'Go back, I have accepted the invitation. It is you who will marry the girl.' The Piçã̄n now tarned homeward and as he was passing through the Waina forest he heard a voice calling out: 'Who are you?' but he could see no one. He heard the question repeated again and again and at length replied: "Who are you that I hear calling while I see vo one?" The answer came: "I am a tree that bears no fruit and I am sad because other trees have fruit while I
yield none. If you know any remedy for this, tell me." The messenger though a Dusadh had been a king in a former birth bnt because of his miscondact he had been reborn as a Dusadh, and all his wealth and greatness and evil deeds lay buried at the root of this tree, and prevented the tree fulfilling its purpose as a fruit-bearer. Now, by his interview with Rāmacandra, he had obtained illumination and was enabled to see his former life, and he at once knew that it was under this tree that his wealth lay buried : so he told the tree to lean over that he might take out what lay at its root. This the tree did and the man took out his former wealth and recovered his greatness. He became a Raja once more, employed a number of men and built a palace on the spot. He enlisted an army and marched to marry the princess Kanchavi. He encamped in her father's country. The king thinking of his danghter's unmarried state came out and asked him to marry her but, not desiring to seem anxions, he refused, saying that he did not intend to marry for he preferred to spend his days in visiting places of pilgrimage. When the king pressed him he married Kanchari, who subsequently recognised him by certain marks which he bore. When he returned to his country he built four forts and his descendants were kings for four hundred years. The four forts lie in the Ballia District: the first Waina is in the Wainaban where he had found his wealth under the tree; the second is Kopachit; the third is Sikandarpur; ${ }^{1}$ and the fourth was where Husenabad now is in the Banodih Tahsil.

At first sight this seems a very silly tale but the key to its value lies in the word 'Piçvān,' which is from the Sanscrit Piç 'yellow.' There is no caste or race in India called Piģvān but the word refers obviously to a yellow Race. This is the Mongolian or Chinese people. Hwen Thsang tells us of the men from Tu-ko-lo beyond the snowy mountains (obviously yellow people) who came and wandered in India friendless and inhospitably treated, till they met a king who built for them the monastery of the 'unpierced ears.' It was an ornamented building of small dimensions near a lake. The modernWnina in Ballia has ancient remains and it lies to the south of the broad expanse of water known as the Suraha Tal. A few miles S. E. is Ballia itself, the Bhrgvąçrama, the Kapileçvara and the Dharmāranya; and until the last floods washed it away here too on the Ganges bank, I am told, was a temple of the Sun-God, Sürya-Nā-ส̄yaṇa. The general conclusion is that the monastery of the unpierced ears will be found at

[^10]Wainal or in its neighbourhood, and that it was at Ballia that Hwen Thsang crossed the Ganges to go to Mo-ha-so-lo (Masãr).

I regret the length of this commanication bat I have been anxious for sometime past to contribute what I could to the researches now in progress. I have endeavoured to avoid all appearance of dogmatic assertions and remembered that it is extremely unsafe to argue about places which I have not seen or which others have not fully explored. If I can by suggestions, however crude, assist others in research, I am satisfied.

APPENDIX.

An edition of a new copper-plate inscription of Jayãdityadeva II.By Dr. T. Bloch.
This Inscription, which is edited here for the first time, has been referred to in the preceding paper on page 76. Regarding its find-place, etc., Dr. Hoey makes the following remarks :-
"I have found it very difficult to trace out the place where this copper-plate, which the son of the Raja of Bansi made over to me, was originally found. It came into the possession of the Bansi family through Durbali Ram Tewari, a Pandit employed to look after a Sanscrit library which the Bansi Rajas have kept up. A very old man named Gauri Charan Lal of Kubabar tells me that a Brahman of Gurmha brought in this copper-plate two years after the matiny and asked to have it read. So he sent it on through his brother, then employed at Bansi, to the Pandit. The mode of discovery was this. Some men were employed to dig kunkar at the North-East corner of the large sheet of water covering over 30 ncres at the village Gurmha. It is a long strip of water extending within Rakhnakhor and Pachgawan. The kunkar was to be sapplied for some purpose by two Dakhani Brahmans, who had taken a contract. The labonrers, in the course of excavation, found two pots, one containing silver coins, the other gold coins and this Copper-plate. Of course the coins have long since disappeared. I have not been able to visit this place, but I shall now furnish some notes regarding it, and other places of interest, in the same Tappa Pachgawan, which lies North of Gorakhpur City. These notes are reliable, because they have been recorded by an English-speaking, welleducated native Magistrate, who is a graduate, and has, in his enquiries, acted ander my instructions and provided me with photographs.

Gurhma is not a large village, but the lake is remarkable for Ω very massive high moand of bricks at the East side, on top of which rises a

1 Wainaban is olearly the Vinayaka-vana, the forest of discipline (Vinaya), n parallel to the dharmaranya of the Hindus and Buddhists.
huge pipal tree Some sculptured remains have been found here, and taken to the monastic cell of a gosliain who lives North of the lake. Pachgavan, which is south-west of the lake, is Ω very old place, from which people have recovered grindstones of antique pattern. I think there must be something of importance in the word Garmha, because the name Gurmhi occars as that of the small tappa in which Sohgaura, and Tikar, where I recovered the Indo-Pnli Copper-plate, are situated.

Bharrhia lies west of Tighra near Peppeganj railway station. Here there is a very ancient temple which has been restored, or repaired, and in one wall of it there is a stone containing a Sanscrit inscription. The temple is called Pitesar Nath. The proper form of the name occurs in the inscription. There was another ancient building in ruins east of Bharuhia called Nakta Dei, which some Tharns overturned about 60 years ago, when they came in a body and searched for treasure.

There are other places which might repay examination, for instance Gängpār and Khātapār near Bharuhia and Tighra. West of this there is a series of nlmost continuous village sites : Rāmghat, Pnllia, Pachwāra, Dihwa and Ramwapur, in each of which there are ruins. They seem to be a connected block, as though they were the site of one continuous city.

In order, if possible, to discover what was the Vijayapura referred to in the copper-plate, I made enquiries as to old sites in this neighbourhood, and I came to find that there are round nbout Gorakhpur the following remains of ancient fortified posts, which it may be as well to record. (1) Shergarh west of the Rapti and of Gorakhpar much cut away by the river. (2) Ramgarh which gives its name to a large lake east of Gorakhpur city. (3) Sumergarh north of Bhathat about 18 miles north of Gorakhpur. (4) Bheriagarh north-east of Gorakhpar city. (5) Baitalgarh on some bigh ground near the road leading from Gorakhpur to Pipraich. (6). Marwargarh nenr the shrine of Tarkullia Devi two miles north-enst of Mitzapur village. (7) Kuwalgarh at Kavaldah in the immediate north of Gorakhpur city. (8) Domangurh on the Rapti, west of Gorakhpur city. (9) Bijaigarh known as Kotiya, standing in the big sheet of water west of the now ruined Mahesra bridge sonth of Maniram railway station.

There is a tradition of two kingdoms Bijaipur and Udaipur. A line drawn from Padrauna westward to the Rapti would about indicate the parting line. North of it lay Udaipur and south of it Bijaipur. I am not inclined to say that all the nine forts enumerated were simultaneously existent as fortified posts of the Bijaipur kingdom. Local traditions show that this could not have been so ; but the existence of so many of these ancient strongholds, round about the junction of J. 1. 12
the Rohini and Rapti rivers, shows that the position was recognized from the earliest times as one of strategic advantage."

The inscription is engraved on a single copper-plate measuring $12 \frac{8_{4}^{\prime \prime}}{4}$ by $12 \frac{3}{4} .{ }^{\prime \prime}$ On the top there is an oval projection, upon which we find the representation of full-blown lotus, the centre of which consists of a raised disc bearing the image of some animal, perhnps a boar, with Çri-Jayãditya-devah written below in raised chnracters. The writing consists of 24 lines, covering only three quarter of one side of the plate. It is fairly well executed and well preserved; however, the meaning of a few passages remains doubtful. The characters belong to the northern alphabet and are in every respect similar to those of the Gorakbpur plate of the same king, belonging to this society, and edited by Prof. Kielhorn in the Ind. Ant. Vol. XXI, 1892, p. 169 ff. Thus, in the conjunct letter rya the r is written on the line in paryanta (ll. $1 \& 12$), and $k \bar{a} r y \bar{a}$ (1.19); and the arasvārca is placed after not above the aksara to which it belongs in pravrttīnā̀iv (l. 5), and bhübhujäभ̀ (1.19). The language is Sanskrit, and with the exception of four imprecatory and benedictive verses in 11. 17-21, and a verse referring to the grantee, the Käyastha Keçava in ll. 22-24, it is in prose.

The object of the Inscription was to record a grant made by king Jayādityadeva II. (l. 8), who was the son of Dharmmādityadeva and his wife Candrādevi (l.4) and the grandson of Jayādityadeva I. and his wife Yogādevi (ll. $3 \& 4$), all of whom belonged to the Malayaketu family (l. 3) and received the titles paramabhattāraka-mahārājādhirājaparamegrara. The document was issued from Vijayapura (l. 1). The grant consisted in the village Kumāraşaṇ̣ikā, connected with the pallikās: Patraṣaṇ̣̣ā, Çaŋkuşạ̣̣ā, Gāddhi, and Deuli, which lay in the Leḍḍikā viṣaya and the Daddaraṇ̣ikà manḍala (l. 8). It was given to a Kajyastha Keçava, son of a Kāyastha Dhemuka, and grandson of a Käyastha Rudrn, in recognition of good services rendered by him to the king (1.13). Its boundaries are laid down in 1.15 ; they were: in the east the river Rohini ; in the south a tilaka tree; in the west the ditch called Hastilanḍa; in the north a kumbhī tree. The document is signed by the minister (muhāmantri) Māhaka. The mahāsāmanta Grahakuṇda acted as dütaka. The inscription was written by the Kāyastha Valadduka. Its date is given as Samvat 921 (ll. 21-22).

The date doubtless must be referred to the Vikrama era. Of the geographical names mentioned in this inscription, the river Rohini is the only one that at present can be identified. As regards Vijagapura, we learn from the Gorakhpur Inscription (l.c. p. 170) that it was situated on the slopes of the Himalaya (uttaragiri-katake).

I now edit the inscription from the original plate:-

Transcript.

1. 1, Oḿ Svastil Crii-Vijayapuräc=catur-udadhi-paryanta-nirantar-ākrānta-kītti-sautatinām=ananta-nitānta-phal-ānumeya-āravdha(bdhn)-vividha-krty $\overline{\text { änānín jagad-ndayāyr gp̣li- }}$
2. 2, ta-dṛ̣ha-vratānām=ati-samirūḍha-rājarṣi-patha-sampravarttayitṛ̣̣ām samantād-gṛhitn-pūrvva-nīti-vyavahārāṇām prajānām=upakarttavyam=ity=evam=ādrta-matiḥ ${ }^{l}$
3. 3, samastetikāyo ${ }^{\text {M Malayaketūnām=anvaye }}$ \| paramabhațtārakamahārājādhirāja. parameçvara-çri-Jarādityadevas=tat-pu-tras=tat-pād-ānudhyāto mahādevyām rājñi-
4. 4, çrī-Yogādeviā̀i samutpannaḥ paramablattãraka-mahārājā-dhirāja-parameçvara-çri-Dharmmādityadevas=tat-putras= tat-pād-ānudhyāto mahādevyāni rājñi-çrī-CA-
5. 5, ndrādevyā̀ samutpannns=sahajasya vidyā-janitasyar ca sam. skārasy=ādhāro dharmm-ārtha-kāma-viruddhānām=indri-ya-pravrttinām sฉnniroddhā prāyeṇa vikram-aika-ras-ā-
6. 6, bhiprāya-vāda-bhidyamāna-pracaṇ̣-ārati-maṇ̣alō naya-vinaya-prasādhit-āçeşa-bhū-maṇạalah sarvva-daiv-ākhaṇ-dita-matir=A khaṇ̣ala-tulya-tej $\bar{\alpha}$ räjabhiḥ
7. 7, çiro-bliiruhyamān-āpratihata-çāsanaḥ çāsanānām pradātā paramamāheçvaro Maheçvara iva sarvva-satra.kşema-tatparaḥ paramabhattēaraka-maharājā-
8. 8, dhirāja-parameęvara -çrī=Jayãdityadevạ̣ kuçali ॥ Daddaran-pikā-maṇ̣̣ale। Leppikā-vişay-āntarvvartti-Kumāraşanp̣i-кā-grāme। Patras̨nṇ̣̣ā। Çañkuṣaṇ̣̣ā। Gāddhī। Deu-
9. 9, lī-pallik-ānvitel samupagat-äçeşa-rājana(nya)ka-rājaputra-rājnsthāniya-purohit-āmātya-mnhāsāmanta-mahāsāndhi-vigrahika-malıāpratihāra-mahākşapaṭalika-mahādaṇ̣̣nnā-yaka-
10. 10, pañcamnṇḍapādhipati-mauladāṇḍika-dāṇ̣̣apāçika-mahāsā-dhanika-cauroddharaṇika-çaulkika-gaulmikān $\|$ anyāyç ${ }^{6}=c=$ ākïrtitān=ā-cāṭa-bhaṭa-vra(brā)bmaṇ-ottara-jaun-
11. 11, padanç=ca ${ }^{6}$ yathārham=mānnyati pūjayati vo(bo)dhayati samājñāpayati ca[॥*] Viditam=astu bhavatām=ayam=upari-likhita-gr-āmas=sa-jala-sthalas=s-āmra-m[adh*]ūkaḥ sa-gartt- oşaras=sa-
12. 12, loha-lavan-ākaraç=catus-simā-paryantas=sva-pallik-opetah samastn-rājapratyādāya-samaveto bhūmicchidraka-nyāyen=

[^11]ā-candr-ārkka-kṣiti-sama-kālina[$\left.\dot{m}^{*}\right]$ s $\bar{a} v a t=p u ̄ r v v a-b h u k-~$ ta-bhu-

1. 13, jyamāna-deva-vrā (bī̄)hmaṇa-kẹetra-khaṇ̣ito=sınābhir=ati-sev-ārädhitau(tai)ç=Cnravāsaka-satka-käyastha-Rudrapartrāya kāyaspha(stha)-Dhemuka-putrāya Singhapaddhateh kāyastha-
2. 14, Keçavãtal çāsanena prasādī-krtō mativa bhavadbhir=anumantavyam nivāsibhiç=c=ājñā-çravaṇa-vidheyi.bhīya samucita-bhãga-bhog-ādikam=asya samupanetaryam [${ }^{*}$]
3. 35, Tatra ca sīmāno likḩantel pūrrvasyām diçi sima-nirnna-(rṇṇa)ya-kāriṇi Rohiṇi nāma nadil dakg̣iṇasyān=tu tilakatarur=avatiṣṭatel paçcimāyäm Ha-
4. 16, stilaṇ̣̆-ākhyah khātaḥ 1 tath=otiarasyānı knmbhí-vrksah I evañ=catasrẹv=api dikṣu vibhakta-simakam grāmam=pra-sādi-krtya tat=kẹanam=eva nrpati-
5. 17, r=idam=avādit। $\mathrm{Va}(\mathrm{Ba}) h u b h i^{\prime}=v$ vasudhā dattā rājahhis= Sagar-ādibhiḥ 1 yasya yasya ya lā bhūmis= trsya tasya tadā phalanil (${ }^{(1)}$ Sva-dattām para-dattām=$=\overline{\text { a }}$ yo hareta
6. 18, vasundharāml sa viṣthāyām krmir=bhūtvā pitrblis=saha pacyate ${ }^{\text {n }}$ Dattāyāḥ² paripālanam bhavati yad=deva-dvijebhyo bhuva[s*]=trāgns=tatra na ko=pi prayga-
7. 19, mahatị̆ kāryãnu(nta)ram=bhūbhujām $\|$ (I) n=aiv=ānyaḥ para-kirlti-pālana-guno vyāçasyate kevalah! idrçyāh (çyā:khalu ve(vai) sadā vanāratā[$\left.h^{*}\right]$ stut.jā stute(tās)=tsā-
8. 20, ginaḥ॥ Iti ${ }^{8}$ kamala-dal-āmvu(mbu)-vindu-lolānı Çriyam= a["u*]cintsa manuşyの-jivitañ=ca[1*] sakalam=idam=udāhrtañ=ca vudliva(buddlivā) na hi puruṣih para-
9. 21 , kīrttayo vilcpyāhl!(n) Jñātam=mahāmantri-çri-Māhakena mahattara-çri-Vnppeka-sutena[॥*] Dūtako=tra mahäsā-manta-çri-Grahakunpayl (II) Likhitañ=c=nitan=Mahā-
10. 22, nadi-putreṇal Saiyghapura-kāyastha-mahākşapaţalika-çriValadduken=etin Samvat 921[\#"] Yena" grāma-turaíga-hema-surabhī-vastr- $\bar{a} d i n \bar{a}$ tarppitā viprā ye-
11. 23 , na ca deratālaya-miṣeṇ=ākāri dharmm-occayaḥı pūrụnani puṇya-jalais=taḍāgam=akarod=yaḥ kṣira-sindh-ūpamam ten=edam் nija-çāsanam் karanika-çrī-Keçaven=ārjjitam
l. 24, II

1 Metre Annş̧̧ubh; and of the next verse.
2 Metre Çärdūlavikriḍita; I am nnable to correct all the mistakes occurring in this verse. $\quad 8$ Metre Puşpitāgrā. Metre Çärdūlavikrị̣ita.

Under orders of the Council the following system of transliteration will be adopted for the fatare in all publications of the Society. Aththotis of papers for the Journal, Pt. I, ate particalarly requested to adhere to it in their contributions.

A. FOR THE DEVANAGAR1 ALPHABET, AND FOR ALI ALPHABETS RELATED TO IT.

In the above the rirama has been omitted for the sake of clearness.
In Modern Vernaculars only; $\bar{\xi}$ may be represented by r, and $\boldsymbol{\sigma}$ by r.

Avagraha is to be represented by an apostrophe, thus सी sपि $s 0^{\prime}$ ' $p i$. Visarga is represented by h, , Jihvämülìya by $\underset{. k}{ }$, and Jpadhmainiya by h. Anusvära is represented by \dot{m}, thus संषฝ̀ samisarga, and anvnäsilia by the sign ~ over the letter nasalized, thus *iँ \tilde{a}, 亩 \bar{a}, and so on. The ulñtia

B. FOR PERSIAN (INCLUDIING ARABIC WORDS IN PERSIAN) AND HiINDÜSTĀNI.
(The system is not applicable to Arabic when pronounced as in Arabicspeaking countries):-

Vowels. Consonants. Sounds only found in Hindūstānī.

| Vowels. \quad Consonants. | Sounds only found in |
| :---: | :---: | :---: |
| Hindūstāni. | |

\dddot{G}	ai	c	h
c	an	\dot{c}	kh
0	d		

8 d	dh
\mathbf{j}	\mathbf{d}
$8 \mathbf{j}$	$\mathbf{d h}$

$$
\text { , w (or rarely } \mathbf{v} \text {) }
$$

- h

Hamzah ${ }_{f}^{s}$ (where necessary) y
The \mathcal{J} of the article d in Arabic words should be assimilated before the solar letters; and the vowel u which often precedes the article and absorbs its vowel should remain attached to the word to which it belongs. Thus-اقبال الدرله Iqbālu-d-daulah.

I'anwīn may be rendered by $\underline{n}-\mathrm{e}$. g., ittijāqqan. Alif-i maqṣ̄rah should be rendered by \bar{a}.

Final 8 need not be written in Persian and Hindūstāni words, but should be written in Arabic words.

An Epigraphical Note on Paln-leaf, Paper and Birch-bark.-By
A. F. Rodolf Hoernle, Ph.D., C.I.E.
[Read May, 1898.]
In his admirable summary of Indian Palæography which forms a part of the Encyclopædia of Indo-Aryan Research, the late Professor Bühler says (I translate from the German) that "it cannot be doubted but that the two large-leaved palms, the tadatāla (Borassus flabelliformis) and the täditäli (Corypha umbraculifera, C. taliera) which probably were originally indigenous in South-India, but have now spread into the Panjāb, are those the leaves of which were principally employed" in India as writing-material (see § 37, C.). This statement, which merely repeats a general, oft-repeated opinion, is not quite accurate and therefore apt to mislead. It conveys the impression as if the leaves of those two palms had been used contemporaneously and indifferently throughout India. This is not correct. In preparing the introduction to my edition of the Bower Manuscript, I had occasion to specially enquire into this point. In the result I found (1) that up to a certain point of time, Corypha nmbr. was the only palm, the leaves of which were used throughout India, and (2) that the use of the leaves of Borassus fl. commenced at a comparatively late period, and was, and is still, limited to the South and East of India. In the sequel I will try to show this. There are some minor inaccuracies in the above-quoted statement, which the following explanation will also set right.

The two Indian palms, which alone come into question in this convection, are (i) the (true) Talipat palm, Oorypha umbraculifera, also C. Taliera; and (2) the Palmyra palm or Tarigach, Borassus flabellifer. 1

[^12]The former grows wild in Ceylon and on the Malabar coast, up to about the 13th Lat. ; thence it freely grows cultivated up the west coast as far as the Concan (16th Lat.), and much less so as far as Bombay (19th Lat.) ; it also grows (but very nncommonly) cultivated np the whole of the East coast into Lower Bengal. It does not grow anywhere in the central part, or the high-lands of Southern India.

The Borassus fl. does not grow wild anywhere in India, but only cultivated, near villages. It grows throughout India, excepting only the Panjāb, Upper Sindh, and the northern-most portions of Rājpūtānà and of the North-West Provinces. In fact, its northern limit is (about) the 27th or 28th Lat.

The difference between these two palms is that whereas Corypha $u m b r$. is indigenous to (Southern) India, Borassus fl. is an introduced tree, having been brought in from Africa, where it grows wild and is called Deleb. The above statements sum up the botanical information of the present day, which has been verified afresh for the parpose of the present paper by Dr. Prain, Superintendent of the Royal Botanic Gardens in Sibpur, near Calcutta. ${ }^{8}$ For his assistance, most kindly and readily given, in all matters touching the botany of these palms, I wish here to express my sincere thanks.

The leaves of the two palms can be easily distinguished from one another. Those of the Corypha umbr. are thinner and broader than those of the Borassus f.; they also possess clearly marked cross-veius, in the form of rills, while the Borassus leaves rather present a pitted or pockmarked appearance. The width of the Borassus leaf never exceeds $] \frac{3}{4}$, and very rarely exceeds $1 \frac{1}{1}$ inches. Among all the cases that I have actually measured I have found the latter width only exceeded in three cases. These are No. 40 in Table II which measures 15 inches, and Nos. 20 and 42 in Table II, which measure $1 \frac{0}{18}$ inches; all three being Southern Indian manuscripts. The majority of the Borassus manuscripts are something less than $1 \frac{1}{\frac{1}{2}}$ inches wide. A width of less than one inch is very rare; I have only met with it in two Southern Indian manuscripts, viz., Nos. 18 and 37 in Table II, which measure only $\frac{18}{16}$ of an inch.

The usual width of the Corypha leaf varies between $1 \frac{8}{4}$ and 3 inches. Among the inscribed leaves examined by myself, I have nat

[^13]met with any wider than $2 \frac{1}{2}$ inches; though Ω few manascripts which I have not seen are said to exist of the width of 3 inches (see Table III, No. 83). Manuscripts under $1 \frac{3}{4}$ inches wide are uncommon: instances are Nos. 15, 48, 57, 64 and 67 in Table I, and Nos. 4 and 8 in Table II. A width of less than $1 \frac{1}{2}$ inches is very exceptional. I have only found three cases, among all the manuscripts which I have measured ; viz., No. 12 in Table II which is $1 \frac{3}{8}$ of an inch wide, and No. 55 in Table I and No. 5 in Table II, which are as low as $1 \frac{1}{4}$ inches. The width, therefore, is an almost absolute test; any leaf, measuring $1 \frac{3}{4}$ and upwards is certain to be Corypha umbr., while any leaf measuring $1 \frac{1}{4}$ or below, is almost certain to be Borassus fl. With the width of about $1 \frac{1}{2}$ inches, there may occasionally be a doubt, but this will be removed by the application of the two additional tests of thickness and venation. In any case where the actual leaf can be examined, the three tests in combination are absolutely decisive. In almost all cases where the leaf itself can not be examined, its width, if recorded, will be found decisive. Thus in the case of Add. 1706 of the Cambridge MSS., probably of A. D. 1261 (Bendall, p. 199 and Table III, No. 57), the width of which is stated to be $1 \frac{1}{2}$ inches, I judged it to be a Corypha mannscript; aud this was kindly verified for me by Professor Cowell by means of Corypha and Borassus specimens which I transmitted to him.

I have been speaking hitherto of the leaf in its prepared state as writing material. With regard to the natural leaf, which I had an opportunity of examining and measuring, with the kind assistance of Dr. Prain, in the Sibpur Botanic Gardens, the case stands as follows :-Both the Corypha and the Borassus palms, as is well-known, have plicate lerves folding like a fan, consisting of a number of segments. Through the middle of each segment, from end to end, runsa hard rib. The flabs on both sides of the rib are tough and flexible; and these yield the material which is prepared for writing purposes. They taper off from their widest point towards both ends; accordingly suitable strips are cut out from the middle, of such various lengths as the size of the natural halfsegment will admit. These strips are prepared for writing, by boiling in water or milk; and finally, when wanted for writing a book, the required nnmber of strips are cut down to a uniform size. Uniformity, however, was always more carefully attended to in point of length than in point of breadth. In manuscripts, of an older date especially, leaves of a much smaller breadth are occasionally mixed with others (forming the majority) which are much wider. Thus in No. 35 of Table I and Nos. 1, 4, 9, 10, 11 of Table II the occurrence of narrower leaves is indicated in brackets: they are occasionally found as narrow as $1 \frac{1}{8}$ inches.

The half-segment (that is a segment divided longitudinally along the central rib) of a Borassus leaf, at the point of its greatest width, may measure 2 inches, but it usually measures less. It tapers off very rapidly towards both ends; hence it is not possible to cut out from it a piece of practically uniform width of more than $1 \frac{1}{2}$ inches. A strip of about $16 \times 1 \frac{1}{2}$ inches is the largest that can be obtained. If a greater length is desired, consistent witl uniform width, the latter will be smaller. From the usnal size of the natural segment, however, only prepared strips of a smaller width than $1 \frac{1}{2}$ inches can be obtained. Occasionally the point of uniform width is neglected, and thus leaves are obtained measuring in length up to 20 inches, with a maximum width of $1 \frac{1}{2}$ inches. Examples are Nos. 77 and 87 in Table I, the width of which grows (as noted in the Table) from 1 or $1 \frac{1}{4}$ inches at the ends to $1 \frac{1}{3}$ inches in the middle of the leaf. As a rule, however, a prepared leaf, measuring a length of more than 16 inches, with a width of $1 \frac{1}{2}$ inches, is more likely to be a Corypha leaf.

The half-segment of a Corypha leaf, at its widest point, may measure three inches. I measured one leaf of this great size in the Sibpur Royal Botanic Gardens ; but it is not improbable that leaves of this size may occur more commonly in Ceylon and Malabar, where the tree grows wild. A Corypha segment is mach longer than a Borassus segment, and it tapers off far more gently, than the latter, from its widest point to its ends. Hence it is possible to cut much longer and wider strips from a Coryplia segment. The largest manuscripts that I have measured are Nos. 30 and 34 in Table I, which measure $32 \frac{5}{8} \times 2 \frac{1}{2}$ and $33 \times 2 \frac{1}{4}$ inches respectively. The length, however, may extend to 3 feet and more, and the width to 3 inches. The largest manuscript of which I know is No. 2068 in the Notices of Sanskrit MSS. It is said to measure 40×2 inches (see Table III, No. 133, and footnote 11). The next largest are Nos. 262 and 289 (in Professor Peterson's Report for 1884-86, pp. 109 and 142 ; see also Table III, No. 72). They are said to measure $37 \frac{1}{2} \times 2 \frac{1}{2}$ and $37 \times 2 \frac{3}{4}$ inches respectively. From the particular half segment which I measured to be 3 inches wide ${ }^{8}$ strips measuring about $2 \frac{1}{2} \times 22$, or $2 \frac{1}{4} \times 25$, or 2×30 inches might have been cut. On the other hand, I have also measured narrow specimens of natural Corypha segments which would only yield strips measuring $16 \times 1 \frac{1}{8}$ inches or even less. Examples of manuscripts of this kind are Nos. 48, 57, 67 in Table I and Nos. 4, 5, 8, 12 in Table II. Of coarse when strips of the great width of 3 inches were desired, one would usually

[^14]have had to be contented with bat a short length. The only two manuscripts of this great width that I know are No. 187 in Professor Peterson's Third Report for 1884-86 (p. 8), and No. 58 in his Fifth Report for 1892-95 (p. 98, also Table III, No. 83), both of which are 3 inches broad. The former of these is only $14 \frac{1}{2}$ inches long. The latter (dated 1369 A.D.) is said to be 32 inches long, but I suspect that this is an error: its measures probably are 12×3 or 32×2.4 Corypha manuscripts of very great length, however, rarely possess an uniform width. Their lenves are cut from a whole half-segment; their maximum width is in the middle and it decreases towards both ends. A good example is No. 30 in Table I, some of the leaves of which slope from $2 \frac{1}{2}$ to $1 \frac{1}{8}$ inches. On the other hand, good examples of great length combined with practically uniform width are Nos. 34 and 36 in Table I, the breadth of which varies by no more than $\frac{1}{4}$ inch or even less. Sometimes the half-segments of Corypha leaves were cut, across their breadth, into halves, and the strips for writing were cut from these halves. In this case, of course, the maximum width is at one end of the inscribed leaf, and gradually decreases to the other end. Examples of this kind are Nos. 2, 28, 32 in Table I, the leaves of which decrease from 2 to $1 \frac{3}{4}, 1 \frac{8}{4}$ to $1 \frac{1}{4}$ and $2 \frac{1}{4}$ to $1 \frac{3}{4}$ inches respectively.

I may add that there is a kind of Corypha palm, the Corypha elata, which grows, probably cultivated, in Bengal and Bihār. But its leaves are not suitable for the purpose of writing books, and have never been so used. Its complete natural segments are mnch too narrow; they measure only about $1 \frac{1}{2}$ inches, and allow only strips of $\frac{8}{4}$ inch or less to be cut from them.

Having premised this mach, I may now proceed to state that I have examined the actual or facsimile leaf of 130 manuscripts. They are

[^15]shown in the subjoined Tables I and II, with 87 and 43 Nos. respectively. Table I contains manuscripts, of which the date is known, while Table II contains manuscripts of conjectural dates. The lists are not selected ones in any other sense than that I have included in it none but such manuscripts as I have actually seen and examined myself, and thus determined the palm to which their leaves belong. Those manuscripts (27 out of 130) of which I have seen leaves only in photographic facsimile are marked with an asterisk. The manuscripts marked " Kielhorn" and "Bhandarkar" are preserved in the Deccan College in Poona. The opportunity of inspecting them I owe to the kindness of Mr. Giles, Director of Public Instruction in Bombay, and Professor Abaji Kathavate of the Deccan College, who transmitted specimen leaves to me. The numbers refer to the Reports on the Search of Sanskrit MSS. in the Bombay Presidency for 1880-81 and 1887-91. The Tanjore manuscripts, which are referred to by their numbers in Burnell's Classified Catalogue, were transmitted to me by Mr. Geo. T. Oliver, the Receiver and Manager of the Tanjore Palace Estate; so were those, marked "in private hands," by Maulvi Muhammad Abdullah, an officer of the Darbhangah Rāj. To both these gentlemen I wish here to express my sincere thanks. Nearly the whole of the remainder of the list are manuscripts preserved in Calcutta in the collections of the Asiatic Society of Bengal and the Government of India. They are referred to as "Mitra," "Ind. Govt." and "Notices." These, of course, I had no difficulty in inspecting. My friends, Mahāmahōpadhyãya Pandit Hara Prasad Shastri, and Muni Hans Vijay-ji, the head of one of the Jain Çäkhās, were also kind enough to let me see a few palm-leaf manuscripts in their possession. I may add that the measurements of all the manuscripts in the two lists have been made or verified by myself.

Table I. ${ }^{6}$

No.	A. D.	Date.	Reference.	Loo.	Mat.	Measure.
1	[450]		Fragments, J. A. S. B.	W. Ind.	Cor.	$P \times 2$
2*	[520]		Horiazi.	W. Ind.	Cor.	11×2 to 18
3 *	[550]		Add. 1702, Bendall.	W. Ind.	Cor.	12×2
$4 *$	859	Harqa 252.	Add. 1049, Bendall.	W. Ind.	Cor.	16×2
$5 *$	1008	Nep. 128.	Add. 866, Bendall.	Nep.	Cor.	21×2
6	1014	Nep. 184.	No. 3828, Ind. Gort.	Nep.	Cor.	123 $\times 2$ 23
$7{ }^{*}$	1015	Nep. 135.	Pal. Soc., No. XXI.	Nep.	Cor.	$21 \frac{1}{3} \times 21$
	1020	5 Mahipāla.	Add. 1464, Bendall.	Bih.	Cor.	21×21
	1026	Nep. 146.	See No. 6 above.		Cor.	
9	1071	Nep. 191.	A 15, Mitra.	Nep.	Cor.	$22 \frac{1}{4} \times 24$
10	1078	Nep. 198.	No. 3830, Ind. Gort.	Nep.	Cor.	18×18
11*	1084	Nep. 204.	Pal. Soo., No. XVII.	Nep.	Cor.	12×2
12	1089	Sam. 1145.	No. 35, Kielhorn.	W. Ind.	Cor.	$25 \frac{1}{2} \times 24$
18	1090	Sam. 1146.	No. 36, do.	W. Ind.	Cor.	$25 \frac{1}{2} \times 24$

${ }^{5}$ About No. 6 see Journal, As. Soc. Beng., Vol. LXII (1893), p. 252. The M8. has two dates; viz, N. S. 134 on the outside of the first written leaf, and N. S. 146 in the colophon, on the last leaf. These are probably the dates of beginning and finishing the copy. There are similarly two dates on No. 50; viz., Laks. 374 and Çak 1423. As to No. 72 I may note that under No. 2126 of the "Notices" two manuscripts are described. The Government manuscript is a Corypha M8., and is entered here in Table I. The other manuscript, which I have not seen, is entered in Table III, No. 128 ; and to jadge from its measurements, it is a Borassus MS. The date of the Government manuscript, however, is çakäbdäh |16| | with a lacuna for the units and tens, which may mean 1600 as Dr. Mitra assumed; but it may be also a later date. The measurements of Nos. 26 and 41 have been kindly verified for me by the Honorary Librarian of the Royal Asiatic Society. Some leaves of Nos 39 and 42 are mach narrower, viz., $32 \times 1 \neq(1)$ and $15 \times 1 \frac{3}{2}$ ($1 \frac{1}{4}$) respectively. The equation of the dates of the Laksmaniya Era has been made with 1105, the present year 1898 being $=793 \mathrm{~L} . \mathrm{E}$., and the lst year of that era running from the 15 Jan ., 1108, to the 15th January, 1107. No. 65 is dated Çaka 1655 and San 1041. The latter date refers to the Fagli Fra of Bengal, and is = 1633 A.D; see Cunningham's Book of Indian Eras, p. 82. "Pal. Soc." refers to the Pablications of the London Palaeographical Society. In the case of a few manuscripts, such as No. 17, 55, etc., the length is not given by me, because at the time I examined them, I forgot to take a note of it .

[^16]| No. | A.D. | Date. | Reference. | Loc. | Mat. | Measare. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 146 | 1116 | Sam. 1172. | Muni Hans Vijay.ji. | W. Ind. | Cor. | $29 \times 2 \mathrm{t}$ |
| 15 | 1120 | Sam. 1176. | No. 53, Kielhorn. | W. Ind. | Cor. | 13×18 |
| 16 | 1120 | 15 Rāma. pāla. | In my possession. | Bih. | Cor. | $22 \times 2\}$ |
| 17 | 1130 | Nep. 250. | With H. P. Shästri. | Nep. | Cor. | 2 |
| 18* | 1132 | Sam. 1189. | With Prof. Bühler. | N. Ind. | Cor. | 2 |
| 19 | 113[8] | Sam. 119*. | No. 58, Kielhorn. | W. Ind. | Cor. | $28 \times 2 \frac{1}{2}$ |
| 20* | 1165 | Nep. 285. | Add. 1693, Bendall. | Nep. | Cor. | $16 \times 2 \frac{1}{2}$ |
| 21^{*} | 1165 | 4 Gōvinda- | No. 1, R. As. Soc. | Bih. | Cor. | $221 \times 2 \frac{1}{2}$ |
| 22* | 1166 | Nep. 286. | No. 2, R. As. Soo. | Nep. | Cor. | $22 \frac{1}{2} \times 2$ |
| 23* | 1167 | Nep. 287. | Add. 1688, Bendall. | Nep. | Cor. | 11×2 |
| 24* | 1179 | Nep. 299. | Add. 1691, Bendall. | Nep. | Cor. | 12×2 |
| 25 | 1185 | 24 Govinda. | No. 3822, Ind. Govt. | Bih. | Cor. | 114×2 |
| 26* | 1198 | Nep. 318. | No. 69, R. As. Soc. | Nep. | Cor. | $12 \ddagger \times 2$ |
| 27* | 1199 | 38 Gōvinda. | Add. 1699, Bendall. | Bih. | Cor. | |
| 28 | 1208 | Sam. 1264. | No. 8, Kielhorn. | W. Ind. | Cor. | $13 \frac{1}{2} \times 1 \frac{8}{8}$ to $1 \frac{1}{4}$ |
| 29* | 1229 | Çak. 1151. | Pal. Soc., No. I. | | Cor. | 17\% $\times 2$ ¢ |
| 30 | 1238 | Sam. 1294. | No. 38, Kielhorn. | W. Ind. | Cor. | $32 \mathrm{f} \times 2 \mathrm{t}$ to $1 \frac{1}{3}$ |
| 31 | 1276 | Sam. 1332. | No. 3, do. | W. Ind. | Cor. | $14 \frac{1}{2} \times 2$ 21 |
| 32 | 1284 | Sam. 1340. | No. 60, do. | W. Ind. | Cor. | 15×24 to 13 |
| 38* | 1286 | Nep. 406. | Pal. Soc., No. XXXII. | Nep. | Cor. | 13×24 |
| $34{ }^{*}$ | 1291 | Sam. 1348. | Pal. Soc., No. LVIII. | | Cor. | 33×21 |
| 35 | 1297 | Kal. 4398. | No. 34, Kielhorn. | W. Ind. | Cor. | $14 \frac{3}{4} \times 1 \frac{1}{8}\left(1 \frac{1}{4}\right)$ |
| 36 | 1303 | Sam. 1359. | No. 37, do. | W. Ind. | Cor. | $30 \frac{1}{2} \times 2 \frac{1}{4}$ |

6 This is a mannscript written by $\Delta_{\text {çōka Candra and Dhanęçara Sädhu, and }}$ corrected by Vardhamāna Süri (apparently the author), Nēmicandra Muniçvara, and Pärçvacandra Cpādhyăya. The name of the work is Dharma Karanḍaka Sūtra Tikà, and its anthor is Vardhamāna Sūri, a pupil of Abhayadēva Süri. Its date is

1900.] - A. F. R. Hoernle—Epigraphical Note on Palm-leaf, etc.

No.	A.D.	Date.	Reference.	Loc.	Mat.	Measure.
37	1319	Laks. 214.	In private hands.	Bih.	Cor.	$15 \frac{3}{4} \times 1 \frac{7}{8}$
38	1331	Nep. 451.	No. 3824, Ind. Govt.	Nep.	Cor.	12×2
39	1340	Sam. 1396.	Mnni Hans Vijay-ji.	W. Ind.	Cor.	$32 \times 2 \frac{3}{16}\left(1 \frac{1}{2}\right)$
40	1356	Nep. 476.	No. 8828, Ind. Govt.	Nep.	Cor.	$11 \frac{1}{4} \times 2$
41*	1364	Nep. 484.	No. 74, R. As. Soo.	Nep.	Cor.	$12 \frac{1}{2} \times 1 \frac{3}{4}$
42	1368	Sam. 1424.	Muni Hans Vijay-ji.	W. Ind.	Cor.	$15 \times 2 \frac{1}{3}(2)$
43*	1372	Nep. 492.	Pal. Soc., No. LVII.	Nep.	Cor.	201×23
44*	1385	Nep. 605.	Add. 1395, Bendall.	Nep.	Cor.	$13 \frac{1}{2} \times 2$
45	1386	Sam. 1442.	No. 1980, Notices.	Beng.	Cor.	11×2
46	1395	Nep. 515.	Ind. Gov.	Nep.	Cor.	$13 \frac{1}{4} \times 1 \frac{1}{3}$
47*	1446	Sam. 1503.	Pal. Soc., No. XXXIII.	Bih.	Cor.	$13 \frac{1}{8} \times 24$
48	1450	Laks. 345.	In private hands.	Bih.	Cor.	$13 \times 1 \frac{1}{2}$
49	1467	Lakş. 362.	No. 3821, Ind. Gort.	Bih.	Cor.	13×2
50	1479	Laks. 374.	No. 4026, Ind. Govt.	Bih.	Cor.	$11 \frac{1}{2} \times 2$
	1507	O̧ak. 1423.	See No. 50 above, and footnote 5.			
51	1504	Laks. 899.	No. 1979, Notices.	Bih.	Cor.	$\left.14 \frac{1}{1} \times 2\right\}$
52	1513	Laks. 408.	In private hands.	Bih.	Cor.	$18 \frac{3}{4} \times 1+\frac{3}{8}$
53	1514	O̧ak. 1436.	No. 1273 Notices.	Beng.	Cor.	144×13
54	1531	Çak. 1453.	No. 1165 do.	Beng.	Cor.	$13 \frac{1}{2} \times 2$
55	1553	O̧ak, 1475.	H. Prasāda Shāstri.	Beng.	Cor.	14
56*	1557	Laks. 452.	Pal. Soc., No. LXXXII.	Bih.	Cor.	13 옹 $\times 2$
57	1572	Çak. 1494.	No. 1274, Notices.	Beng.	Cor.	13量 $\times 1 \frac{1}{2}$
58	1575	Laks. 470.	In private hands.	Bih.	Cor.	$13 \frac{1}{2} \times 2 \frac{1}{4}$
59*	1583		Add. 1556, Bendall.		Cor.	21
60	1587	Çak. 1509.	No. 1976, Notices.	Beng.	$\left\{\begin{array}{l} \text { Cor. } \\ \text { Bor. } \end{array}\right\}$	$12 \times\left\{\begin{array}{l}1 \frac{1}{k} \\ 1 \frac{1}{2}\end{array}\right\}$
61	1594	Çak. 1516.	No. 1975 do.	Beng.	Bor.	$12 \times 1 \frac{1}{3}$
62	1608	Laks. 503.	In private hands.	Bih.	Cor.	$13 \frac{1}{2} \times 1 \frac{1}{8}$
63	1609	Laks. 504.	do.	Bih.	Cor.	$13 \frac{3}{4} \times 2$

J. I. 14
A. F. R. Hoernle-Epigraphical Note on Palm-leaf, etc. [No. 2,

No.	A.D.	Date.	Referenoe.	Loc.	Mat.	Measure.
64	1616	Laks. 511.	In private hands.	Bib.	Cor.	144×18
65	1633	Gak. 1555.	do.	Bih.	Cor.	12×17
66	1647	Ģak. 1569.	do.	Bih.	Cor.	114×2
67	1661	Laks. 556.	do.	Bih.	Cor.	12 ${ }_{4} \times 14$
68	1668	Çak. 1590.	do.	Bih.	Cor.	$7 \frac{18}{} \times 1 \frac{1}{4}$
69	$\frac{1669}{1660}$	$\frac{\text { Cak. } 1591}{\text { Laks. } 555}$	do.	Bih.	Cor.	7×14
70	1675	Çak. 1597.	H. Prasãda Shästri.	Beng.	Bor.	13
71	1677	Çak. 1599.	do. do.	Beng.	Bor.	12
72	1678	O̧ak. 1600.	No. 2126, Notices.	Beng.	Cor.	154×2
73	1680	Çak. 1602.	In private hands.	Bih.	Cor.	$14 \times 1 \frac{3}{4}$
74	1683		Ind. Gort.	Oris.	Bor.	P $\times 14$
75	1683	\% ${ }^{\text {P }}$ Makunda.	do.	Oris.	Bor.	$15 \times 1 \mathrm{t}$
76	1687	O̧ak. 1609.	No. 1551, Notices.	Beng.	Bor.	11×17
77	1688	Çak. 1610.	No. 1550 do.	Beng.	Bor.	$20 \times 1{ }^{1}$ to 1
78	1689	Çak. 1611.	No. 1580 do.	Beng.	Bor.	$14 \frac{1}{2} \times 1 \frac{1}{2}$
79	1690	it Makanda.	No. 2837, do.	Oris.	Bor.	16×14
80	1694	Oak. 1616.	No. 10040, Tanjore.	S. Ind.	Bor.	1078 $\times 18$
81	1708	$\begin{gathered} 17 \begin{array}{c} \text { Divya. } \\ \text { Simha. } \end{array} \end{gathered}$	Ind. Gort.	Oris.	Bor.	$15 \frac{1}{1} 1$
82	1721	Cak. 1643.	H. Prasäda Shāstri.	Beng.	Cor.	24
83^{*}	1724		Burnell, S. Ind. Pal.	S. Ind.	Cor.	$16 \frac{1}{4} \times 21$
84	1739	Oak. 1661.	No. 1845, Notices.	Bih.	Cor.	$15 \frac{1}{2} \times 2$
85	1752	$\begin{gathered} 10 \text { Kēçari. } \\ \text { Dēva. } \end{gathered}$	Ind. Govt.			
86	1766	24 do.	do.	Oris.	Bor.	15×1
87	1815	Gak. 1737.	No. 1607, Notices.	Beng.	Bor.	$14 \frac{1}{2} \times 1 \frac{1}{1}$ to 1

All manuscripts in the foregoing Table (with the exception of Nos. 1-3) bear an actual date. The following Table II includes manuscripts the approximate date of which can be fixed with some degree of certainty. This has been done by myself, mainly on palmographic grounds, in all cases except those marked with the letter B. The date
of the latter is that given to them by Dr. Burnell in his Classified Catalogue of Tanjore Manuseripts.

Table II.

No.	A. D.	Reference.	Loo.	Mat.	Measure.
1	1150	No. 44, Kielhorn.	W. Ind.	Cor.	141×17 (18)
2	1150	No. 46 do.	W. Ind.	Cor.	294×14
3	1200	No. 33 do.	W. Ind.	Cor.	$15 \times 1 \frac{1}{4}$
4	1200	No. 68 do.	W. Ind.	Cor.	121 $\times 1 \frac{1}{1}$ (14)
5	1225	No. 40 do.	W. Ind.	Cor.	11×14
6	1250	No. 32 do.	W. Ind.	Cor.	$12 \ddagger \times 1+\frac{1}{6}$
7	1250	No. 69 do.	W. Ind.	Cor.	141×2
8	1300	No. 30 do.	W. Ind.	Cor.	$12 \frac{1}{4} \times 1 \frac{1}{2}$
9	1300	No. 63 do.	W. Ind.	Cor.	$14 \frac{1}{4} \times 18$ ($1 \frac{1}{8}$)
10	1825	No. 20 do.	W. Ind.	Cor.	
11	1375	No. 67 do.	W. Ind.	Cor.	14×2 (1\%)
12	1525	No. 1062 Bhandarkar.	S. Ind.	Cor.	$14 \times 1{ }^{14}$
13*	1550	Pal. Soo., No. LXX.	S. Ind.	Bor.	$14 \times 1 \frac{1}{}(\mathrm{~B})$
14.7	1550	No. 1056, Bhandarkar.	8. Ind.	Cor.	19×2
15*	1550	No. 11894, Tanjore.	S. Ind.	Bor.	181 $\times 1$ 13 (B)
16	1580	No. 10093 do.	S. Ind.	Bor.	$16 \times 1 \frac{18}{18}$ (B)
17	1600	No. 1061, Bhandarkar.	S. Ind.	Cor.	$17 \frac{1}{2} \times 2$
18	1600	No. 9075, Tunjore.	S. Ind.	Bor.	$17 \times \frac{18}{8}(\mathrm{~B})$
19	1600	No. 10511 do.	8. Ind.	Bor.	$11 \frac{1}{4} \times 1 \frac{5}{180}$ (B)
20	1600	No. 9997 do.	S. Ind.	Bor.	$18 \frac{1}{4} \times 1 \frac{1}{18}$ (B)
21	1620	No. 9140 do.	s. Ind.	Bor.	18×1 (B)
22	1620	No. 10288 do.	S. Ind.	Bor.	$18{ }_{6} \times 1$ (B)
23	1625	No. 10869 do.	S. Ind.	Bor.	15×1 (B)

7 The inner leaves of this manusoript are old. The outer ones, at the beginning and end, are larger ($20 \frac{1}{\frac{1}{2}} \times 2 \frac{1}{3}$) and of a much more modern date (about 1700 A.D.). I examined the leaves numbered 1,105 and 260.

104 A. F. R. Hoernle-Epigraphical Note on Palm-leaf, etc. [No. 2,

No.	A.D.	Reference.	Loo.	Mat.	Measure.
24	1650	No. 1060, Bhandarkar.	8. Ind.	Cor.	$18 \frac{1}{4} \times 24$
25	1650	No. 9710, Tanjore.	S. Ind.	Cor.	137×2
26	1650	No. 9908 . do.	S. Ind.	Cor.	$18 \frac{1}{8} \times 2 \frac{1}{8}$
27	1650	No. 9068 do.	S. Ind.	Bor.	16×1 (B)
28	1650	No. 9185 do.	S. Ind.	Bor.	$15 \times 1 \frac{1}{2}$ (B)
29	1650	No. 9760 do.	S. Ind.	Bor.	$15 \frac{1}{\frac{1}{2}} \times 1 \frac{1}{18}$ (B)
30	1650	No. 9076 do.	S. Ind.	Bor.	$15 \frac{3}{4} \times 18$ (B)
31*	1670	No. 9531 do.	S. Ind.	Bor.	
32	1700	No. 989, Bhandarkar.	S. Ind.	Bor.	$13 \frac{1}{2} \times 1 \frac{1}{1}$
33	1700	No. 9169, Tanjore.	8. Ind.	Cor.	$16 \times 2 \frac{1}{\frac{1}{3}}$ (B)
34	1700	No. 9605 do	S. Ind.	Cor.	12×148
35	1700	No. 9870 do.	S. Ind.	Cor.	14×2
36	1700	No. 9960 do.	8. Ind.	Bor.	$158 \times 1 \frac{8}{18}$ (${ }^{\text {P }}$)
87	1700	No. 9935 do.	8. Ind.	Bor.	$163 \times \frac{18}{8}(\mathrm{~B})$
38	1700	No. 10910 do.	S. Ind.	Bor.	$14 \frac{3}{4} \times 1 \frac{3}{18}$ (B)
39	1720	No. 8974 do.	S. Ind.	Bor.	$18 \frac{1}{2} \times 1$ (B)
40	1720	No. 10868 do.	S. Ind.	Bor.	$17 \frac{1}{6} \times 1 \frac{18}{6}$ to $1 \frac{1}{18}$ (${ }^{\text {(}}$)
41	1750	No. 9098 do.	S. Ind.	Bor.	
42	1750	No. 9739 do.	S. Ind.	Bor.	$12 \frac{3}{4} \times 1 \frac{8}{10}$ (B)
43	1750	No. 10786 do.	S. Ind.	Bor.	$16{ }_{6} \times 1$ (${ }^{\text {(}}$)

In the following remarks my arguments will be based entirely on the information furnished by Table I. The information of Table II will be used only as subsidiary and corroborative evidence.

Further, for the present, my remarks will be limited entirely to the conditions obtaining in Northern India, i.e., broadly speaking North of the 20th degree of latitude. The case of Southern India will be considered later on.

The first point, very clearly brought out by Table I, is the exclusive use of Corypha leaves throughout Northern India, up to the latter part of the 17 th century A.D. A very marked change begins with 1675 A.D. Before that date (with one exception, No. 60, which I shall
presently refer to) all dated manuscripts are uniformly written on Corypha leaves. From 1675 A.D. the use of the Borassus leaf almost entirely supersedes that of the Corypha leaf. Commencing with that year there are 18 manuscripts examined by me. Two of these are South-Indian which must be excluded. Of the remaining 16 manuscripts 12 are written on Borassus leaves, and only 4 on Corypha leaves; that is to say, 75 per cent. are Borassus manuscripts.

In order to appreciate the very effective character of the evidence of Table I, let it be noted that, between the years 1000 and 1770, there is a total of 77 decades, of which not less than 51 are represented in the Table by one or more manuscripts. The 14th and 17 th centuries are the best represented, every decade appearing in the Table, except these beginning with 1320,1620 and 1650 . The 15 th century is the worst represented, as the decades beginning with $1400,1410,1420,1430,1480$ and 1490 are wanting. The effectiveness of the representation is corroborated by Table II, which, it may well be assumed, would have filled up many gaps in the 12 th, 13 th and 14th centuries, if the exact dates of the manuscripts listed in it were known. The effectiveness will be found still more corroborated by the exact dates given in Table III. With Tables I and III combined, there remain only 9 decades unrepresented ; viz., those beginning with $1040,1100,1140,1150,1430,1480$, 1650,1710 , and 1740 , and some of these probably are covered by Table II.

There are only two manuscripts dating before 1675 A.D., which are written on Borassus leaves. These are Nos. 60 and 61, belonging to 1587 and 1594 A.D. respectively. No. 61 is written wholly on Borassus lenves; while No. 60 is only so partially: the body of it is written on Corypha leaves, while the end is on a Borassus leaf. These are exceptional cases : they only indicate, as I shall show further on, that the use of Borassus leaves first began in a sporadic form in Southern Bengal. But for Northern India generally, Table I shows that we may take the year 1675 A.D. as the epoch that marks the change from the use of Corypha to that of Borassus.

Before proceeding further, it may be as well at once to meet an objection that might suggest.itself. It appears to be believed that Borassus leaves are much less durable than Corypha leaves. This may or may not be true: I have no special evidence on the subject. But Dr. Burnell in his South-Indian Palaengraphy (2nd ed.), p. 41, says: "It is hopeless to look for old specimens, as palm-leaf MSS. perish rapidly in the Tamil country, where they are mostly written on leaves of the 'Borassus flabelliformis,' far inferior to the Talipat leaves in beanty and durability." So also Mr. Simon de Silva, Mudaliyar, in Culombo informs me that "the Talipat leaf is preferred for the purpose
of book writing on account of its durability and polish." These observations may be true with regard to Southern India and Ceylon; they would probably also apply to Bengal and Orissa with their equally damp climate; but would hardly apply to the rest of Northern India with its far drier climate. But be that as it may, I have drawn up Table III for the purpose of showing how little probability there is that all Borassus MSS., dating before 1675 A.D., may have perished on account of their inferior durability, or that, by some unaccountable and improbable chance, none of them may have fallen into my hands when making up Table I.

Table IIT.

No.	A. D.	Date.	Reference.	Loo.	Mat.	Measure.
1	1039	Nep. 159. .	Add. 1683, Bendall.	Nep.	Cor.	21×2
2	1054	14. Nayapāla.	Add. 1688 do.	Bih.	Cor.	22×2
3	1065	Nep. 185.	Add. 1684 do.	Nep.	Cor.	21×2
4	1668	Nep. 188.	Add. 1680 do.	Nep.	Cor.	11×2
5	1098	Sam. 1154.	Peterson ${ }^{6}$, No. 13.	W. Ind.	(Cor.)	73×14
6	1128	Sam. 1179.	Kielhorn, No. 42.	W. Ind.	Cor.	13×24
7	1125	Sam. 1181.	Petersons, No. 229.	W. Ind.	Cor.	$13 \frac{1}{2} \times 1 \frac{1}{2}$
8	1125	Sam. 1181.	Peterson ${ }^{5}$, No. 66.	W. Ind.	(Cor.)	12×14
9	1130	Sam. 1186.	do. No. 40.	W. Ind.	Cor.	$10 \times 1 \frac{1}{4}$
10	1130	Sam. 1186.	do. No. 63.	W. Ind.	(Cor.)	13×1
11	1131	Sam. 1187.	do. No. 36.	W. Ind.	Cor.	$27 \times 2\}$
12	1162	Sam. 1218.	do. No. 31.	W. Ind.	Cor.	14×2
13	1162	Sam. 1218.	Kielhorn, No. 13.	W. Ind.	Cor.	$29 \times 2 \frac{1}{2}$
14	1165	Nep. 285.	Add. 1693, Bendall.	Nep.	Cor.	$17 \times 2 \frac{1}{2}$
15	1165	Sam. 1221.	Petersons, No. 240.	W. Ind.	Cor.	27×24
16	1173	Sam. 1229.	do. No. 215.	W. Ind.	Cor.	$14 \frac{1}{2} \times 1 \frac{3}{4}$
17	1175	Sam. 1231.	Peterson ${ }^{\text {b }}$, No. 1.	W. Ind.	Cor.	$12 \times 1 \frac{1}{4}$
18	1191	Sam. 1247.	Peterson³, No. 225.	W. Ind.	Cor.	$13 \frac{1}{2} \times 1 \frac{3}{8}$
19	1193	Sam. 1249.	do. No. 309.	W. Ind.	Cor.	29×24

No.	A. D.	Date.	Reference.	Loc.	Mat.	Measure.
20	1199	Nep. 319.	Add. 1657, (2), Bendall.	Nep.	Cor.	12×2
21	1202	Sam. 1258.	Peterson ${ }^{5}$, No. 65.	W. Ind.	Cor.	$12 \times 1 \frac{1}{2}$
22	1204	Sam. 1260.	Peterson8, No. 189.	W. Ind.	Cor.	$15 \frac{1}{2} \times 1 \frac{1}{4}$
23	1205	Sam. 1261.	do. No. 220.	W. Ind.	Cor.	831 $\times 2 \frac{1}{2}$
24	1205	Nep. 325.	Add. 1644, Bendall.	Nep.	Cor.	21×2
25	1207	Sam. 1268.	Peterson³, No. 198.	W. Ind.	Cor.	$10 \frac{1}{8} \times 1 \frac{1}{4}$
26	1215	Sam. 1271.	Peterson ${ }^{5}$, No. 80.	W. Ind.	Cor.	$16 \frac{1}{2} \times 1 \frac{1}{2}$
27	1228	Sam. 1284.	do. No. 78.	W. Ind.	Cor.	$11 \times 2 \frac{1}{2}$
28	1228	Sam. 1284.	Petersons, No. 226.	W. Ind.	Cor.	$14 \times 2 \frac{1}{2}$
29	1230	Sam. 1286.	do. No. 288.	W. Ind.	Cor.	341 $\times 2 \times 8$
30	1231	Sam. 1287.	do. No. 266.	W. Ind.	Oor.	$15 \frac{3}{4} \times 1 \frac{1}{3}$.
31	1232	Sam. 1288.	Peterson5, No. 55.	W. Ind.	Cor.	15×2
32	1235	Sam. 1291.	Peterson ${ }^{\text {8, No. }} 320$.	W. Ind.	Cor.	$36 \times 2{ }^{\text {\% }}$
83	1236	Sam. 1292.	do. No. 217.	W. Ind.	Cor.	331×24
34	1236	Sam. 1298.	do. No. 300.	W. Ind.	Cor.	$86 \times 2 \frac{1}{2}$
35	1236	Sam. 1292.	do. No. 277.	W. Ind.	Cor.	$15 \frac{1}{1} \times 2$
36	1237	Sam. 1293.	do. No. 267.	W. Ind.	Cor.	$14 \frac{1}{3} \times 12$.
37	1237	Sam. 1293.	Peterson ${ }^{\text {b, }}$ No. 46.	W. Ind.	Cor.	$12 \times 1 \frac{1}{1}$
38	1238	Sam. 129s.	do, No. 34.	W. Ind.	Cor.	$29 \times 2 \frac{1}{2}$
39	1238	Sam. 1294.	Peterson ${ }^{8}$, No. 186.	W. Ind.	Cor.	141 $\times 2$
40	1238	Sam. 1294.	do. No. 275.	W. Ind.	Cor.	$29 \frac{1}{2} \times 2 \frac{4}{4}$
41	1240	Sam. 1296.	do. No. 202.	W. Ind.	Cor.	$12 \frac{1}{2} \times 1 \frac{1}{2}$
42	1240	Bam. 1296.	do. No. 250.	W. Ind.	Cor.	341 $\times 2$
43	1240	Sam. 1296.	Peterson', No. 26.	W. Ind.	Cor.	$32 \times 2 \frac{1}{2}$
44	1242	Sam. 1298.	Peterson ${ }^{8}$, No. 319.	W. Ind.	Cor.	$341 \times 2 \frac{1}{1}$
45	1243	8am. 1299.	do. No. 276.	W. Ind.	Cor.	34×2 1
46	1244	Sam. 1300.	Kielhorn, No. 47.	W. Ind.	Cor.	$18 \frac{1}{4} 2$
47	1245	Sam. 1801.	Peterson ${ }^{8}$, No. 218.	W. Ind.	Cor.	$33 \frac{1}{2} \times 2 \frac{1}{2}$

A. F. R. Hoernile-Epigraphical Note on Palm-leaf, etc. [No. 2,

No.	A.D.	Date.	Reference.	Loo.	Mat.	Measure.
48	1245	Sam. 1301.	Peterson8, No. 337.	W. Ind.	Cor.	$32 \downarrow \times 2$
49	1245	Sam. 1301.	do. No. 247.	W. Ind.	Cor.	34i $\times 2$ 2
50	1247	Sam. 1308.	do. No. 286.	W. Ind.	Cor.	$15 \frac{1}{2} \times 2$
51	1248	Sam. 1304.	Kielhorn, No. 28.	W. Ind.	Cor.	15×2
52	1251	Sam. 1307.	Peterson', No. 235.	W. Ind.	Cor.	$28 \frac{1}{2} \times 2 \frac{1}{4}$
53	1253	Sam. 1309.	do. No. 283.	W. Ind.	Cor.	18×2
54	1253	Sam. 1809.	do. No. 310.	W. Ind.	Cor.	$32\} \times 2$
55	1258	Sam. 1314.	do. No. 222.	W. Ind.	Cor.	$23 \frac{1}{2} \times 2$
56	1259	Sam. 1315.	Kielhorn, No, 62.	W. Ind.	Cor.	$14 \frac{1}{2} \times 2$
57	1261	Nep. 381.	Add. 1706, Bendall.	Nep.	Cor.	$11 \frac{1}{2} \times 1 \frac{1}{4}$
58	1261	Sam. 1317.	Peterson ${ }^{5}$, No. 8.	W. Ind.	Cor.	17×2
59	1264	Sam. 1320.	do. No. 59.	W. Ind.	Cor.	33×2
60	1264	Nep. 384.	Sdd. 1465, Bendall.	Nep.	Cor.	13×2
61	1266	Sam. 1322.	Petersons, No. 260.	W. Ind.	Cor.	$82 \mathrm{a} \times 2 \mathrm{t}$
62	1269	Sam. 1325.	do. No. 199.	W. Ind.	Cor.	175×14
63	1270	Sam. 1326.	do. No. 231.	W. Ind.	Cor.	281×24
64	1271	Sam. 1327.	do. . No. 256.	W. Ind.	Cor.	$331 \times 2\}$
65	1272	Sam. 1328.	do. No. 290.	W. Ind.	Cor.	27×2
66	1275	Sam. 1331.	Peterson5, No. 35.	W. Ind.	Cor.	$32 \times 2 \ddagger$
67	1280	Sam. 1336.	do. No. 32.	W. Ind.	Cor.	15×2
68	1286	Sam. 1342.	Kielhorn, No. 5.	W. Ind.	Cor.	$32 \dagger \times 24$
69	1287	Sam. 1343.	Peterson5, No. 27.	W. Ind.	Cor.	$31 \geq 2$
70	1302	Nep. 422.	Add. 1306, Bendall.	Nep.	Cor.	13×2
71	1303	Sam. 1359.	Kielhorn, No. 37.	W. Ind.	Cor.	$30 \frac{1}{4} \times 24$
72	1320	Sam. 1376.	Peterson ${ }^{8}$, No. 262.	W. Ind.	Cor.	371 $\times 2$ 2
73	1324	Sam. 1380.	do. No. 253.	W. Ind.	Cor.	33×24
74	1327	Sam. 1383.	do. No. 285.	W. Ind.	Cor.	191×2
75	1331	Sam. 1387.	do. No. 259.	W. Ind.	Cor.	$35 \frac{1}{3} \times 2 \frac{1}{2}$

No.	A.D.	Date.	Reference.	Loc.	Mat.	Measare.
76	1334	Sam. 1890.	Peterson ${ }^{\text {5 , No. }} 84$.	W. Ind.	Cor.	17×2 ¢
77	1835	Sam. 1391.	Peterson ${ }^{8}$, No. 295.	W. Ind.	Cor.	353×24
78	1336	Sam. 1392.	Peterson5, No. 77.	W. Ind.	Cor.	15×2
79	1842	Sam. 1898.	do. No. 85.	W. Ind.	Cor.	17×2
80	1855	Nep. 475.	Add. 1697, (viii),	Nep.	Cor.	12×2
81	1360	Nep. 480.	Add. 1409, Bendall.	Nep.	Cor.	18×2
82	1360	Sam. 1416.	Notices, No. 8308.	Beng.	Oor.	$10 \times 1 \frac{1}{1}$
83	1869	Eam. 1425.	Peterson5, No. 58.	W. Ind.	Cor.	32×8
84	1874	Nep. 404.	Add. 1689, Bendall.	Nep.	Cor.	16×2
85	1380	Nep. 500.	Add. 1685 do.	Nep.	Cor.	$13 \frac{1}{4} 2$
86	1384	Nep. 504.	Add. 1488 do.	Nep.	Cor.	9×2
87	1386	Nep. 506.	Add. 1698 do.	Nep.	Cor.	13×2
88	1389	Nep. 509.	Add. 1701 do.	Nep.	Cor.	12×2
89	1389	Sam. 1445.	Peterson', No. 304.	W. Ind.	Cor.	341 $\times 1 \frac{1}{1}$
90	1392	Nep. 512.	Add. 1108, Bendall.	Nep.	Cor.	13×2
91	1395	Sam. 1451.	Peterson, 8 No. 228.	W. Ind.	Cor.	$14 \times 1 \frac{1}{2}$
92	1398	Sam. 1454.	Peterson5, No. 48.	W. Ind.	Cor.	38×2
93	1400	Sam. 1456.	do. No. 28.	W. Ind.	Cor.	$25 \times 1 \frac{1}{2}$
94	1412	Nep. 588.	Add. 1649, Bendall.	Nep.	Cor.	$12 \frac{1}{8} \times 2$
95	1412	Nep. 532.	Add. 1691 (iv), Bendall.	Nep.	Cor.	12×2
96	1425	Nep. 545.	Add. 1661 do.	Nep.	Cor.	18×8
97	1427	Nep. 547.	Add. 1580 do.	Nep.	Cor.	10×2
98	1429	Nep. 549.	Add. 1708 do.	Nep.	Cor.	$11 \frac{1}{8} \times 2$
99	1440	Nep. 560.	Add. 1691, (iii) do.	Nep.	Cor.	12×2
100	1457	Nep. 577.	Add. 1708, (i) do.	Nep.	Cor.	12×2
101	1460	Laks. 355.	Notices, No. 1889.	Bih.	Cor.	12×14
102	1463	Nep. 588.	Add. 1697 (iv), Bendall.	Nep.	Cor.	12×2
103	1468	Lakg. 363.	Notices, No. 1913.	Bih.	Cor.	18×2

No.	A.D.	Date.	Reference.	Loc.	Mat.	Measure.
104	1495	Gak. 1417.	Notiees, No. 1974.	Beng.	Cor.	10×2
105	1518	Çak. 1440.	do. No. 1070.	Beng.	Cor.	14×21
106	1526	Laks. 421.	do. No. 1963.	Bih.	Cor.	11×2
107	1529	Laks. 424.	do. No. 2390.	Bib.	Cor.	16×2
108	1535	Cak. 1457.	do. No. 1978.	Beng.	Oor.	$15 \times 1 \frac{1}{4}$
109	1536	Lak\%. 481.	do. No. 1967.	Bih.	Cor.	11×2
110	1640	Laks. 485.	do. No. 1907.	Bih.	Cor.	$11 \times 1 \frac{1}{3}$
111	1556	Çak. 1478.	do. No. 2129.	Beng.	Cor.	10×2
112	1564	Leks. 459.	do. No. 1909.	Bih.	Cor.	$18 \times 1 \frac{1}{8}$
113	1571	Çak. 1493.	do. No. 2172.	N. Beng.	Cor.	12×2
114	1576	Nep. 696.	Add. 1355, Bendall.	Nep.	Cor.	91×2
115	1607	Laks. 502.	Notices, No. 1879.	Bih.	Cor.	11×2
116	1609	Lakp. 504.	do. No. 1922.	Bih.	Cor.	12×2
117	1617	Lak§. 512.	do. No. 2405.	Bih.	Cor.	17×2
118	1618	Çak. 1540.	do. No. 2749.	Beng.	Bor.	$12 \times 1 \frac{1}{3}$
119	1619	Nep. 789.	Add. 1682, Bendall.	Nep.	Cor.	12×2
120	1622	Cak. 1544.	Notices, No. 2258.	Bih.	Cor.	14×2 交
121	$\frac{1624}{1610}$	$\frac{\text { Cak. }}{\text { Laks. }} \frac{1546 .}{505 .}$	do. No. 1992.	Bih.	Cor.	11×2
122	1627	Laks. 522.	do. No. 2564.	Bih.	Cor.	$14 \times 1 \frac{1}{2}$
123	1629	Çak. 1551.	do. No. 8382.	Beng.	Cor.	10×8
124	1629	Çak. 1551.	do. No. 2000.	Bih.	Cor.	10×2
125	1643	Lakģ. 538.	do. No. 2399.	Bih.	Cor.	16×1 굴
126	1660	Laks. 555.	do. No. 1910.	Bih.	Cor.	14×2
127	1673	Laķ. 568.	do. No. 1968.	Bih.	Cor.	$12 \times 1 \frac{1}{3}$
128	1678	Çak. 1600.	do. No. 2126.	Beng.	Bor.	$10 \times 1 \frac{1}{1}$
129	1680	Cak. 1602.	do. No. 2759.	Beng.	Cor.	18×2
130	1687	Çak. 1609.	do. No. 1645.	W. Beng.	Bor.	19×1
181	1688	Çak. 1610.	do. No. 1642.	W. Beng.	Bor.	$19 \times 1 \frac{1}{4}$

No.	A.D.	Date.	Reference.	Loo.	Mat.	Measure.
182	1689	Laks. 584.	Notioes, No. 1987.	Bib.	Cor.	$12 \times 2 \frac{1}{2}$
133	1701	Çak. 1628.	do. No. 1643.	W. Beng.	Bor.	$14 \times 1 \frac{1}{3}$
134	1727	Çak. 1649.	do. No. 2870.	Bih.	Cor.	22×2
135	1732	Çak. 1654.	do. No. 2917.	W. Beng.	Oor.	22×2
186	1734	Çak. 1656.	do. No. 2965.	W. Beng	Bor.	$11 \times 1 \frac{1}{2}$
137	1780	Çak. 1661.	do. No 1845.	Bih.	Cor.	$15 \frac{1}{2} \times 2$
138	1755	Çak. 1677.	do. No. 2068.	N. Beng.	Cor.	40×2
139	1785	Çak. 1707.	do. No. 2069.	N. Beng.	Cor.	19×2
140	1804	Çak. 1728.	do. No. 1129.	Beng.	Bor.	3 or 4 lines
1418	1838	Laks. 731.	do. No. 1764.	Bih.	Bor.	11×1

In Table III, I have included none but such palm-leaf MSS, of which exact dates and measurements have been recorded. On the other hand, I have included all manascripts, satisfying those two conditions, records of which were accessible to me: in fact, Table III. so far as I know, practically includes all such palm-leaf MSS., of which any record exists at all. I do not think it likely that any appreciable number of dated and measured manuscripts have been omitted. Those entered in Table III belong to the collections, noticed in Bendall's Catalogue of Cambridge MSS., Dr. Mitra's Notices of Sanskrit MSS., and Peterson's and Kielhorn's Reports on the Search for Sanskrit MSS. in the Bombay Presidency. 9

As I have not actually seen and examined any of the manuscripts entered in Table III, the only test for determining their material are their measurements, especially those of their width. Now there are

[^17]in the list of Table III, 127 manuscripts, dating before 1675 A.D. Of these 127 manuscripts, 104 measure 13 inches or upwards in width. All these must be written on Corypha leaves; for I have already shown that no Borassus leaf admits of that width. Practically the same remark applies to No. 36, which measares $\frac{1}{3}$ inches. There remain 22 manuscripts, measuring less than $1 \frac{3}{4}$ inches in width. Of these, 18 have a width of $1 \frac{1}{2}$ inches. ${ }^{10}$ There is very little probability of any of them being a Corypha manuscript: in fact, in the case of No. 57, the fact that it is written on Corypha leaves has been verified for me by Professor Cowell ; and as to 6 others, viz., Nos. 101, 110, 112, 122, 125 and 127, which are Bihār manuscripts, I shall show presently that in Bihār none but, Corypha leaves were used down to a far more recent date than 1675 A.D. Of the remaining 4 manuscripts, No. 89, which is $1 \frac{1}{3}$ inches wide, cannot be Borassus, because of its length of $34 \frac{1}{2}$ inches; nor are Nos. 5, 8 and 10 , which are $1 \frac{1}{4}$ and 1 inches wide respectively, likely to be Borassus, on account of their great age : that exceptionally Corypha manuscripts of such very small width are met with, I have already shown (see Nos. 35 and 55 in Table I, and No. 5 in Table II).

It thas appears that (with the exception of one manuscript, No. 118, presently to be referred to) all the manascripts dating before 1675 A.D. are written on Corypha leares,-a result which exactly agrees with that obtained from Table I. It is a striking fact that no dated and measured manascript which can indubitably be proved to be written on Borassus leaves has as yet come to light, dating from before 1675 A.D., or at least (to be quite exact, with a view to the two exceptional cases of No. 60 in Table I, and No. 118 in Table III), dating from before the end of the 16th century. If Borassus manuscripts did exist, it is more than strange that not one of them should have been discovered : it is equally improbable that they-all and every oneshould have perished. The only reasonable conclusion, from the facts presented, is that Borassus leaves were not used at all for bookwriting in Northern India before the end of the 16th century, nor used generally before about 1675 A.D.

The exceptional case of No. 118 in Table III, dated 1618 A.D., is noteworthy. It stands, quite by itself among the surrounding Corypha manuscripts. For the next Borassus MS. we have to go down to No. 128, and the year 1678 A.D. It is also a South-Bengali manuscript. Its case agrees in every way with that of No. 60 in Table I, which has already been referred to. It must be added, however, that it is by no means certain that No. 118 is really a Borassus manuscript. Judged by

10 These are Nos. 7, 9, 21, 25, 26, 30, 37, 41, 57, 82, 91, 93, 101, 110, 112, 122, 125, 127.
its measurements it might very well be a Corypha manuscript. But the probability perhaps is the other way, and I have accordingly treated it so.

This leads me to the next point. Table I shows that the use of Borassus leaves for book-writing was, and still is, limited to the Eastern portion of Northern India, i.e., to Bengal, Bihär and Orissa. In the rest of Northern India (including Nepal, and "Western India" north of Bombay), Borassus has never been used for that purpose : there none but Corypha leaves were used at all ; but as I shall show further on, the use of palm-leaves for book-writing died out there as early as the middle of the l5th century on the west-coast, and in the interior even some centuries earlier. At the time when the use of Borassus came in in the eastern provinces of Northern India, viz., in the 17th century, the use of paper had in its central and western provinces long superseded that of palm-leaves.

Even with regard to Eastern India, a striking difference shows itself between the three provinces composing it. In Bengal the use of the Borassus leaf makes its first appearance in a sporadic way, at the end of the 16th century, and we find it fully established a century later, from about 1675 A.D. On the contrary, in Bihār the exclusive use of Corypha leaves continues down to the middle of the 18th century, while in Orissa Corypha leaves appear to have never been used at all.

To illustrate these conclusions I have prepared the following three Tables of Bengal, Bihār and Orissa palm-leaf manuscripts respectively.

Table IV. Bengal Palm-leaf MSS.

No.	A. D.	Date.	Reference.	Measures.	Material.
1	1360	Sam. 1416.	Table III, No. 82.	$10 \times 1 \frac{1}{2}$	Cor.
2	1386	Sam. 1448.	Table I, No. 45.	11×2	Cor.
3	1495	Çak. 1417.	Table III, No. 104.	10×2	Cor.
4	1514	Chak. 1486.	Table I, No. 53.	144×14	Cor.
5	1518	Çak. 1440.	Table III, No. 105.	$14 \times 2\}$	Cor.
6	1531	Cak. 1453.	Table I, No. 54.	181×2	Cor.
7	1535	Çak. 1457.	Table III, No. 108.	15×18	Cor.
8	1553	Çak. 1475.	Table I, No. 55.	14	Cor.
9	1558	Çak. 1478.	Table III, No. 111.	10×2	Cor.
10	1571	Çak. 1493.	do. No. 112.	12×2	Cor.

114 A. F. B. Hoerulo-Epigraphical Note on Palm-leaf, etc. [No. 2,

No.	A.D.	Date.	Reference.	Measure.	Material.
11	1572	Cak. 1494	Table I, No. 57.	18 ¢ $\times 1$ 米	Cor.
12	1687	Çak. 1509.	do. No. 60.	$12 \times\left\{\begin{array}{l}17 \\ 17\end{array}\right.$	Cor. Bor.
13	1594	Cak. 1516.	do. No. 60.	$12 \times 1 \frac{1}{2}$	Bor.
14	1618	Cak. 1540.	Table III, No. 118.	12×1 1	Bor.
15	1629	Çak. 1551.	do. No. 122.	10×2	Cor.
16	1675	Çak. 1597.	Table I, No. 70.	13	Bor.
17	1677	Cak. 1599.	do. No. 71.	1\%	Bor.
18	1678	Çak. 1600.	Table III, No. 128.	$10 \times 1 \frac{1}{2}$	Bor.
19	1678	Oak. 1600.	Table I, No. 72.	154×2	Cor.
20	1680	Çak. 1608.	Table III, No. 129.	18×2	Cor.
21	1687	Çak. 1609.	do. No. 130.	$19 \times 1 \frac{1}{2}$	Bor.
22	1687	Çak. 1609.	Table I, No. 76.	11, 17	Bor.
23	1688	Çak. 1610.	do. No. 77.	$20 \times 1 \frac{1}{2}-1$	Bor.
24	1688	Çak. 1610.	Table III, No. 181.	19×14	Bor.
25	1689	Çak. 1611.	Table I, No. 78.	$14 \times 1 \frac{1}{2}$	Bor.
26	1701	Çak. 1623.	Table III, No. 134.	$14 \times 1 \frac{1}{2}$	Bor.
27	1721	Cak. 1648.	Table I, No. 88.	24	Cor.
28	1732	Çak. 1654.	Table III, No. 186.	22×2	Cor.
29	1734	Cak. 1656.	do. No. 137.	$11 \times 1 \frac{1}{2}$	Bor.
3011	1755	O̧ak. 1677.	do. No. 138.	40×2	Cor.
81	1785	Çak. 1707.	do. No. 139.	19×2	Cor.
32	1804	O̧ak. 1726.	do. No. 140.	3 or $411 ., 14$	Bor.
33	1815	Çak. 1737.	Table I, No. 87.	$14 \frac{1}{1} \times 1 \frac{1}{2}$	Bor.

It will be seen from Table IV, that up to 1587 A.D. Corypha leaves were in exclusive use in Bengal. In that year the first trace of the use of Borassus leaves makes its appearance. In 1594 there is the

II It will be noticed that the length of this manascript (40 inches) is ont of all proportion to that of all other Bengal mannsoripta. I am, therefore, disposed to anspect a misprint in its record in "Notices," No. 2068.
first manuscript wholly written on Borassus leaves; another follows in 1618 A.D. Then comes a long interval of 57 years, up to 1675 A.D., in which there is one Corypha manuscript, in 1629 A.D. But from 1675, when there are numerous manuscripts recorded at very short intervals, the use of Borassus shows itself dominant. Among 18 manuscripts, between 1675 and 1815 A.D., there are 12 Borassus and only 6 Corypha ones; that is $\frac{2}{8}$ of the whole are Borassus manuscripts.

The oldest known Bengal palm-leaf manuscript is referable to the year 1360 A.D. Another described in "Notices," No. 1977, was thought by the late Rāja R. L. Mitra to be older, being sapposed to be dated in Laks. $102=1207$ A.D. It is a Corypha MS., measuring $13 \frac{1}{2} \times 2 \frac{1}{4}$, and is certainly very old, but its date, if any, is not decipherable, and on palmographic grounds it is more likely to belong to the end of the 14th century.

Table V. Bifír Palm-leaf MSS.

No.	A. D.	Date.	Reference.	Measare.	Material.
1	1020	5 Mahipāla.	Table I, No. 8.	$21 \times 2\}$	Cor.
2	1054	14 Nayapāla.	Table III, No. 2.	22×2	Cor.
3	1120	15 Rämapāla.	Table I, No. 16.	22×24	Cor.
4	1165	4 Görindapāla.	do. No. 21.	$22 \frac{1}{3} \times 21$	Cor.
5	1185	24 do.	do. No. 25.	11軎 $\times 8$	Cor.
6	1199	38 do.	do. No. 27.		Cor.
7	1819	Lakp. 214	do. No. 87.	15\% $\times 17$	Cor.
8	1446	Sam. 1503.	do. No. 47.	$18 \frac{1}{8} \times 24$	Cor.
9	1450	Laks. 845.	do. No. 48.	$18 \times 1 \frac{1}{2}$	Cor.
10	1460	Latcs. 855.	Table III, No. 101.	12×13	Cor.
11	1467	Laks. 362.	Table I, No. 49.	13×2	Cor.
12	1468	Laks. 363.	Table III, Na. 108.	13×2	Cor.
13	1479	Lakş. 874.	Table 1, No. 60.	$11 \frac{1}{2} \times 2$	Cor.
14	1504	Lakg. 399.	do. Na. 51.	$14 \frac{1}{4} \times 2 \frac{1}{1}$	Cor.
15	1513	Lakṣ. 408.	do. No. 52.	$18 \frac{1}{6} \times 1 \frac{1}{3}$	Cor.
16	1526	Laks. 421.	Table III, No. 106.	11×2	Cor.
17	1529	Lakg. 424.	do. No. 107.	16×2	Cor.

116 A. F. R. Hoernle-Epigraphical Note on Palm-leaf, etc. [No. 2,

No.	A.D.	Date.	Reference.	Measure.	Material.
18	1536	Laky. 431.	Table IIF, No. 109.	11×2	Cor.
19	1540	Lakş. 435.	do. No. 110.	11×1	Cor.
20	1557	Lakg. 452.	Table I, No. 66.	184×2	Cor.
21	1564	Laks. 459.	Table III, No. 112.	$12 \times 1 \frac{1}{1}$	Cor.
22	1575	Laks. 470.	Table I, No. 58.	$13 \frac{1}{4} \times 2 \underline{4}$	Cor.
23	1607	Laks. 502.	Table III, No. 115.	11×2	Cor.
24	1608	Lakş. 503.	Table I, No. 62.	$13 \frac{1}{1} \times 1 \frac{1}{8}$	Cor.
25	1609	Laks. 504.	do. No. 63.	$18{ }^{3} \times 2$	Cor.
26	1609	Laks. 504.	Table III, No. 116.	12×2	Cor.
27	1616	Laks. 511.	Table I, No. 64.	$14 \frac{18}{} \times 15$	Cor.
28	1617	Laks. 512.	Table III, No. 117.	17×2	Cor.
29	1622	gak. 1544.	do. No. 120.	$14 \times 2 \downarrow$	Cor.
30	$\frac{1624}{1610}$	Cak. $\frac{1546}{\text { Laks. }}$.	do. No. 121.	11×2	Cor.
81	1627	Laks. 522.	do. No. 122.	14×1	Cor.
32	1629	Gak. 1551.	do. No. 124.	10×2	Cor.
33	1633	Çak. 1555.	Table I, No. 65.	12×13	Cor.
34	1643	Lakg. 538.	Table III, No. 125.	16×1	Cor.
35	1647	Gak. 1569.	Table I, No. 66.	114×2	Cor.
36	1660	Laks. 555.	Table III, No. 128.	14×2	Cor.
37	1661	Laks. 556.	Table I, No. 67.	$12 \times 1 \frac{1}{4}$	Cor.
38	1668	Gak. 1590.	do. No. 68.	$7 \mathrm{t} \times 1 \mathrm{t}$	Cor.
39	$\frac{1668}{1660}$	$\frac{\text { Gak. } 1591}{\text { Lakg. } 555}$	do. No. 69.	7×14	Cor.
40	1673	Laķ. 568.	Table III, No. 127.	12×1	Cor.
41	1680	Ģak. 1602.	Table I, No. 78.	$14 \times 1{ }^{\frac{3}{4}}$	Cor.
42	1689	Lakg. 584.	Table III, No. 132.	$12 \times 2 \frac{1}{2}$	Cor.
48	1727	Ģak. 1649.	do. No. 134.	22×2	Cor.
44	1739	Gak. 1661.	do. No. 187.	151×2	Cor.
45	1836	Lakş. 731.	do. No. 141.	11×1	Bor.

Among the 45 manuscripts listed in this Table, there are 35 which, as their width shows, are undoubtedly written on Corypha leaves. There are only eight MSS. (Nos. 9, 10, 19, 21, 31, 34, 37 and 40) which, by their width of $1 \frac{1}{2}$ inches, might be written on Borassus leaves. But their age, as well as their isolated position among Corypha manuscripts, renders it certain that they are also Corypha manuscripts. Indeed, as a matter of fact, Nos. 9 and 37, which I have myself inspected, are Corypha manuscripts. I may add that down to 1739 A.D. (No. 44) I have not found, among all the Biliār MSS. that I have examined and measured, a single manuscript written on Borassus leaves. So far, therefore, as evidence, at present available, goes, it points to the fact that, down to the middle of the 18th century, Corypha leaves were in exclusive use in Bihar for book-writing. About that time, perhaps, the use of Borassus leaves may have been introduced from Bengal; for No. 45, of 1836 A.D., is evidently a Borassus manuscript. Any how, in the present day, as I learn from special enquiries madely me, hoth kinds of palm-leaf are in use in Bihār, though, for book-writing at least, paper has nearly entirely superseded palm-leaf, so that it is very difficult now-R-days to obtain a quite modern palm-leaf manuscript. In fact, in spite of persistent endeavours, I have failed to obtain for personal inspection a single Bihār palm-leaf manuscript of the 18 th and 19 th centuries. This remark, regarding the supercession of palm-leaf by paper, also applies to Bengal, but not to Orissa.

With regard to Orissa I am in a somewhat unsatisfactory position. Palm-leaf manascripts, written in Oriyn, are very uncommon in Calcutta, and the majority of those one meets with are not dated. Moreover the few manuscripts which bear some date are not dated in any era, but merely in the regnal years of certain kings. I have been able to examine the following seven manuscripts:-

T'able VI. 18 Orissa Palm-leaf MSS.

No.	A.D.	Date.	Reference.	Measures.	Mat.
1	1660-92	Some jear of Makunda	Govt. Ind. do. do. No. 2837 in Notices. Govt. Ind. do. do.	$\left\lvert\, \begin{array}{r} 1 \frac{8}{16} \\ 15 \times 1 \frac{1}{8} \\ 16 \times 1 \frac{1}{4} \\ 16 \end{array}\right.$	Bor. Bor. Bor. Bor.
2	1683	24th do.			
3	1683	24 th do.			
4	1690	3 lst do.			
5	1708	17th of Divya Simha... 10th of Këçari 24th of do.		$14 \frac{9}{16} \times 1 \frac{1}{2}$	Bor.
6	1752			$1+\frac{3}{4} \times 1 \frac{18}{8}$	Bor.
7	1766			$15 \times 1 \frac{1}{8}$	Bor.

18 On the chronology of the kings of Orissa, see Prinsep's Useful Tables, p. 267 (in Vol. II of his Indian Antiquities, ed. Thomas), also Hanter's Orissa and J. I. 16

118 A. F. R. Hoernle-Epigraphical Note on Palm-leaf, etc. [No. 2,
I have also examined seven other mauuscripts which are undated. Their width varied from 1 to $1 \frac{1}{2}$ inches, and their number of lines from 3 to 6. They were made of Borassus flab. Their general appearance indicates them as being of the same period as the dated ones.

1 have not met with any Oriya palm-leaf manuscript of an earlier date than the 24th year of Mukunda Dēva, or A.D. 1683, though No. 1 may go back to 1660 . So far as this evidence goes, it shows that Oriya palm-leaf mmuscripts are not older than the second half of the 17 th century, and are invariably written on Borassus leares. The evidence, however, is not complete. It seems to be certain that the Orifa characters were not employed in Orissa before the 15th century A.D. 'The earliest epigraphical record in Oriya characters is all inscription, dated 1436 A.D., of Kapilȩ̣̄vara Dēva. The earlier inscriptions of the 13 th and 14 th centuries are in a species of early Bengali characters. ${ }^{18}$ It is not impossible therefore, that manuscripts may have been writteu in Oriyā characters as early as the 15th century A.D. Possibly among the uudated manuscripts some may go back to such an early date; and it is also possible that dated manuscripts of that early period may yet come to light. In the latter case it is probable that they will be found to be Borassus manuscripts; for hitherto not a single manuscript written in Oriya characters is known to exist which is written on Corypha leaves. At present, however, there is a gap of 200 or 250 years (about 1436-1660 A.D.) in the evidence. On the whole, the probability is that the case of Orissa is much the same as that of liengal. If Corypha leaves were ever used in Orissa at all, their use must have gone out of fashion, as it did in Bengal, in the course of the l6th century. At present, the available evidence
elsewhere. The exact periods of the several reigns are only approximately known. There were three Mnkundas and two Divya Simhas. The former reigned 17, 32, and 19 years respectively; accordingly it must be Makunda II who is referred to in Table VI, and who reigned, approximately, from 1660 to 1692 A.D. The two Divya Simhas roigned 28 and 18 years respectively; probahly it is Divya Simha I who is here intended, and who reigned from 1692-1720 A.I). Kēçari Dēva (in Prinsep, Bir Kishore Deo) reigned from 1743-1780 A.D. In the manuscripts the reigns of these kings are quoted in ajkas. On the method of converting these aykas into regnal years, see Bābū Mon Mohan Chakravarti's explanntion in Journal, A.8.B. vol. LXII, (1893), p. 89. The number one and all numbers ending with zero (except 10) or with 6 are omitted. Hence the 29 th ayka of Muknnda is eqnal to his 24th year; i.e., 5 ajkas ($1,6,16,20,26$) are omitted; and so forth. The aykas of Table VI are : 38 (No. 4), 29 (Nos. 2, 3 and 7), 21 (No. 5), 12 (No. 6). No. 1 simply refers to the reign of Makunds.
is See Journal, A.S.B. Vol. LXII (1893), p. 88, 89. Also ibidem, Vol. LXIV (1895) and Vol. LXV (1896).
is dead against the use of Corypha leaves in Orissa. Not a single Corypha manuscript in Oriyā characters has ns yet been discovered.

Let us now turn to Western India. Here we have the carefnl catalogues prepared by Professors Kielhorn, Yeterson and Bhandarkar. In his Report for 1880-81, Prof. Kielhoru describes 77 palm-leaf MSS. from Pātān. Prof. Peterson in his 3rd Report for 1885-86, describes 157 palm-leaf MSS. from Cambay (Nos. 181-338), and in his 5th Report for 1892-95 he describes 93 palm-leaf MSS. from Pātān. Measurements, however, are only given of 69,147 and 62 manuscripts respectively of the three sets. The total of measured manuscripts accordingly is 278 . Among these there are:
(1) MSS. measuring $1 \frac{8}{4}$ inches and more, 230
(2) MSS. , $1 \frac{1}{2}$ inches 38
(3) MSS. ", less than $1 \frac{1}{2} \quad 10$

This statement inclades both kiuds of mannsoripts, undated as well as dated ones, and, therefore, supplements the information given in Table IlI.

The first-placed manuscripts, of course, as shown ly their width, must be Corypha ones; so also, are in all probability, the 38 manuscripts of the width of $1 \frac{1}{2}$ inches. More doubtful might seem the case of those ten which measure less than $1 \frac{1}{2}$ inches. A mong these there are 8 manuscripts which are said to measure only $1 \frac{3}{8}$, $1 \frac{1}{3}$, or $1 \frac{1}{4}$ inches, and two manuscripts which are said even to be ouly one inch wide. ${ }^{14}$ Four of these 10 manascripts, being dated, will be found incladed in Table III; viz., Nos. 10 ($1^{\prime \prime}$ wide), 5 and 8 ($1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, and 89 ($1 \frac{1^{\prime \prime}}{}$); and in connection with that Table it has been shown what little probability there is that any of these 10 manuscripts should be Borassus ones. As a matter of fact (I may add here), I have found by ocular examination of Kielhorn's No. 34 (or No. 35 in Tuble I) that among its leaves there are some which are only $1 \frac{1}{4}$ inches wide, but which still are Corypha leaves: which circumstance shows that extreme narrowness of the leaves need not preclude their being Corypha. It may, therefore, be taken for certain that in Western India none but Corypha leaves were ever used for book-writing.

We will now turn to the paper manuscripts. For Eastern India (Bengal, Behar and Orissa) the "Notices of Sanskrit Manuscripts" afford a fair statistical text. I have classified all the dated paper MSS. which are enumerated in volumes I to X, according to centaries, down to 1850, in the sabjoined Table VII, in which I have added similar information,

14 These are Peterson ${ }^{6}$ Nos. 7, 63 (both one inch), Peterson ${ }^{6}$ No. 13, Kielhorn No. 40, Peterson ${ }^{5}$ Nos. 50, 66 (all four, $14^{\prime \prime}$); Peterson ${ }^{8}$ Nos. 304, 305, 308 (all, $1 \frac{1}{\delta^{\prime \prime}}$); Peterson ${ }^{8}$ No. 216 (1 P $^{\prime \prime}$).
for Western India, gathered from the Reports of Professors Bhandarkar, Kielhorn and Peterson. ${ }^{16}$ For my present statistical purpose these Reports, unfortunately, are not so well fitted as the "Notices;" still such as they are, their evidence distinctly tends in the same direction. A considerable portion of the manuscripts described in the "Notices" belong to the North-West Provinces and Uudh, which form the central portion of Northern India. Accordingly the column for the "Notices" is divided into East and Centre.

Table VII.

	Psriods.	Notices.			Bhandarkar.		Kielmorn.		Peterson.	
		East.		-	West.					
		Palm. leaf.	Paper.	Paper.	Palmleaf.	Paper.	Palmleaf.	Paper.	Palm leaf.	Paper.
(1)	1050-1150				7		6		14	
(2)	1150-1250		,	1	14		5		68	
(3)	1250-1350			1	13	1	6		46	
(4)	1350-1400	2	1	1	3	2		2	4	10
(5)	1400-1450		1	4		5	2	9	1	27
(6)	1450-1550	12	7	8		20		47		61
(7)	1550-1650	16	14	40		61		53		162
(8)	1650-1750	18	56	70		93		65		240
(9)	1750-1850	5	107	201		96		48		369

The general drift of this evidence is to show that from the end of the 13 th and the beginning of the 14 th centuries paper began to

16 These are Bhandarkar's Report for 1882-83 ; Kielhorn's Report for 1880-81, containing also a list of the collection in 1873-74; Peterson's Second Report for 1882-83 (being an Extra Number of the Journal of the Bombay Branch of the Royal Asiatio Society for 1883) ; his Third Report for 1884-86 (being another Extra Namber for 1887) ; his Fifth Beport, for 1892-95, and his Sixth Report, for 1895-98.
supersede palm-leaf as a material for writing books. The drop in the number of palm-leaf manuscripts between the third and fourth periods is very noticeable; and from the fourth period onwards there is a steady and marked rise in the number of paper manuscripts.

In Western India the supersession of palm-leaf was far more thorough than in Eastern India. About the middle of the 15th century, - so far as the evidence at present available goes,- the use of palm-leaf entirely cesses in Western India. The three latest palmleaf manuscripts are dated, one in A.D. 1449 (Sam. 1505), and two in A.D. 1400 (Sam. 1456) : see Kielhorn's Report, p. ∇, and Peterson's Fifth Report, p. 51. During the same period (1400-1449) we have 41 paper manuscripts. The earliest paper manuscript is dated A.D. 1320 (Sam. 1376) : see Bhandarkar's Report, p. 51. Then follow 14 paper manuscripts, dated between A.D. 1360 and 1395. This total cessation of the use of palm-leaf at this period is nothing new : it has already been pointed out by Professor Bhandarkar in his Report, pp. 51 and 52.

In Eastern India the use of palm-leaf continued more or less by the side of paper. The Table shows a steady and marked rise in the number of paper manuscripts, while the number of palm-leaf manuscripts remains practically stationary, ending with a marked drop in the last period. This, of course, really implies a steady decrease in the use of palm-leaf, ending with a practically total cessation, in the present day. ${ }^{16}$ In Orissa alone its use continuous to some extent. The two latest recorded palm-leaf manuscripts (both not on Corypha, bat Borassus leaves) are dated A.D. 1815 (Çaka 1737 ; "Notices," No. 1607, Table I, No. 87) an:d A.D. 1836 (Lakṣ. 731, "Notices," No. 1764, Table III, No. 141). The earliest paper manuscript is dated A.D. 1354 (Sam. 1410), and is a Behar (Maithili) manuscript, No. 1999 in the "Notices." The oldest Bengal paper manuscript is dated A.D. 1404 (Çaka 1326), being No. 2082 in the "Notices." These are two exceptional cases: the real use of paper in Eastern India only commences about A.D. 1450, that is about one century later than in Western India.

But the earliest paper manuscript of all, examined by me, is one in the Sanskrit College in Calcutta. It is No. 582 in Volume I of its Library Catalogne, and is dated A.D. 1231 (Sam. 1288). ${ }^{17}$ The oldest

[^18]paper manuscript of all, mentioned in the "Notices" is No. 2043. It is dated A.D. 134:3 (Sam. 1399), and laas no string-hole, but in its place a small read disk, about $\frac{3}{8}{ }^{\prime \prime}$, diameter. These two earliest paper manuscripts are shown in Table VII in the column for "Notices," under the heading "Centre." They are both written in a distinctly Western type of Nägari, and must have been written somewhere in the North-West Provinces : they do not properly belong to Eastern India. Under the heading "Centre" are entered paper manuscripts written in Nāgari (not in Bengali, neither in Maithili) characters. All these properly belong to the North-West Provinces or Ondh, i.e., to the Central part of Northern India. It may be noticed that no palm-leaf manuscripts are recorded for this part of Northern India. This is a noteworthy fact, to which reference will be made subsequently.

To sum up the result of my enquiries into the use of palm-leaf as writing material, it appears that-
(1) Originally none bat leaves of the Corypha umbr. palm were used throughout India. This state continued down to the l5th century.
(2) From the middle of the 15th centary their use was discontinued in Western India, no other kind of palm-leaf replacing them.
(3) From the beginning of the 17th century they ceased to be used in Bengal and probably Orissa, the leaves of the Borassus f. taking their place.
(4) In Behar their exclusive use continaed down to the middle of the 18th century.
(5) The use of the Borassus flab. is comparatively modern, and it is, and was, nowhere current in Northern India, ontside Bengal and Orissa.
(6) Paper began to come into use, in the Centre of Northern India, in Western India and in Eastern India about the middle respectively of the 13 th, 14 th and 15 th centuries.
(7) In the Centre and West it entirely superseded, in the 15th century, the writing-material previously in use, that is, palm-leaf in the West and perhaps birch-bark in the Centre. In the East it maintained a finally successful rivalry until comparatively recent times.

1268 ; No. 529 in A.D. 1320 or Sam. 1876. I hnve examined all these manuscripts. They are all written ic Nāgari, and are North.Western manascripts (not Bengalī). No. 553 is as modern a mannscript as one can wish, and is dated Sam. 1873, or A.D. 1817 ! No. 371 is dated Sam. 1715 or A.D. 1659 . No. 122 is dated San (i.e., Bengali year, not Samvat) 1234, equal to A.D. 1826. No. 582 is doubly dated in Sam. 1288 (not 1268 as the Catalogne reads), and Çaka 1152, which is A.D. 1231 (viz., 1288-57 and $1152+79$); this is the only really old paper manuscript. No. 529 is not dated at all, the compiler of the Catalogue having mistaken some blurred Nägari aksaras for numeral figures.

The Corypha umbraculifera being a South-Indian tree, it is clear that its leaves, prepared to serve as writing material, must have formed an article of trade from very early times, and been carried as merchandise over the whole of Northern India. The customers of it, of course, were almost wholly limited to the literary classes, who wrote and copied books, i.e., to the learned in schools and monasteries, etc. Paper came in with the Mulammadans, in the llth century. It only very slowly and gradually displaced the Corypha palm-leaf, the use of which had the sanction of age and religion among the conservative Indian literates: they looked witn distrust upon the product of the Mlecchas. The paper-makers are still, as a rule, Muhammadans ; and there exists no indigenous Sanskritic term for paper, the word universally used being kāgaj or kāgad. ${ }^{18}$ With the 14th century, paper began to grow more widely into favour, and the import trade of Corypha leaves proportionately declined. With the beginning of the 17 th centary we find that paper has displaced the Corypha leaves throughout Northern India excepting Behar, and the trade with it had practically ceased. Palmleaves were still occasionally wanted; and thus it came to pass (so it seems) that the people of Bengal and Orissa took to the use of the Borassus flabellifer which grew plentifully in their own country, because they could no more readily obtain suitable Corypha leaves in sufficient quantities. It is curious to observe that the literati of Behar were the most conservative in the retention of the use of the Corypha leaves; for their latest Corypha MS. is dated A.D. 1739 (No. 44 in Table V).

It would seem that the use of the leaves of the Borassus palm was introduced into Easter" India from the South. For its use in Southern India can be traced to a much earlier period. As T'able II shows, the earliest recorded Borassus manuscript in Southern India may be referred to about 1550 A.D., and since that time Borassus is generally, though not exclusively, made use of, in Southern India, for book writing, Corypha also being used occasionally. I'he case of Southern India, however, I have not heen able to thoroughly investigate. In Ceylon the use of Corypha leaves appears to be still predominant; in fact, for book writing, I am informed, it is still in exclusive use. The cause or causes that led to the Borassua growing into favour, and more or less displacing the time-honoured Corypha are obscure. It

18 This is a Hindū corraption of the Persian käghaz (广ف்), which itself is a corraption of the Chinese kog-dz, the name of their "paper made of the bark of the paper-malberry tree." When the Arabs, in the 8th centary, learned papermaking from the Chinese, they adopted the Chinese name for their own paper made of linen rags. See Professor Fr. Hirth's Indische Sturien, p. 263, and Professor Karabac̈ek's Führer durch die Ausstellung der Papyrus Brzhersog Rainer.
would be interesting to know them, and they would be worth investigation. Perhaps it may be found that the Borassus palm was introduced into India only at a comparatively recent period, and being a more useful tree than the Corypha, it was more frequently cultivated, and more extensively employed. Of the Borassus palm almost everything can be used: its fruits and buds are edible, its juice is made into liquor, its leaves can be used for domestic and literary purposes, its trunks are shaped into boats; and so forth. Of the Corypha palm neither the fruit is edible nor the juice potable. Being a far more useful tree, the Borassus would naturally soon become a greater favorite even with respect to such a matter as the leaves for writing purposes in which it is perhaps hardly superior to the Corypha. But it is difficult to suppose that the employment of the Borassus leaves as a material for writing can be separated by any long interval from the introduction of the Borassus palm into India. The tree could not well have existed long in India without its useful properties being discovered. If the use of its leaves for writing grew up in the l5th or 16 th centuries, its introduction can hardly be placed much earlier than the 14th century.

There is a notice in Hinen Tsiang's Travels (Beal, vol. ii, p. 255) of the existence of "a forest of Tāla trees" near Konkanapura in SouthIndia. The exact site of that place is still a matter of dispute (see Indian Antiquary, XII, p. 115, XXIII, p. 28); but it must be somewhere in the Concan, which is the limit to which the Corypha umbr. grows freely in cultivation (though not wild). The pointed notice of the "forest of Talipat palms" is curious. It must have been a particular feature of that place, and must have been shown to Hiuen Tsiang as such. In the forest there was a Stūpa; and Hinen T'siang adds that "in all the countries of India the leaves of the Talipat palm are everywhere used for writing on." Here we seem to have a clear instance of a plantation of Corypha palms, on a large scale, for the purpose of growing leaves for inland use or for export. Writing was mainly carried on in Buddhist and other monasteries, and probably there were Corypha plantations connected with most of the larger monastic establishments in South India ; only the Konkanapura plantation would seem to have been one on a particularlylarge scale.

There is a pazzling notice in Alberuni (Sachau, vol. i, p. 171). He says: "The Hindus have in the South of their country a slender tree like the date and cocoanut palms, bearing edible fruits, and leaves of the length of one jard, and as broad as three fingers, one put beside the other. They call these leaves $t \bar{a} r \bar{\imath}$, and write on them. They bind a book of these leaves together by a cord on which they are arranged, the cord going through all the leaves by a hole in the middle of each."

This description, with the exception of the remark about the edible fruit, only fits the Corypha palm. At the time of Alberani (9731043 A.D.) the Borassus palm, in all probability, did not exist in India. In any case, at his time its leaves were not used anywhere in India for writing books. He says the leaves measured one yard in length, and three fingers in breadth : that gives us a leaf measuring $36 \times 2 \frac{1}{2}$ inches, which, as I have shown, are nearly the maximum measurements of a Corypha leaf, but impossible for a Borassus leaf. ${ }^{19}$ He also says that the leaves are called täri. At the present day, the term tãri (ला़़ो) is used to denote palm•wine or "toddy," which, of course, is made from the juice of the Borassus palm. I am not aware that the term is used anywhere for the prepared leaves of either the Corypha or the Borassus. These are called Tralpat or Talipat, and that term is applied to the Corypha palm in South India, and has been adopted into the Botanical terminology. In Alberuni's use of the term tārī for the leaves, there appears to be some misunderstanding. But a greater difficulty is his remark about the edible fruits, as Alberuni is generally a careful observer and reporter. Personally he can have had no acquaintance with the tree, as neither the Corypha nor the Borassus grows in the localities where he lived : he can only have reported what he was told. But as the Borassus palm is out of the question, he must either have made a slip, or the text of his work is handed down incorrectly. As immediately before he had mentioned a point of resemblance to the date and cocoannt palms, he probably now wanted to point out a point of difference, that the Corypha palm bore no edible fruits; he probably meant to say "a tree, slender like the date and cocoanat palms, but bearing no edible fruits."

Alberuni proceeds to say: "In Central and Northern India people use the bark of the tūz tree. It is called bhürja. They take a piece one yard long and as broad as the outstretched fingers of the hand, or somewhat less (about 8 inches) and prepare it in varions ways. They oil and polish it so as to make it hard and smooth, and then they write on it. Their letters, and whatever else they have to write, they write on the bark of the tūz tree." There can be no doubt that Alberuni is describing the bark of Betula utilis. Where he lived, the tree was probably a well-known object to him. The measurements of the strips of bark given by him are borne out by the Kharösthi birch-bark

[^19]J. 1. 17
manuscript of which portions are preserved in Paris and St. Petersbarg, and which may be as old as the lst century A.D. The strips of bark on which this manuscript is written, measure about 8 inches (or 20 centimeter) in width and one yard, more or less, in length ${ }^{80}$ (Woodcut, fig. 1). This seems to show that anciently the strips of bark were used in their full size, perhaps in the form of rolls, like Greek manuscripts of papyrus. Or their length was cut up into smaller pieces, of about 4 inches each. Such is the Bakhshāli MS., which measures about 7 by 4 inches. The latter probably belongs to the 10th or llth century, i.e., about the time when Alberuni lived; and he may have been thinking of manuscripts of this kind, when he wrote his observations. The writing was made to run parallel with the narrow side of the original strip, as seen in the published plates of the Paris and St. Petersburg MS. This custom was retained, even when the strips were cut up into smaller pieces, as in the Bakhshāli MS. (Woodcut, fig. 2). The latter approaches, in its general form, the typical Iudian palm-leaf pothi. It consists of a large number of separate oblong leaves, with the writing running parallel with the longer side of the leaf; only the oblong is not so decidedly elongated as in the palm-leaf, and the string-holes are wanting. Still later, after Alberuni's time, the modern book form appears to have been introduced. The strips of bark, cat into smaller pieces of about 12 inches, were folded in the middle, making up a "form" of two leaves or four pages; and the writing was now made to run parallel with the narrow side of the page, so that, if the form is unfolded into the original sheet or strip, the

20 The exaot length is uncertain. M. Senart has measured one of the length of 4 feet (or 1 m .23), bat states that the strips evidently vary in length. See Journal Asiatique, 1898. See also Professor v. Oldenburg's Report in the Transaotions of the Imperial Rassian Academy, for 1897. Woodcat, fig. 3 shows the exact measurements of a Çärada manuscript in my possession, about 250 years old.
writing is seen to be in two columns and running parallel with the longer side of the strip as shown in fig. 3 of the Woodcut.

A noteworthy point in Alberani's statement is that it seems to assert that, in his time at least, the use of birch-bark was peculiar to Central and Northern India, while palm-leaf was peculiar to Southern India. At first sight this assertion does not seem to be borne out by the evidence set out in the earlier part of this paper. Hiuen Tsiang also states explicitly that in his time (7th centary) palm-leaf was used throughout India, and he travelled over the whole of India, and was in touch with the literary classes of India. All depends on the exact meaning of Alberuni's terms. That he cannot have included in his "Northern India" those portions which I lave denoted Western and Eastern India is clear from the fact shown by my evidence that all the oldest manuscripts of those parts of Northern India, going back practically to the time of Alberuni himself, are of palm-leaf. There is no reason why birch-bark manuscripts should not have survived as well as palm-leaf manuscripts in the libraries of Pātāin and Cambay, and elsewhere, if any birch-bark manascripts had existed at all. That birch-bark manuscripts are quite capable of surviving for so long a time is proved by the Bower MS. Albernni's "Northern India" must be limited to the Panjāb, Sindh, Rājpūtānā and Kashmir, and his "Central India" must mean the North-West Provinces and Ondh, or what I have called the "Centre" of Northern India. In fact, Alberuni's terms are bounded by about the 24th Lat. and 85th Long., and India below the 24th Lat. is what he designates "Southern India." Understood in this sense, his statement is probably quite correct. It is true the evidence available on the point is very scanty. The only three birch-bark manuscripts of any considerable age, which are known to have survived are (1) the Paris and St. Petersbarg MSS., (2) the Bower MS., and (3) the Bakhshāli MS. They all come originally from that portion of India which Alberuni includes in his "Northern India; " and-so far-they show that birch-bark was used there for bookwriting. Nos. 1 and 2 are much older than Alberuni's time. No. 1 dates probably from the lst or 2 nd century A.D., the period of a still strong Greek influence, and its apparently roll-like form may be due to that influence. No. 2 dates from about 450 A.D., and is in the Indian Pothi form, oblong, like the corypha leaf, with a string-hole. 81 It belongs to a period of a still strong Buddhist intercourse between what Alberuni calls "Southern Iudia" and Central Asia. This may account for its distinctly Indian Pöthi form. No. 3 probably dates from about the

[^20]time of Alberuni himself. Its form is peculiar. It resembles the Indian Pothi, in consisting of separate leaves, not "bound" in a book, but tied together in a bundle : but it differs from the Pothi in not having any string-hole for the passage of the tying string. The string-hole was probably omitted as being too risky for the material. It also differs in its shape, being squarish ($7 \times 4^{\prime \prime}$), and not so distinctly oblong as the common Indian Pothī, made with the long narrow palm-leaves. Now it is noteworthy that the two oldest paper manuscripts known to us point to their having been made in imitation of such a birch-bark prototype as the Bakhshāli MS. The oldest paper manuscript, dated 1231 A.D. (supra, p. 121) has exactly the same squarish shape; it measures 6×4 inches. The next oldest paper manuscript, dated A.D. 1343, is rather more oblong, measuring $12 \frac{1}{2} \times 5$ inches, but it has no string-hole. Both these manuscripts come from that part of India which Albernni calls "Central India as above explained." It seems permissible to conclude that when paper came into use, its leaves were cat and treated in imitation of birch-bark book-leaves in those parts of India where birch-bark was the common writing material, and that it was cut and treated in imitation of palmleaf, wherever the latter material was used for book-writing. In this connection it is worth noting that no old palm-leaf manuscripts are known to come from Alberuni's "Northern and Central India," though, consideriug the scanty survival of birch-bark manuscripts, too great importance may not be attached to this point. 88 Regarding this point of survival, it may be noted that it applies equally to all kinds of manuscripts, whether of paper or of birch-bark or of palm-leaf. This circumstance shows that the cause of the non-survival is not to be sought in the climatic conditions of Alberuni's "Northern and Central India." These need not have prevented a reasonable amount of survival. The cause is probably rather to be sought in the political and religious troubles which so frequently convulsed those portions of India. Doring. the Muhammadan conquest, for example, large destructions of Hindu literary works are reported to have taken place.

In this connection there is another interesting point to be noted. The Bower MS., which is written on birch-bark aud is certainly as

[^21]early as the middle of the 5th century, is fashioned exactly like the typical Indian Corypha palm-leaf manuscript. It consists of separate leaves, provided with a string-hole, and these leaves measure from 2 to $2 \frac{1}{2}$ inches in width, which is the width of the Corypha leaf. But further, all the oldest paper manuscripts from Kachar imitate the Indian Corypha leaf manuscripts, as may be seen from the specimens of the Weber MSS. and the Macartney MSS. which I have pablished. They all consist of separate, elongated oblong leaves, from $2 \frac{1}{4}$ to $2 \frac{3}{4}$ inches wide, with a string-hole, and with the writing ranning parallel with the longer side of the leaf. Everything points to the inscribed Corypha leaf as the model, not even to a Borassus leaf. The Bower MS. and those Weber and Macartney MSS. which are written in Indian Gupta characters must have been written by native Indians migrated to Kachar, while the other Weber and Macartney MSS. written in the Central Asian modification of the Indian Gapta were probably written by native Kuchäris. ${ }^{28}$ Why should the people of Northern India and of Central Asia have gone to the trouble of cutting up birch-bark and paper into the shape of palm-leaves, when both kinds of material more naturally lent themselves to other (square) forms, which for writing parposes one would have thought to be obviously more convenient than the long narrow strips of palm-leaf? What else could have cansed this, bat the sanction of immemorial nsage among the literary classes of India, the learned and the "religions," those who occapied themselves with the composing and copying of books; and with the spread of Indian culture, through the Buddhist propaganda, its fashions of writing went with it beyond the borders of India. At the same time the circumstance that they imitated the oblong shape of the palm-leaf rather than the squarish shape of the birch-bark leaf clearly points to the conclusion that the writers of the manuscripts in question either came from Western India, or, at least, were influenced by the literary castoms prevailing in that part of India-the part which is included in Alberuni's Southern Indis. ${ }^{24}$

This suggests another thought. The Corypha palm is a South Indian tree. Its leaves established that immemorial and so strongly

[^22]persistent fashion of shaping the writing material, even when it was birch-bark or paper. The people who used those leaves and thus initiated that fashion, must have been the first to learn and adopt the art of writing in India. The late Professor Bühler, in his excellent paper "On the Origin of the Indian Brāhmi Alphabet" (Indian Studies, No. III) and in his Indian Palæography (Encyclopedia of Indo-Aryan Research, Chap. I, § 4), has shown it to be most probable that the Indian Brāhmi script is derived from a Northern Semitic alphabet and he saggests that it probably came by way of Mesopotamia and the Persian Gulf. I agree with Professor Bühler; only I believe the original of the Brāhmi script to have been, not the Phenician alphabet of the 8th or 9th century B.C., but the Proto-Aramaean of the 7th or 6th centary B.C. All the trustworthy evidence, at present available, points to the conclusion that the maritime commerce of India with the West cannot have commenced before the 7th centary B.C., and that it ran from the west coast of India through the Porsian Gulf to Mesopotamia. At that time, there existed a flourishing land-trade between Mesopotamia and the further West through the North of Arabia. The Indian sea-trade connected with this land-trade. The latter had a script, common to all the peoples that participitated in it, and it must have been this script with which the Indian merchants and mariners became acquainted in the 7th and 6th centuries B.C. This script which may be called the ProtoAramaean, was a cursive development of the Phenician, and owed its origin to the need of a popular short script by the side of the more cumbrons cuneiform. Further all available evidence seems to show that, though there probably existed a coasting-trade all along the westcoast of India to Ceylon, the Indian sea-trade to Mesopotamia started from the northern part of the west-coast, above Bombay, in the Gulf of Cambay, where the two ancient ports of Bharoch and Supārā, already mentioned in the Jātakas, are situated. It is here, in the northwestern part of Southern India that the Brāhmi script must have originated, say, between 650 and 550 B.C. It was here that the Proto-Aramaean script was introduced by the Indian marivers, and elaborated into a new script by men belonging to the literary classes of India for the benefit, primarily, of the mercantile classes. These men would not have been slow to notice the advantage of the new importation, and they would naturally alter and enlarge it, and generally adapt it to the needs of their own language and literature. The details of this process of adaptation have been very well worked out by Professor Bühler in his papers above cited. But what I wish to point out is that the three principles on which Professor Bühler shows the adaptation to have been made are most easily accounted for, if we remember the nature of the
writing material to which the Proto-Aramaean script had to be adapted. Professor Bühler accounts for them by "a certain pedantic formalism" of the Indians. But they are far more naturally accounted for by the fact that the South Indians adopted the Corypha palm-leaf to write upon, and took to the fashion of scratching their letters on them. Why they should have chosen palm-leaves and the method of scratching on them, is another question which it would be interesting to explain. But anyhow, as a matter of fact, they did make their choice in that way. And having done so, the principles above referred to followed almost as a matter of course. Considering the venation of the palm-leaf (crossveins running at right angles with the length of the leaf), one could only scratch letters with comfort on them, if they were made "of vertical lines with appendages attached at the foot" instead of the top, and "set up straight." Considering the extreme narrowness of the palm-leaf (about $2 \frac{1}{2}$ inches at most), admitting only a very small number of lines, the letters had to be " made equal in height," lest space was wasted.

In connection with this another point comes in. The Semitic script runs from the right to the left, while the Brāhmi runs from the left to the right. So far as I know, it has never been satisfactorily explained what could have induced the Indians to introduce the change. The boustrophedon method of writing which is supposed to account for the same change of direction in Greece, will not serve as an explanation; for that method has never been observed in any Indian inscription, nor is it ever noticed in Indian tradition. I should like to suggest the following explanation. The original writing material of the Indians were very narrow oblongs : bamboo-slips or palm-leaves. On these they probably wrote (as also the Chinese do) originally invertical lines, parallel with the longer d I a a II b side, ($a b$ in fig. I) and running, after

c $\quad b$
 the Semitic fashion, from the right (a) to the left (d), every letter also facing left. With this method of writing the earlier-written lines would be hidden from view by the hand as it moved across the surface of the writing-material. To avoid this inconvenience, a half-tarn was given to the latter, so as to bring its longer side (ab) to the top (fig. II). The consequence was a complete change in the direction of writing; for now the letters on the lines ran from the left (a) to the right (b), and the lines from the top (a) to the bottom (d), parallel with the longer side (ab) as shown in fig. II. This is precisely the way in which all existing Indian pothis are written. By the half-turn, given to the
material, all the letters written on it would also be placed on their sides, and to obviate this inconvenience, they were again set up straight, but now usually facing in the opposite direction. The original practice of vertical writing may have had a cause similar to that above suggested for the half-turn of the material: or it may have been due to the inconvenience of frequent breaks of continuity in writing extremely short horizontal lines (parallel to ad in fig. I).

This paper was read to the Society in May 1898. Its publication was delayed, in the hope that I might be able to add the results of an enquiry into another source of evidence. But as my work on the British Collection of Central Asian Antiquities will prevent this for some time, it seems betler to present the evidence as it stands at present, especially as it is of such a direct and reliable character. The other source I refer to is the occurrence of the names of the Corypha and Borassus palms respectively in ancient Indian literature. When the date of an ancient work is known, exactly or approximately, one would suppose the occurrence in it of the name of the palms should be a proof, first, of their existence in India at that time, and secondly, of the use of their leaves as writing material. This seems a perfectly sound assumption, but there are several pitfalls to be gaarded against: (1) is the date assigned to the work reliable ; (2) is the passage in which the name occurs genainely old, or possibly a later interpolation; (3) is the application of the terms to the palms in question certain? I have not been able to spare time for the examination of this source of evidence; but I may just mention a few instructive cases to illustrate its difficulties.
(1) Professor Hara Prasad Shastri has drawn my attention to a passage in the Lalita Vistara (Bibliotheca Indica Ed., p. 526, 1. 12), in which the fruit of the Borassus flabellifer is supposed to be referred to. As the Lalita Vistara certainly existed as early as the 3rd century A.D. (having been translated into Chinese in 308 A.D.), we should thus have a testimony to a very early existence of the Borassus palm in India. The passage runs as follows : tad-yath=āpi nāma Tāla-phalasya pakvasya sama-nantaravrnṭta-cyutasya bandhan-ägrayah pīta-nirbhäso bhavati, evam= evu Bhagavato Gautamasya \qquad pariguddhain mukha-mandalam, etc., i.e., "Just as the exocarp of the ripe fruit of the Tala palm, when it drops from its stalk, is of a brilliant yellow, even so is the face of the Blessed Gautama perfectly pure." On referring this passage to Dr. Prain, I received the following reply: " My only objection as a botanist to the identification of I'ala-phala with either the Tāla or Tãlī palms, i.e., with either the Borassus or the Corypha, is that the bundhan-ácraya (exocarp)
of both is anything but 'brilliant yellow.' The fruit of Borassus is 'rusty brown,' that of Corypha 'grey,' when they have respectively dropped from the stalk. Of course, there is a Palm, and that too one which is undoubtedly a native of northern India, with fruits that when ripe do most thoroughly deserve the description 'brilliant yellow.' This is the Kajūr or wild date. The difficulty then, of course, is the name; was Tàla ever commonly applied to what is now more generally known as Kajür? I find that Dr. Watt has been informed (see his Dictionary under Phoenix dactylifera, the Date, and Phoenix sylvestris, the wild date, which is not really botanically separable from the cultivated tree) that in Sind, where, by the way, according to Mr. James and Mr. Strachan Borassus is not grown, one of the names of Phoenix dactylifera is $t \bar{a} r$ to this day, and that in the Panjāb the name Täri is still applied to the juice (taken to make Toddy) of the wild date, Phoenix sylvestris." This seems to me to speak for itself, and shows the necessity of caution in dealing with botanical terms occurring in old Indian literatare.
(2) In the Introduction to the Jataka book there occurs the following passage: puratthäbhimukho nisiditvà ekatthitala-pakkappamāṇe ekūnapaññäsa pị̣de katvă sabbain appodaknற் madhupayāsamib paribhuñji, i.e. (as translated by Mr. Warren in his Buddhism in Trunslations, p. 74) " setting down with his face to the east, he made the whole of the thick, sweet milkrice into forty-nine pellets of the size of the fruit of the single-seeded palmyra-tree, and ate it." The meaning, of course, is that Buddha ate the milkrice in 49 mouthfuls. The passage occurs in the story of the dish of milkrice which was given by Sujāta to Buddha shortly before his eulightenment. I referred this passage to Sir George King who replied " the fruit of Borassus is too big to be likened to the ball which a native of India makes ap when he eats rice. So I presume Corypha must be the species of Tāla meant. Its fruit is small, globular, and not longer than a walnut. The fruit of the Palmyra is of the size of a closed haman fist or a cricket-ball." Measured by it the milkrice, and the "mouthful" would have been an enormous quantity. By the way, the expression "single-seeded" is curious. The rule with all palms is a single seed. The only Indian palm, which, as Sir George King informs me, has occasionally two seeds in its fruit is the Caryota urens, which is common enough in India and Ceylon. If the writer of the Introduction to the Jātaka book knew that the Caryota had sometimes two seeds, it would explain his applying the term "single-seeded" to the Corypha.
(3) There is a well-known passage in Arrian's Indica (Ch. VII), in which Megasthenes is qouted as saying: "They (the Indians) eat the inner bark ($\phi \lambda$ oios) of trees; the trees are called in the speeoh of the J. I. 18

Indians tala, and there grows on them, just as on the tops (кopupr) of
 It is commonly assumed that the tala tree is the Borassus, and that the "something" meaus its fruit. But Megasthenes cannot have referred to the fruit of the tree; he clearly meant something, the nature of which he did not know; it was neither frait nor flower, bat could only be doscribed by its resemblance. Anyhow the whole description of the tree fits neither the Borassus nor the Corypha palm. The only Indian palm which agrees with some items of the description is the Oaryota urens. The pith of it yields sago; and tufts of a kind of woolly stuff grow at the points where the leaves join the stem (see Yale's Friar Jordanus, p. 17, Hackluyt Soc., 1862). These may have been intended by the "inner bark" and the "something" of Arrian. But neither the tufts, nor the fruit of this palm-and, indeed, of any palm-grows on its "top," and the reference to the date-palm remains unintelligible.

One thing is clear. The common assumption in all the dictionaries (Sanskrit or Pali) and translations that tala always means the Borassus or palmyra, and tali the Corypha, is quite unfounded. Tala is simply the generic name of any palm, and the context must show which palm is intended in any particular case. This is certainly the case with the older Indian literature, whatever the modern usage may be.

With reference to page 124, I may now add that the earliest evidence that I can find of the existence of the Borassus palm in India, occurs in Friar Jordanas' Mirabilia descripta, in 1328 A.D. He calls the tree täri (or talli), and says that it "gives all the year round a white liquor pleasant to drink." (See Yule's Hodson Jobson, s.v. Toddy). The reforence to the "toddy" shows that the Borassus palm is meant.

4 collection of Ladakhi Proverbs.-By Ter Rev. H. Francere, Moravian Missionary, Leh. Communicated by the Philological Secretary.

[Read June, 1899.]
The Ladakhi word for proverb is gtamdpe [pronounced stamspe] which means 'word example.' Stamspe is the general term for what might be called quotations, the shepherd's calender and the popular moral code. .

Ladakhi popular poetry bas become famous for the frequent application of the laws of 'parallelism.' Many beantiful examples, illustrative of this form of poetry, will be noticed in the proverbs.

In the following each proverb will be treated in this way-
(a) the Proverb in the orthograpliy of Ladaki letter writing, (b) pronunciation, (c) literal translation [does not claim to be good English], (d) application, (e) grammatical and other notes.
Concerning the orthography of (b) the following will suffice: The vowels are the Italian vowels ${ }^{1}$, ä rather like e. All accents given, refer only to the stress. $s h=A, z h=9, n g=\Sigma, c=\delta, c h=\Phi, j=F, t s=\frac{\Sigma}{\delta}$, ths $=\underset{\infty}{\text { お. }}$. The nnaspirated Tenuis holds the mean between English tenuis and media. Single $r=$ Hindustani r. The r preceding a consonant is like the German gutturul r, following a consonant it is like the English r, spoken quickly.

THE PROVERBS.

(b) spid' nyin ring'moa drang' sumdang dro' sum mi'thse ring'moa skyid' sum dang dag' sum.
${ }^{1}$ They are long, when ending a ayllable, short in all other cases.
(c) On a spring day [there are] three colds and three warmths In a lifetime [there are] three happy [hours] and three unfortunate [hours].
(d) Misery and happiness are well balanced in man's life.
(e) Spid vyin is a Compositum deternina tivum formed from spidka and nyima. Also drangsum, drosum, etc., must be considered as Composita, which accounts for the missing articles; the termiuation $l a$ to be pronounced a.
2.

(b) skyid'dug mi'la, dzer'pa shing'la.
(c) Fortune [comes] to man, [as] a knot to the tree.
(d) No man knows the cause of a knot in a tree, just so unexpectedly misery and fortune come to certain people.
(e) Skyiddug is Comp. copulativum.

(b) thigs'pa sag'na gya'thso gang'.
(c) If drops gather, [there is] a full ocean.
(d) Gung, though of verbal derivation, is often used withont an article to express the adjective " full."
4.

(b) Ma'shroi nag'rang dang lug'khog zam' slel dos'moche dang yag'khog zam'.
(c) With [at the time of] the nagrang festival at Mashro [the heat] is as great as the body of a sheep.
With the dosmoche festival at Leh it is like the body of a Yak.
(d) From the peasant's calendar. Becanse the festival at Leh is celebrated several weeks after that in Mashro, it is warmer then.
(e) Maspro $=$ great joy. Thongh in this proverb the original pronunciation of Leh $=$ slel is retained, in ordinary speech s and l are dropped; final l shows a great inclination to disappear. Sheh, a village on the Indus, was originally spelt shel-crystal, because crystals

- are found in the surrounding hills. Gyapo is said instead of gyalpo, etc. Slel is supposed to have been
corrapted from lal, ruby, it having been the ruby in the crown of the old Ladakhi kings. Dosmoche and nagrang are both non-buddhist festivals. Although the klu's or water-snakes have nothing to do with them, they are Bon festivals, but attended by many buddhist priests and laymen. All evil spirits of the winter are driven into a cake, which is burnt outside the village. In Leh the fetish is formed of mdosmo's, see Jäschke's dictionary. In Mashro it is a black one. According to a different derivation this festival is called 'the black one' on account of the black coat of Langdarma's murderer whose deed is praised then.

(b) spithŭggi rgu'stor dang lug' khog zam'.
(c) At the time of the rgustor festival at Spithug [the heat] is like a sheep.
(d) Often said instead of the former.
(e) The name of the village Spithŭg is said to have been formerly dpethug, 'the arrived at likeness." The monastery of Spithŭg was built after the picture of a famons monastery in Lhassa. Rgustor is a Comp. determ. composed of $n y e r g u=29$ and storma, offering. The devils are urged to enter a large cake, offered to them and the cake is burned oatside the village. 29 is the date of the festival.

6.

(b) sa'la skya're sngo're mi'la skyid're, dŭg're.
(c) On the ground [it is] alternately grey and green, with - man [there is] one turn fortanate, one turn unfortunate.
(d) See 1 (d).
(e) In Ladakhi a single re has often the meaning of some, for instanee lorela, in some years. Here re forms Composita with skyabu, sngonpo, etc.

(b) kha' ran'gu khor'dus, ci' gonbud'de, ci' zä dus'.
(c) The time when the fly turns [flies] round the mouth, is the time of taking off all clothing and eating everything.
(d) A description of summer in the peasant's calendar.
(e) About kha instead of khala see 1 (e). If an r follows a muta, the muta is often dropped in Ladakhi, thus rang is said instead of brang; $c i$ 'what' is used bere in the sense of whatever.

(b) khar'zongi yachula lta'lta, cha'bii ldam'cha yang bud'.
(c) Whilst looking at the glacier water of the Kharzong pass the gathered water of Chubi (a village) is also lost.
(d) take what is nearest!
(s) refers to the system of irrigation. Notice the re-duplication of the verb, implying a durative sense $=$ whilst.

(b) ra'mä thro'a go'a, lug'gi thro'abe'a.
(c) In the company of goats [he says] goa, in the company of sheep [he says] bea.
(d) Said of a man, who has no will of his own,
(e) Goa and bea imitate the voices of goats and sheep respectively.
10. (a)

(b) spid'bad'dus' ston'rdu'dus'.
(c) Spring is the time of working, autumn the time of gathering.
(d) Do everything at the proper season.
(e) The two sentences consist each of a three-syllabled Comps. determ.
11.

(b) spid' baddusla mabad'na, ston'rdudusla gyod'dag.
(c) If you do not work in the spring working time, you will repent in the autumn gathering time.
(e) Notice the change of s iuto r in $r d u=$ gather.

(b) Ladag'skyi zhing'shmos dang nyam'po drug' ldir'na, do'sha gil'idla ston'thog thob'dug.
(c) When at the time of ploaghing in Ladakh the thander sounds, they receive a harvest in dosha [lower Ladak] and Gilgit.
(d) Peasant's calendar. Lower Ladak and Gilgit have an earlier harvest than Leh.
(e) Ldirces is the Ladakhi for adirba. In this Proverb the Genitive in kyi is pronounced in full. The ordinary Ladaki Genitive has a simple i.
13.

(b) yŭnring'na ja'ros ldong'bo chod'.
(c) After a long time a dead bird [which is blown by the wind against the trank of a tree] cats the trank.
(d) With perseverance great things can be done.
(e) $L d o n g b o=s d o n g b o$.

(b) gang'lossi yang'mala lta'lta.
spid'thaggi sor'gob yang bud'.
(c) Whilst looking at the good barley of Gangles (a village) the rough straw of Spithŭg is lost.
(d) See 8 (d).
(e) About lalta, see 8 (e).

(b) ja'thsang'ma ja'yulla song' jangan' ntata'tse shal'juglalus'.
(c) All birds have gone to birdland. The bad [stapid] bird hoopoe has remained to the last.
(d) When a bad thing has been done by several, all who can, disappear, the one who remains, is punished for all.
16.

(b) yar'nyin log'ste man'ne drob' mi bab', gan'yinlog'ste man'ne drang' mi bab'.
(c) Unless the summer-day returns, heat will not come down. Unless the winter-day retarns, cold will not come down.
(d) Everything will come at the proper season.
(e) Mannas, a gerund of man=to be not, ased in the sense of unless, besides, etc., yarnyin, gunnyin, see spidnyin in 1.

(b) thsanstod'la konchog'la so'va tab'rgos thsanskyil'la nyid'log rgos. thsan smad'la jig'stenni las'la sam'ba tang' rgos.
(c) In the first part of the night you must pray to God.

In the middle of the night you must sleep.
In the last part of the night you mast think of the work of this world.
(e) For sova instead of solva, see 4 (e). In dgos, mast, the d is turned into $r, r g$ is pronounced like $c h$ in Loch, lake.

(b) sha va ri'dags ri'na drul'va mig'gi gyan', sman thsar'mo shrang'na drul'va id'kyi gyan'.
(c) The deer Shava walking in the hills is the delight of the eye, a fine girl walking in the street is the delight of the heart.
(e) Notice the classical Participle in va in drulva. In proper Ladakhi the ending khan would be used.

(b) Stag'nä sho'res Mash'roi sho'rela threl'dug.
(c) The harelipped man of Stagna [a village] laughs at the harelip of Mashro.
(d) Everybody sees only his neighbour's fault, not his own.
(s) Stagna = tigernose, on account of a hill of such shape. In the Instrumental shores, the s is pronounced distinctly, although in pare Ladakhi shores would be spoken shorei.
20.
(a) कुरि-
(b) chu'ithsod'la lta'ste, nya'la bar'zum ma tang'.
(c) Do not grasp a fish, unless you know the depth of the water.
(d) Do not accuse 'a man before the court, unless you know how rich he is. (Refers to the former bad management of justice in Ladakh).
(e) The $m a=$ not, of the second sentence sifently refers also to the first.
21.
(a) \ddagger "
(b) sta'zhon go'chag, bong'zhon lag'chag.
(c) Horse-riding [may cause] head-breaking, donkey-riding [may cause] hand-breaking.
(d) It is safest to remain low and hamble.
(e) The two sentences consist each of a two-syllabled Comp. det.
22.

(b) sta'la shmig'pa gyab'ces thong'ste, bon'gui ra'go ma skyang'.
(o) Seeing [them] shoeing a horse, you must not stretch the donkey's foot [for shoeing].
(d) Do not imitate high people and become a fool.
 केन गম
(b) ba'lon med'na lag'midang' thser'ka med'na star'gan nyos'
(c) If you have no debts, you may be security for another; and if you have no sorrow, buy an old horse!
(d) A rich and happy man may do some stupid thing.
J. I. 19
24.

(b) a'ba shi'in sam'spinna star'gan cig'la cila ma tsong's.
(c) If you thought [knew], that father will die, Why did you not sell him [before dying] for an old horse.
(d) Used derisively. You could not help your misfortune just as you cannot sell your father.
(e) Samspin a contraction of bsamspa yin.
25.

(b) zod'pa lta'bui ge'va med zhed'dang lta'bui dig'pa med.
(c) There is no virtue like patieuce; There is no sin like hatred.

(b) La'ma rang'go ma thon'na
shin'poi yar'dren ci co'in.
(c) If the Lama's own head does not come out [cleanly], how will he manage (do) the drawing upwards of the dead.
(d) Used for deriding the immoral life of the lamas.
(e) Thonces is verb neuter of btonces, to put out.

(b) shi'song shi'song zer'na
shin'mig ri'nä lte'n.
(c) If you say " he is dead, he is dead,"

The eye of the dead will look out of the hill.
(d) Ladakhi superstition. It is not good to speak mach of a dead man, his eye might frighten the speaker.
(c) For the n in shinmig or shinpo see also nyin derived from nyima. Syllables ending in a vowel are inclined to add a final n, see also mentog from metog and many others.
28.

(b) rang'skyon phad'gang bor'te
mi'skyon rgye'gangla mathrel'.
(c) Putting aside the large bag [phad] filled with your own faults, do not mock at the little bag [rgye] of your neighbour's faults.
(e) Rang skyonphad gang and misky on rgye gang are Compos. determ. Notice the change of s into r in rgye.
29.

(b) rang'dong ma thong'ste mi'dongla stad'mo.
(c) Not seeing your own [ugly] face, [you make] a scene about your neighbour's face
(d) See 28.
(e) Ltadmo derived from ltaces, to look at.
30.

(b) lag'shes gan'gyi yog'po in'
stam'shes gun'gyi spon'bo in.
(c) Who is clever with his hands, is servant of all, who is clever in his speech, is master of all.
(e) The ending gyi is retained here. The proper Lndakhi would be gunni. The silent g and d in gtam and dpon bo become 8.

(b) chag'poe gas'pola ma threl'.
(c) What is broken, must not langh at what is cracked.
(d) See 28 and 29.
(e) Ohagpo and gaspo are substantives derived from verbs.

(b) mashi'thse ring'dugna shran'mä shran'chang ster'rin.
(c) In the time I live, not die [before I shall die] I shall give you a beer of peas.
(d) A threat. Before my death 1 shall find some opportunity to give you a severe beating. The beer of peas is said to be of a very bad triste.
(e) Mashithsering is a Compos, adverb. and copulat.

(b) ma'bu drabs'than cha'na thsalrgo thsod'mä chod'.
(c) If mother and daughter agree in their connsel, breakfast may pass off well with vegetables [only].
(d) Much displeasure can be avoided by talking over a thing, before doing it.
(e) Mabu is Compos. copulat. drabsthun comp. determin.

(b) sam'ba ngon'la matang'na
gyod'pa sting'na youg'dug.
(c) If you do not give thought first, repentance will come afterwards.
35.

(b) bon'gui nam'chogla ser'lugna yangnathal'ba lugna, tsogs'in.
(c) It is all the same whether you pour gold in the ear of a donkey or dust.
(d) Excuse of the lamas, when asked, why they do not teach the people.
(e) In namchog as in many other words the silent letter of the second syllable is pronounced with the first.

(b) ngan'ma rgag'gyab'na, sting'ma rgod' ma shor'.
(c) When the man who walks tirst, stambles, the man following behind, mast not laugh.
(d) Do not langh at another man's misfortane, the same might easily come to you.
(e) The second sentence in full would be: stingmanas rgod ma shor, from the follower a laugh must not flee.
37.

(b) stag'nanä khyi'yongdug zer'te
zha'bugnä rdo'a khurte cha'rug.
(c) Saying there comes a dog out of Stagna [a village four miles from Zhabng] they go carrying stones out of Zhabug.
(d) Do not be afraid, there will be a helper.
(e) Zhabug=zhabub = falling headlong into a bog; charug= cha'adug; the d of 'adug becomes an r after a stem ending in a vowel.
38.

(b) mi'ngan thsogs' sebla cha'na
shing' ngan ta'ku dang thug'.
(c) When a bad man goes into the middle of a forest, he meets [finds] only with bad crooked wood.
(d) A bad man sees only bad things and persons about him.
(c) Taku is the Ladakhi for crooked, crippled, ill-shaped.

(b) mi'la skyid' mithag'
ra'la thsil' mi thag'.
(c) Man cannot bear good fortune, [just as] a goat cannot bear [eat] grease.
(e) Thagces=thegpa.
40.

(b) khyi'a sgal'dang be'daa shol.
(c) To the dog is a load, what the plongh is to a musician.
(d) Certain people cannot be expected to do real work.
(e) For a instead of la, see l. Beda is supposed to have been
 about the dropping of final l, see $4(e)$; o and a often change in verbal roots.
41.

(b) stä'phang nyo'ngam, spon'boe kyon'nyon'gam.
(c) Do you suffer from being thrown off the horse or from being scolded by your master.
(d) Ironical inquiry, when a person is not in good spirits.
(e) There the classical ending am of the question is retained, the Ladakhi has only a.
42.

(b) thrug'ula spe'ra dang tsun'jungla ja'u.
(c) Speech [of adults] is to a child, what a juu is to the tsunjung [the lama apprentice].
(d) It is not good to speak of everything before children, just as the tsunjung is not deemed worthy to receive a jau, [after having taken part in a religious ceremony].
(e) Spera is originally dpe sgra, for ra instead of sgra, see 7 e . $j a u=a$ little tea, because everything used to be bought with tea in Tibet, a Tibetan silverjan $=3 \frac{1}{4}$ annas, ltsunjung=btsunchung, see Ladakhi Grammar, laws of sound 6 .

43.

(b) kha'tä ko'wag zer'sa dang' la'mä tro'wang zer'sala hleb'dug.
(c) He arrives at the place where the crow says kowag and [then], where the lamas say trowang.
(d) Used derisively of a man, who has nothing to do and spends his life in dullness.
(e) Zersa is Compos. determin. trowang imitates the sound of the big drum.
44.

(b) bal'ti nying'canni nying' kolkol'la bod' nying med'kyi nying stor'.
(c) [Looking] at the tricks of the placky Balti, the heart of the timid Tibetan is lost.
(d) An explanation of the constant bad luck of the WestTibetans on the ground of the national character.
(e) Bkolbkol is a word which seems to occar only in this connection.
45.
(a) মুデ
(b) nyam'po dugs'pa la'maa khyod'.
(c) [When] living together, [we say] "thon" to a lama.
(d) Respect is lessened by closer acquaintance.
(e) Khyod is the common word for addressing inferiors or comrades. A lama ought to be addressed with nyerang; dugspa $=$ dugpar. The Supine is sometimes used instead of the Gerund.

(b) na'ma na'ma zer'ra ning' mi'i yog'mo in'.
gyab'la yu'zhang tag'ga ning sem'pä gob'skor in'.
(c) [Although they] call her danghter-in-law, she is the servant of men. On the back many tarquoises are fastened, but it is a deceit of the soul.
(d) Refers to the low position of the Ladakhi woman.
(e) Zerra and tagga are corrupted from zerbar and btagpar. The supine used instead of the gerund $=x$ gyuzhung $=$ gyuchung $=$ small turquoises. See also buzhung for buchung. All Ladakhi women wear their turquoises on a strap of leather which is fastened on the head and descends to the middle of the back. Semba $=$ sems, soul. samba = thought.

(b) Kha'tä ko'wag zer'pa, cung'kä mig' thrul'.
(c) The crow bas said kowag; [in the] eye of the raven it is mistaken.
(d) A man may say something very nice, [for instance kowag] his enemy will find great faults in it.
(e) Zerpa is past participle ; cungka $=$ skyungka.
(b) za'o kha'tä zos', cung'kä kba' marpo'.
(c) The [stolen] food was eaten by the crow [but the beak of the raven is red.
(d) Often the wrong person is caught instead of the gailty one.
(e) $Z_{0 s}=b z a s, z o s$ is the only past tense in Ladakhi, which changes the vowel.
49.

(b) thsil'thong'ste kha'gas'.
(c) [When] seeing grease, the mouth cracks [open].
(d) When you see something nice you want to have it.
(e) Thsil = matton grease, a very desirable thing in Ladakh.
50.

(b) nor'med thsong'sala cha'na, nyo'dod.
(c) Who goes to the shop without money, likes foolishness.
(d) Do nothing unprepared, you might be langhed at.
(e) Nyodod is Compos. determ. $=$ a liker of foolishness.
51.

(b) stod'na stod'na ngä' sang gyal'lä stod' smad'na smad'na, ngä' sang thus'pä smad'.
(c) Who praises me, is a better man than I am.

Who despises me, is a worse man than I am.
(d) Said by a man who has heard that slander is going on about him.
(e) For sang with the comparative, see Jäschke's grammar ; rgyallas and thuspas are Instrumentals, gyalla=a good man.

A Primer of the Asur dukmã, a dialect of the Kolarian language.-By Trø Rev. Ferd. Habn, German Evangelical Lutheran Mission, Chotā Nägpur. Communicated by Dr. G. A. Grierson, C.I.E.
[Read December, 1899.]
Introductory Remaris.
The Asurs are a non-Aryan tribe of Choța Nāgpar, who number only about 2,500 souls. They chiefly inhabit the Districts of Rañchi and Palāmān and the Sargajā tribatary state. Though small, the tribe is divided into several sections, viz., the Agōriā- the Brijiā or Binjhiāthe Lōhará- the Kōl- and the Pahāriā-Asurs. These sub-tribes are again divided into totemistic sections, which are similar in name to those found among other aborigines in Chotā Nāgpur ; as for example: Bes'erā=hawk; Ind=eel; Bareā=wild dog; Hōrō=tortoise; Būā= jackal ; Rotē $=$ frog, etc. ${ }^{1}$ The chief occupation of the Asurs is melting iron and in the case of the Lōharā-Asurs the making of rude iron utensils and agricultural implements; besides they till the jungle in the most primitive manner. Their homes are made of wood, Bamboo and grass only and chiefly met with at the foot or even at the slopes of the hills which contain iron ore. When the land they have cultivated is exhausted they change their homes and move to another place in the forest.

As to religion the Asurs believe in a Creator and apparently identify him with the sun, whom they call Sijboyā; no worship however is rendered to him, since he is benevolent and does not require any expiation. It is peculiar that they do not know of any evil spirits except the manes of their ancestors, which alone are feared and to whom sacrifices are made; the latter exclusively consisting of fowls. The sacrificial altar is the fire-hearth. The Asurs have no priests, the

1 These totems do not appear to be taboo to the members of its Sept, the only trace of such a thing is to be found in the restriction of intermarriage within the same totemistic Sept; but even here I was told by some men of the Bes'erà section, that they could not help intermarrying, since other sections were living too far away from their homes.
J. 1. 20
head of each family performs the required religious rites. ${ }^{8}$ Every departed parent becomes a spirit and everybody who dies an unnatural death turns into a malignant one. After the death of a member of the household the regular meals are placed in his name outside the home near the door for eight days, after which the nearest relatives and friends come for the funeral meal at which they partake freely of "jhari," Rice-beer, which they brew themselves. The Asurs burn their dead and put some rice on the funeral pile for the journey of the deceased beyond. They do not pick up any relics to keep or put by as other aborigines do. If sickness or any calamity visits the house of the Asur he is sure that some way or other a deceased parent has been disturbed, who must be quieted in the manner described above. The most peculiar feature, however, in the belief of the Asurs is the idea that ancestors or the spirits of the dead are re-born in their children.

The marriage ceremony is very simple, no priestly functions are required. Polygamy is permitted and so is the re-marriage of widows. The price of a bride varies from three to five rupees. Child marriages are unknown to the Asurs. Marriages within the totemistic section is not entirely prohibited, otherwise the common restriction is observed :"Chachērā, mamērā, phuphērā, musērā." The Asurs do not tattoo and ornaments are worn very sparingly. The Baby gets some anklets of iron to protect him from the evil eye of some person outside the tribe; within there are no witches or persons with evil eye. The Asurs are a stern race, have no musical instruments and seldom sing or dance. Rice-beer is indulged in by both sexes, but only men smo ke. They are not very particular about their food and eat almost everything, even the flesh of the carcase of a cow.

I have tried almost in vain to find out any traditions or legends the Asurs might possess; all I could gather is, that they have a rem. nant of the Asur-legend so well known among the Mnṇ̣āris and Urāons.

There can be no doubt but that Asurs are the subject of this tradition, according to which they were destroyed by Siyboya, who ruled that their spirits should be worshipped. The meaning of this tradition is apparently the following :-

The Asurs were the first settlers in the country, which is now called Chōṭa Nāgpur; they were living then pretty much in the same way as they do now, viz., chiefly by iron smelting and a little husbandry. It may be that a section of them had acquired some civilization

2 When they are found to practise demonworship, it is. only in aid to the deity of the village in the precincts of which they live. In these cases the baiga or priest of the respective commanity (Korwà or Uräon) is making the sacrifioe.
and that those remnants of copper mines, found in some localities of Chōțā Nāgpar owe their origin to this advanced section of the Asurs. The Muṇāāis entered Chōtā Nāgpar after them, coming from the West, leaving the Korkus in the Ellichpar District and other Kolarian tribes in other parts of the Central Provinces. Doubtless a fierce straggle between the new comers and the original settlers ensued, in which the Asars, perbaps in a bloody battle were almost annihilated, the surviving remnant being driven to the hills, where we find them even now; however the spirits of the slain haunted the victors who being horrified by the tremendous slanghter they had committed among their enemies, for ever feared that these spirits would take revenge and hence the deifying and worship and propitiation of them by means of sacrifices on the part of the conquerors. The Asurs have most probably adopted the language of the latter, the Mundāris, retaining only part of their original "dukmā" and making such alterations in the pronunciation of the language of their conquerors as suited them best. By and bye they added also Dravidian words to their vocabulary and still later on some Hindì words and thus was made up the present Asur Dukmā, of which on the following pages a grammatical outline is given.

INDEX.

Chaptrer I: On transliteration.

				Page.
1. Vowels	\ldots	\ldots	\ldots	153
2. Hiatus and consonsants	\ldots	\ldots	\ldots	ib.

Chapter II : Nouns.

3.	Gender and number	ib.
4.	Case and signs-	-	154
5.	" examples...	...	-.•	...	ib.
6.	Declination	**	155

Chaptrr III: Adjectives.
7. General remarks on adjeotives 156
8. Comparison of \quad... ... $i b$.

Chapter IV: Pronoune.

	Personal pronoun	ib.
10.	Declination of the first person	\ldots	-0	157
11.	" " second "	\cdots	..0	ib.
12.	Demonstrative pronouns	\ldots	...	158
13.	Declination of demonstrative pronouns	...		$i b$.
14.	Examples of the use of pronouns0.	ib.

Chapter VI : Negatives, Compounds, Causals, etc.
32. Verbs with the negative ib.
83. Examples of verbs combined with negatives ... 165
34. Agreement of the verb with its object ib.
35. Compound verbs ib.
36. Causal verbs 166
37. Defective "... ib.

Chapter VII: Adverbs.
89. Adverbs of time ib.
40. " , place and manner... ib.
41. ", affirmation and negation 168
42. Elliptical sentences ib.

Chaptrer VIII : Numerals, Postpositions, Conjunct. and Interject.
43. Numerals (cardinals)
44. Ordinals $i b$.
45. Postpositions 169
46. Conjanctions and interjections ib.

Chaptre IX: Asur, a Kolarian Dialect.

47.	Similarity with Muṇdāri	ib.
48.	Differences " ""	170
49.	Dravidian words in the	Asur dukmà	171
50. Genaine Asur words ?	ib.	

Chapter I. Transliteration.

1. Vowels.

Short a and long a like the final a in the word America and the a in father, respectively :-

```
* short like the e in the English word glen;
\overline{e}}\mathrm{ long, as the a in rate;
i and i as i, in bit and ee, in tree respectively;
o short like the o in short;
olong as in both;
6 a sound similar to the oa in broad;
u}\mathrm{ short and long }\tilde{u}\mathrm{ as in full and flate respectively;
au dipthong like ou in honse;
ai resembling the i in light.
```


2. Hiatus and Oonsonants.

The check which often ocours after a vowel and especially when two vowels stand together, is represented by an apostrophe ('). The semivowels y and v are frequently employed in connection with short vowels for the sake of euphony.

Little is to be said with regard to consonants, since they are the same as in the Hindi alphabet, with which the reader is supposed to be familiar; the guttural nasal n is represented by a ruled $n=n$. The nasal n in connection with the guttural g is represented by η. The palatial d and t are written d and t and the cerebral $r=r, c$ is pronounced like ch in churoh ch is its aspirated form.

Chapter II. Nouns.

3. Gender and Number.

The Asur dukma does not distinguish between gender. Whenever it is desired to distinguish sex, the Asur adds with regard to children, köra and kūri to hopon, respectively, thus kōra hopon, means a male child, and $k \bar{u} r i$ hopon, a female child. For irrational beings he makes use of the word sandī and ejā; e.g., kūl=tiger, kūl sandi=male tiger ; kūl eja $=$ tigress.

Asur has three numbers, the Singular, the Dual, and the Plural. The formation of the latter two is quite easy; for the Dual simply adds king and the Plural $k \bar{u}$; thus :-

```
hor, a man;
hor kiy, two men;
hor ku, men;
ipil, a star;
ipil kiy, two stars;
ipil ku},\mathrm{ stars;
```

```
haddã, an ox;
hadda kiy, two oxen;
haddà kū, oxen;
dīri, a stone;
diri kiy, two stones;
diri ku
```

4. Cases.

The Nominative, Accasative and Dative have no case signs and are therefore alike; when however in the Dative direction is implied it takes the sign of the Ablative case $t \bar{e}$. The sign of the genitive is a and $r \bar{a}$ and that of the corresponding possessive ren and reni.

The Locative sign is $r \bar{e}$, the vocative is identical with the nominative and is preceded by the interjection oe; therefore

Nominative
Accusative
Vocative
Dative
Dative, II form
Ablative $\}$ are the same.

Genit. $a, r a \bar{a}$.
Possess. ren, renī.
Loc. rè.

5. Oase examples.

Nominative, Accusative, and Dative:
nia dīrīidana, this is a stone.
$\min \bar{a} d i r i \bar{a}$ aguimé, bring that stone.
horkū vedkanā, the men have come.
horkū alopē rūepē, don't beat the men.
$k u \bar{l}$ miad haddā hablidiāe, the tiger has seized an ox.
Asur horku ōt kākū kameã, the Asurs do not cultivate the field, hukū merhed kameä, they work iron.
Sadom idime, take away the horse.
sadom bir ovaiemé, give grass to the horse.
Dative aud Ablative:
Jū, huni te senōme ! Go up to him.
$J \bar{u}$, amă vatu te senōme Go to your village.
in orā tẻ rūar tanāin I am retarning home.
Ablative and Instrumental :
Am okoăte vejulenā ? Where do you come from?
Banai banai horkū rajet tē gojoyanā. Many people died from starvation.
Honā vatu te iy vedlenā. I came from that village.
miniete paisa rejeme! Take away the money from him!
Genitive and Possessive :
in $\overline{\mathrm{o}}$ ō a, my house; ale \bar{a} ora, our house.
ama nyumū citanã, what's your name?
hinira gendra aguime, bring his cloth.
sadom rā caulom, the tail of the horse.
sūtam rā bäver, a rope of cotton.
merhed rā katu, a sword of iron.
nea disum ren raja \bar{a}, the king of this country.
nea ora \bar{a} ren $\bar{i} h o r k \bar{u}$, the men of this house.
boyoy rēni hopon, this is my younger uncle's son.
Asur rēni Baiga kunia, the Asurs have no priests, lit. of the Asurs no priest is.

Locative:

orā re, in the house.
okoäré dōhótanā ? Where (in what) do you stay?
$\operatorname{mini} r \bar{e} d a ̄ r i ̄ ~ k o n o \bar{a}$, he has no strength (in him).
Burū ra usul ré, on the top of the hill.
otē latar r®, underneath the earth.

6. Declination of the noun.
 hopon, child.
 Singular.

Nom. hopon
the child.
Gen. hopon ra or hopon ren, veni of the child.
Dat. hopon or hopon te
Acc. hopon
Abl. hopon tē
Loc. hopon rē
Voc. oe hopon
to the child.
the child.
from or by the child.
in or on the child.
oh child.
Dıal.
Nom. hoponkiy
Gen. hoponkıy rã or ren, reni
Dat. hoponkiy or te
Acc. hoponkin
Abl. hoponkin te
Loc. hoponkiy rē
Voc. oe hoponking
the two children.
of the two children.
to the two children.
the two children.
from or by the two children.
in or on the two children.
oh ye two children!
Plural.
Nom. hoponkiu
Gen. hoponkī $r \bar{a}$ or ren
Dat. hoponkū or te
Acc. hoponkiu
Abl. hoponkū $t \bar{e}$
Loc. hoponkū rē
Voc. of hoponkū
the children.
of the children.
to the children.
the children.
from or by the children.
in or on the children.
oh children.

Chapter III. Adjectives.

7. General remarks on adjectives.

Adjectives are subject to no ohange whatever, they are in reality nouns and are therefore declinable.
hini buggi hor idana, he is a good man.
nihi sadom hetkan idana, this horse is bad.
nihi mandì sibil koned, this meal is not savoury.
Asur horku hudiy idanãkī, the Asurs are a small people.
Ranchī rē bana Gomkekī idanakū, at Ranchi there are many Sahebs.
Usul burū, the high mountain.
Adjectives are formed from nouns by adding the past participle ending of the verb, e.g., napa, health, napakan, healthy. Verbal adjectives are formed in the same way; example: rūva, to be beaten, rūväkan, beaten; huni napākan hor idana, he is a healthy man. Hukū rūvalkan mudaikū idanākū, they are beaten enemies.

8. Comparison of adjectives.

The degrees of comparison are expressed in the same manner, we find in Hindi and the Kolarian languages, viz., the word compared stands in the nominative and the word with which it is to be compared, is placed in the Ablative case, thus:-

Iy $\bar{o} \bar{r} r \bar{a}$ ama ōra te badea, my house is larger than your's.
Sadom te häthi daria, the elephant is stronger than the horse.
Ina seyot sanamkū te usulai, my daaghter is the tallest (taller than all).

Chapter IV. Pronouns.
9. Personal pronouns.

Singular.

1. $1 \eta, I$.
2. am, thou.

Dual.
alin, we two.
akin, I and you two. aban, you two. akiy, they two.

From the above it will be seen that in the Dual and the Plaral there are two forms of the second person, the first excluding and the second including the speaker. On the other hand the third person is wanting and the demonstrative pronoun is used instead.
10. Declination of the first person singular.

Nom. In
Gen. ina or iyreni
Dat. in or in ete
Acc. in
Abl. in te or in ete
Loc. in rd

I.

of me, my, mille.
to me.
me.
from or by me.
in me.

Dual, first person.

Nom. alin
alan
Gen. alinā or ra, renī
alajā or rā, reni
Dat. aliy or aliy te
alay or aluy te
Acc. alig
alay
Abl. alig te
alay te
Loc. alij rē
alay re
we two.
I and you two.
of as two, our.
of me ánd you two.
to us two.
to me and you two.
us two.
me and you two.
from us two.
from me and you two.
in us two.
in me and you two.

Plural, first person.

Nom. Ale
$a b \bar{u}$
Gen. alēa or rā or reni
$a b \bar{u} \bar{a}$ or $r \bar{a}$ or $\cdot \mathrm{en} \bar{i}$
Dat. alē or $t \bar{e}$
$a b \bar{u}$ or $t \bar{e}$
Acc. alē
$a b \bar{u}$
Abl. alē tē
$a b \bar{u} t \bar{e}$
Loc. ale re
$a b \bar{u} r \boldsymbol{e}$
we.
we all, addressees included.
of us, our.
of us all, our do.
to us.
to us all do.
ns.
us all do.
from us.
from us all do.
in us.
in us all do.
11. Second person singular.

Nom. $a m$
Gen. $a m \bar{a}$ or $a m r a ̄$ or comreni
Dat. amā or amātē
Acc. $a m$
Abl. amã te or amadete
Loc. amā ré
J I. 21
thon.
of thee, thy, thine.
to thee.
thee.
from or by thee.
in thee.

Dual, second person.

Nom. aban
Gen. abună, abanrā, reni
Dat. aban, aban tē
Acc. aban
Abl. aban te
Loc. abran re
you two.
of you two.
to you two.
you two.
from you two.
in you two.

Plural, second person.

Nom. ape
Gen. apēa, rā, renī
Dat. apē or apēātē
Acc. apē
Abl. apēate
Loc. apē re
you.
of you.
to you.
you.
from you.
in you.
12. Demonstrative pronouns.

Proximate: hini, this, he, she, it; also mini. remote: huni, that, lie, she, it; also muni. proximate: nihī, nia, nea, minā, this, it. They are used both for rational and irrational beings. Proximate: hik $\bar{u}, n i k \bar{u}$, these; hikij, these two. remote: hukū, nukū, those; hukiy, those two.
13. Declination of the demonstrative pronoun.

Gen. hiniā, ra, reni
" huniā, rā, renī nihā, neā, nerā, nihereni
hikūā, rā, rēñ
hukūa, rā, renī hikipa, rà, reni
" hukipa, rā, reni
Acc. and Dat. hini te, etc.
Loc. hunī $r \bar{e}$
of him, his, her, of this;
of him, his, her, of that ;
of this, of that ; of these, of them, their; of those, of them, their; of these two, their ; of those two, their; to him, from him ; in him.
14. Examples on the use of pronouns.
$i \eta \bar{a}$ adde vejume, come to me (my place come);
$a m \bar{a} \bar{o} r a \bar{a}$ oko $\bar{a} r \bar{e}$? Where is thy house?
hinià sêtã aguimé, bring his dog ;
nihā sadom okoerā idanā ? To whom belongs this horse?
nihi hor ovaime, give to this man;
huni Asur kunia, he is no Asur ;
$\operatorname{minī} d u k i n a ̄ l a \bar{e}$ tuanā, he can't speak the langagge ;
mina citan vatu? Which village is this?
hikūrā sadom nyeläme, look after their horse.
hukura meromkū kīl hablidiae, their goats were destroyed by the tiger.
nukij hor reni küri horkij okoa rē, where are the wives of those two men?
15. Relative pronouns.

There appear to be no relative pronouns. The Asur simply relates the facts as they occurred and does not care to combine them in any way; thas the sentence: The man died who came yesterday, he will simply render by relating first that the man catme and then that he died : Hor vedyanä huni godyonā, lit. man came, that died.

16. Interrogative pronouns.

These are okoe who, which, what;
oko which, what;
citan which, what; also okin, how.
The declination is regular :
okoe rā, renī; okoe tī ; okoe rē;
okoe vedlenă, who came?
okue te vejuyanā, where did you come from?
okoe nyelkeda, who saw it?
am citan koeyana, what do you want?
These pronouns are used also of course as pronominal adjectives, in which case they retain their form: okoe küri vejuyana? What woman was coming \mathfrak{P} Huni oko orā rē dohótanā ? In which house is he staying? Okin sayija ? How far will it be?

When the question is pat to somebody, whether he should like to do such and such a thing, ci $k a$ is generally added to the question ; e.g., Will you buy this? Nia tilaiyà ciki? Is there water and fuel at your village? Ama vatū ré da'ā idanā ci ka? ci ka meaning "or not." Where we however would use in a sentence "or not" it is expressed in Asar by ci konã or kunia, e.g., Will you obey my order or not? Ija dukma sāriya ci konã? Do you know (can you speak) Hindi or not? Am Sadān dukma däriā ci konā ?

17. Indefinite pronouns.

For the indefinite pronouns "anyone" and "anything" the demonstrative prouonos okoe and ok $\bar{\sigma}$ are used, besides okj for "any" and "some":

Ora re okoe idana? Is there anybody at home?
Okā heta hejomé, come at any time.
Oka okd hela kül hejuă, sometimes the tiger comes.
"Something" and "anything" is also expressed by citan:
Amā citana idanā? Have you anythiug? (lit. of thee, thine anything is)?

18. List of names of relatives.

There is also in Asur the curious method of combining the pronomen possessivum with the names of parents, children and relatives in general. As the Asur dukmā is rather rich iu these names, a list of the principal is given below :-

Chapter V. On the Verb.
19. On tense characteristics.

The Asur dukmã has strictly speaking only 4 tenses: the present, the imperfect, the past or perfect, and the future.

The present teuse active and neuter voice add $\tan \bar{a}$ or \bar{a} to the root: uyeltana, I am seeing; druptanā, I am sitting; idan-त्त (idanal), I am being; and yunā and tuda \bar{a} for the indefinite: botoyana, it is hot; rabay yana, it is cold ; sentadā, I go ; jomtada, I eat.

The imperfect of transitive verbs adils to the root ldiñ, lidia, la ; that of intransitive verbs adds lenã aud ynñ̃ : senlenã, I was going; dıhólenã, I was remaining; dukmalidia, was speaking; ovaldiñ, was giving.

The perfect adds to the root the following tense characteristics: $\bar{a}, k e d \bar{a}, k e d, l e d \bar{a}, y a, y a n \bar{a}, k a n, k a n \bar{a}: ~ j o m k e d \bar{a}, ~ I ~ h a v e ~ e a t e n ; ~ v e j u k a n a ̄, ~$ I have come ; senyanā, have gone; dukmāyana, have been called.

The fatare adds ea, ey \bar{a} or $y \bar{a}$ and in some words $n \bar{a}: ~ s e n e \bar{a}, ~ I$ shall go ; dukmāya, shall speak; ragēya, shall call ; rūeă, shall beat.

With regard to the fature tense it mast be observed, that the Asur will never employ the present, as is done in English, when in reality the future is meant; for example "Can you do this?" or "Do you know this?" must be rendered by using the future tense: Nihi kameyā? Nihí tuanā? "I go home this year." Neā mès rē ōrā tē senōain, lit. this year in house to I will go.

20. On participles.

The adverbial participle adds re to the root of the verb: nyūe re godyana, he died drinking, in the act of drinking.

In the present participle the stem is repeated and then $t e$ is added : jomjomte, eating; nyel nyel ta, seeing.

The past perfect participle adds kan and te to the root: jomkante, having eaten; also len, e.g., senlen te jomed, having gone, I will. eat; vejkante, having come.

The conjunctive participleadds ked $t \mathbb{E}$ and $t E$ to the root of the verb : jomked te after having eaten; nyelte, after having seen.

21. On the infinitive and conditional.

The infinitive adds $t a ' \bar{a}$ to the root of the verb : nyuta' \bar{a}, to drink; drupta'a, to sit; nyelta'a, to see ; jomta' \bar{a}, to eat.

The conditional adds re together with the particle do which is similar to the Hindi " $t \bar{o}$, " e.g., inā sen rédo bésey \bar{a}, if I go, it will be well; huni vejā rēdō neleya, if he had come, he would have seen; in rūrēdo, if I beat; bugē lekā tē kāmē rē dō-amã pairā yameã, if you work well, you will receive money; tē also is used for the conditional, e.g., ama tuaete in rageya, if I knew thee, I would have called thee lit. from knowing thee I shall call thee.

22. On the passive voice.

Little is to be said with regard to the passive voice. For the present tense od or va is added to the root: rūvatana, I am beaten. In the past tense it is rūvăyană, I was beaten; and in the future vā or gon is simply added to the root instead of $e \bar{a}$ in the active and neuter verb: rūgoa, I shall be beaten.
23. General remarks.

The noun of agency is formed by adding ae to the root, which is repeated : jojomae, eater; rūrūae, beater. Nouns are formed from
the verb by dropping the ending of the infinitive: dukmata'a, to speak; $d u k m \bar{a}$, speech ; jojom, food, from jomta'a, to eat is an exception.

In conjugation the pronominal termination of the subject is added to the inflectional ending of the verb, but this principle is not so universally applied in the Asur Dukmà as for example in the Mundari language.
24. Conjugation of the verb : rūta'a, to beat.

Present tense: I beat or I am beating.

Sing. 1. in rūtanā or rūtanaiŋ
2. am rūtana or rūtanam
3. huni rūtanā or rūtanāe

Dual. 1. aling rūtanā or rūtanālin
1+2. abaj rūtanā or rūtanãlay
2. aban rūtanā or rūtanāban

- 3. akī rūtanā or rūtanākiŋ

Plor. 1. alē rūtana or rūtanale
1+2. $a b \bar{u} r \bar{u} t a n a \bar{a}$ or rūtanābu
2. apē rūtanã or rūtanāpē
3. huk \bar{u} rūtanā or rūtanāk \bar{u}

I am beating.
thou art beating. he, she, it is beating.
we two are beating.
I and you two are beating. you two are beating. they two are beating. we are beating. we and you are beating. you are beating. they are beating.
25. Inperfect tense : I beat or was beating.

Sing. 1. in rūlidiā or rūlidiain
2. am rūlidiā or rūlidiām
3. hunī rūlidià or rū̆lidiãe

Dual. 1. alin rūlidià or rūlidiălin
1+2. alay rulìilia or rūlidilán
2. aban rūlidiā or rūlidiaban
3. akiy rūlidia or rülidiākin

Plur. 1. ale rulidiã or rülidialle
1+2. $a b \bar{u}$ rūlidiā or rulidiābū
2. apẽ rūlidī̃ or rūlilīīpe
3. hukū̆ rūlidiä or rūlidī̃̄kū

I was beating. thou wast beating. he was beating. we two were beating. I and you two were beating. you two were beating. they two were beating. we were beating. we and you were beating. you were beating. they were beating.
The imperfect may be formed also with the auxiliary dohotanā, in rū dohókedain, etc.
26. Perfect tense : I have beaten.

Sing. 1. iŋ rūkedā or rūkedäin
2. am rūkedā or rūkedān
3. hunī rūkedà or rūkedāe

Dual. 1. aliŋ rūkedā or rūkedālin
1+2. alay rūkedà or rūkedalay
2. aban rūkedā or rūkedäban
3. akin rukedā or rukedaking

I have beaten. thou hast beaten. he has beaten. we two have beaten.
I and you two have beaten. you two have beaten. thes two have beaten.

Plur. 1. alè rūkedã or rūkedālē
1+2. abü rūkedă or rūkedābu
2. $a p \bar{e} r u \bar{u} e d \bar{a}$ or $r u \bar{k} k e d a \bar{p} \bar{e}$
3. hukū $r u \bar{u} k e d a \bar{a}$ or $r u \bar{k} e d a \bar{a} k u$
we have beaten. we and you have beaten. you have beaten. they have beaten.
27. Future tense : I shall beat.

Sing. 1. ī rūeyā or rūeyaig
2. am rūeyä or rūeyām
3. hunī rūeyă or rūeyāe

Daal. 1. aliy rūeyā or rūeyālin
1+2. alay rūeyā or rūeyāliy
2. aban rueyã or rūeyaban
3. akig rūeyā or rūeyäkig

Plur. 1. alè rūeyă or rūeyàle
1+2. $a b u \bar{u} r \bar{e} e y a ̈ a ̀ ~ o r ~ r u ̄ e y a b u ̄ u ~$
2. apē $r \bar{u} e y a ̄$ or $r \bar{u} e y a ̄ p e ̄ ~$
3. hukū rūeyā or rūeyākū

I shall beat.
thou wilt beat. he will beat.
we two shall beat.
we and you two shall beat.
you two will beat.
they two will beat.
we shall beat.
we and you shall beat.
you will beat.
they will beat.

The past fature is formed with the help of the auxiliary cabta'a : in rücabe'ain, I shall or will have beaten.
28. Oonjugation of the conditional.

Sing. 1. ī rūrēdō or rūrēdoin
2. am rūredō or rūrēdōam
3. hunī rūrēdō or rūredō̃àe
if I beat.
if thou beat.
if he beat.
if we two beat.
if you two beat.
if they two beat.
if we beat.
if you beat.
if they beat.
29. Conjugation of Passive present: I am beaten or being beaten.
iy rūvàtana or rūuàtanaíg am rūvatanã or rūvätanam hunī rūvātanā or rūvãtanāe alē rūvătanā or rùvatanāle

I am beaten. thou art beaten. $h e$ is beaten. we are beaten, etc.

Past: I was beaten.
ī rūvàyanã or rūvāyanãī am rüvayanā or rūvāyanām alin rūvăyanã or rūvāyanālín alē rūvăyana or rūvayanale $h u k u ̄ u ̄ u ̄ v a y a n a ̈$ or rūāyanäkū

I was beaten. thou wast beaten. we two were beaten. we were beaten. they were beaten.

Future: I shall be beaten.
in rugoã or ragoaing
alin rūgoã or rūgoāling alē rūgoā or rūgoālē

I shall be beaten.
we two ahall be beaten.
we shall be beaten.
30. The potential.

For the potential mood $k \bar{d}$ is added to the modified stem of the verb.

Sing. in rū̄k \bar{a} or rāēkāin
am rū̄ēka or rūēkàm
hunī rūekā or rūekke
Dual. alin rūēkā or rūēkālin
aban rūēka or rū̄ekäban
akiy rūelkd or rūēkākiŋ
Plur. ale rūēkā or rūēkāle
ape rūelca or rūēkāpē
$h u k \bar{u} r u \bar{e} k \bar{a}$ or $r u \bar{e} \bar{k} k \bar{a} k u \bar{u}$

I may beat.
thou mayst beat.
he may beat.
we two may beat.
you two may beat.
they two may beat.
we may beat.
you may beat.
they may beat.

The verb tuaina, "knowing" is frequently used in the sense of a potential; e.g.,
in senea tuaina
I will be able to go;
in kain seneā traina
Hunī dukmā kāe tuainā
I will be unable to go.
he cannot speak Asur.
It is used also as a permissive :
in jıb jom tuainā, l can, i.e., I am permitted to eat meat.
31. The Imperative.

The imperative is the same as in Mundāri, with this difference that for the sake of euphony the imperative endings $m \bar{e}$ and $p \bar{e}$ and $k \bar{a}$ are often preceded by the vowel e.

Sing. 2. rūencē beat thou or am rūeme.
3. rūekāe

Daal. 2. rūēban
3. rūēkākin

Plur. 2. rūèpē or apē rūēpē
3. $r u \bar{e} e k a ̄ k u \bar{u}$
may he beat.
you two beat.
may they two beat.
you beat.
may they beat.

Chapter VII. Negatives, Compounds, Causals, etc.
32. Verbs with the negative.

There are in the Asur dakmā three negatives which can be connected with any verb, viz., $k \bar{\pi}$, not; alūkā, may not and alō, do not.
$k \bar{a} i \eta$ rūeãin or $i n k \bar{a}$ rūēain
$k \bar{a} m$ rūēām or $a m k \bar{a} r \bar{u} \bar{p} a m$

I will not beat.
thou will not beat.
he will not beat.

Alōkuig rùzaiy or rừgo	I may not beat.
alōkam rūzam or rū̆go	thou mayst not beat.
	lie may not beat.
alomı rūzme	do not leat, (thon).
alūpē rū̃̀p	do not beat, (you).

$k \bar{a}$ is often emplosed in the sense of "not" in connection with adjectives; e.g., $k \bar{a}$ parila , not good, i.e., bad, $k \bar{a}$ answers therefore our usual negative prefix un.
33. Examples of verbs combined with negatives.
in kāin jomtanain
am kămı jomtanäm
apē kāpe jomtanãpe
ī kuàin senā
àle käle senā
àpe käpe senā
alōkaìy sena
alokākū senā
alom jomme
alökahū jomed
alōkàe veja
alom señōāe

I do not ent. thou dost not eat. you do not eat.
1 will not go.
they will not go.
you will not go.
I may not go.
they may not go.
do not eat.
do not let them eat.
do not let him come.
do not let go.
34. Agreement of the verb with its object.

The curious peculiarity of making the active verb to agree with its object, found in the Kolarian languages, is also met with in Asur; for example:
huni kulkijàe
hunī kulkedneeãe
luni kulkediā
igā alom rūinmē
huni alom rūiemē
alìn rūkiy $p \bar{E}$
hunī kulkedkūāe
ovãinme
ovalemē
dukmãetanāiz
hunī dukmākūtānãe
he sent me.
he sent thee.
he sent him.
do not beat me.
do not beat him.
beat then (two).
he sent them.
give me.
give us.
I am saying to him.
he says to them.
35. Compound verbs.

Compound verbs are frequently used in the Asur dukmā; a noun being followed by the verb dohóteă, to be, to remain; e.g. :
in häsu dohótana
hunī hãsu duhótanãe
J. І. 22

I am ill ; lit. I pain remain he is ill.
in hasu dohólenā or dohólenain I was ill. am hāsu dohólenã or dohólenam thou wast ill. ale hāsu dohokedale
hukū hasu dohókedākū
rayet', hunger : rayet'yanaiy
rabay, cold : rabaytana
lōlō, hot or heat, lōlō tanain
in rapet dohóeyain
we were ill.
they were ill.
I was hungry, poor; lit. I
hunger was.
it is cold.
I feel hot.
I shall be hungry.
There are many verbs combined with the word riar, back; which is conjugated regularly.

Sen rūaryanaij
apē sen ruarpe
hukū dukmā rū̄arkedākū

I returned.
come ye back, return.
they replied, answered.

36. Causal verbs

are formed by the insertion of the particle ge between the root of the verb and its termination; example:
in druptanãin
in drupgētanain
nyuemē, drink! nyūyegãme
jomme, eat! jomgeme
nirēmé, ran! niregẽmē cause to ran!

Cansals of course are formed also by different words :
hukāȳ̈me, hide; intr. horogème, hide; trans. gitijẽme, sleep;
intr. konyonemé, make to sleep; raputed, to break; intr.
raputendemē, break; trans. gīemé, cut; trans. magēmē, make
to cut.
The completive is caba : Huni jomcabayana, he has finished eating; $h u k u \bar{u} r u ̈ c a b a ̄ k e d a \bar{k} \bar{u}$, they have ceased beating.

37. Defective verbs

" $\tan \bar{a}$ " is only used as inflectional ending in the verb of the present tense, meaning " to be" "idana" to be, as a rule is likewise employed only in the present tense sing. and plur. It is often employed where we use the verb to have: am \bar{a} adde pais $\bar{a} \bar{i} d a n \bar{a}$? have jou money? lit. is there money with you?
apee cimin hor idanā how many men are you?
amā hoponku idana have you children?
The verb used to make good for the want of the auxiliary verb to be is dohóta'd, to remain; which is used also in the present tense.

iŋ Asur dohótanāin	I am an Asur.
in hāsu doholena	I was ill.
in rū dohēkedā	I was beating.

In fact it is with the help of dohota' \bar{a} that those tenses may be made up in Asur which otherwise are wanting.
38. The verb : not to be.

The counterpart of $\overline{i d a n a}$ is kono \bar{a} and kon \bar{a}, not to be: in Asur kunià, I am not an Asur. Kınnin, not to be present: Säheb kuniã, the Saheb is not present. Kunea, will not be present. Amā hadda idanā ci konoā, have you oxen or not? Orā ré okoe idanā ci konoā? Is there somebody at home or not? Okoe kunia, there is nobody (man) present. Ijā adde paisā konā, 1 have no money; lit. with me there is no pice.

Chapter VIII. Adverbs.
39. Adverbs of time.

enan	just now.
nahā	now.
niho	then.
bärhin	now-a-days.
okỉ helā	sometimes.
tihin	to-day.
holā	yesterday.
gapā	to-morrow.
mısip	one day.
barsin	two days.
$n \boldsymbol{U}_{s}$	this year.
hon kalom	last year.
baggi	time.
orte re	once, one time.
auri	not jet.

40. Adverbs of place and manner.
nene, nende
honhon re
nenēte
honde
okoäre, okoat te
hinad rē, himä
sanio
bekar: kudahā
here.
beyond.
from here.
there, thither. where, whither.
near.
far.
very; very much.
nimin, nimin $\boldsymbol{\text { e }}$ hinā $r \bar{e}$ numun, ทитmun reモ $n u ̄ i ~ l e k \bar{a}$ te oko leka te thaukā rokē, rokē rolee
this many, much.
namely.
thus.
in this way. somehow, anyhow. well, exactly. quickly.
41. Adverbs of affirmation and negation.
```
\pi
alo
```

koan, kran no, not.
$g \check{e}$ indeed, certainly.
yes.
do not.
42. Elliptical sentences.

Of these the following may be mentioned with the adverbs, ciz., $c b \bar{a}$, come here; dol \bar{a}, come along; it \bar{u}, who knows.

Citanā ci leka!
Citan ciliyana?
jojom te lengā te

What can be done!
What or how do you do?
right hand.
left hand.

Chapter IX. Numerals, Postrositions, Conjunctions and Interjections.
43. A. Numerals (Cardinals).

The Asur can ouly count up to four.
miad
bariá
pēā
upun
one.
two.
three.
four,
which are used for all genders: $p \overline{\bar{a}}$ hork \bar{u}, three men; pē \bar{a} hadd \bar{a}, three oxen.

For the rest the Asur employs Hindi numerals; for twenty kūri is nsed: miad kūri, one score.

> 44. B. Ordinals.

The Asur dukma has only three ordinals, viz.:
sida
c!a
nande
first.
second.
third.

For single ofay; for both bannar is used.

sanam

45. Postposition 5.

maray re	in front, before.
taiyom rē	after, near.
usul re	on, above.
latar ree, otere	noder, onderneath.
adde, tūlē (urāon)	with, by, along with.
gati	together, in company.
mina	inside.
tald re	among.

46. Conjunctions and Interjections.
$g \bar{a}, e g \bar{a}$
hina gē
nihi ra'ate
niä mente
hente
enan-miyan:
$c i-k \bar{a}$
ci-koan $\}$:
niho
hed, orō
hed te
pa'en
$h o ̄ n$
for.
therefore.
for this reason.
for that.
therefore.
when-then.
or-not.
then, thereupon.
and.
and then, from then, thereupon.
bat.
even.
$o^{\prime} e$ in addressing, oh; kó is added in calling or shouiing. Asur rā orā $r \bar{e}$ alom bolō kó, do not enter the house of the Asur. $\boldsymbol{j u}, \boldsymbol{j u} \boldsymbol{j u}$! Go, be off ! kó, halloh !

Chapter X. The asur dukmà a Kolarian dialect.

47. Similarity with Mrundāri and Santhälī.

A glance at the preceding pages will convince the student of Kolarian langnages that in the Asur Dukmā we have to deal with a Kolarian dialect pure and simple.

The declination of the noun and pronoun, the conjugation of the verb, the dual number, the manner in which the verb is made to agree with the object, the similarity of the pronouns and numerals as well as of the postpositions and conjunctions, all these characterize the Asar Dukmà as a Kolarian Dialect.

Moreover if I were to prove this fact by a Vocabulary, I might simply take out four-fifths of the Mundāri or Santhāli vocabulary. Yet
there are differences between Asur and other Kolarian langaages, peculiarities, which it will be worth while to notice.

48. Differences with Mundāri.

Wherever a Mundāri word begins with the consonant h, the Asur has v; e.g.:

Mandāri : hiju,	Asur : veju
hatu,	$v a ̀$

The Asur is fond of the y before vowels as against the Mundāri :
Mandāri nel; Asur nyel see. " nutum; " nyumun name. " nam; " yam to seek, find.
Other differences may be.seen from the following words:-

Mandārí : hon;
hor ${ }^{\mathbf{j}}$
kulä;
dub;
reje;
jilū ;
om;
gitil;
$a k o ̄$;
ko;
etkan;
$n i$;
${ }^{n} \boldsymbol{e}^{\boldsymbol{a}}$;
ne;
$n a ;$
tisin;
ote ;
hanativ;
nêrē, enté ;
adeā;
apīa;
hor ;
calom;
bayar ;
atom; " hātom
ged cat;

Asur : hopon
" hor
$k u \bar{l}$
drup
ranget
jil
ovat
bitil
$h u k \bar{u}$
$k \bar{u}$
hetkan
hinī
huni
nihi
nahā
tihin
ōt
hātio
nēnē, hondē
ad
pēa
, rēre
caulom
bāver
ged
child. man. tiger. sit. hunger.
flesh.
give.
sand.
they.
plural ending in arms.
bad, evil.
this (man).
that.
this.
now.
to-day.
carth, field.
portion.
here, there.
lose.
three.
sow.
tail.
rope.
aunt (father's sister).
to slaughter, kill.

The most striking difference between Mundāri and Asur appears to be that the auxiliary verbs are different from each other; for whilst the former has mena to be, the latter has idana; and for the negative
" not to be" we find banoa and konor respectively, the latter being only found in the Mundāri patois spoken round about Ranchi. Whilst Mund̄āri has taikenā for was or remained, the Asur has dohblena. Even where words in Asur seem to be identical with the corresponding Mund̄ari words, there is this difference between them that the Asur uses them in a more general sense, than the Mundè does; e.g., rū is in Mundeari to play (beat) the drum, also to beat with a stick; but in Asar it means only to beat, strike; säri, to play; but in Asur it means to rejoice.

49. Dravidian words in the Asur Dukmä.

There are doubtless words used in Asur which are Dravidian; however these may have been borrowed from the Orāons; for example baiga; priest is the Orāon naigã; ēde, to plant, is the Kurukh id ; e!a, second, the Kurukh endtä; pōta, belly the same as pōtā ; pa'en, pahen and hon the emphatic affix are in both languages the same; eja, inyō, mother, are apparently of the same origin; cohnd, kiss conha, love, in Kurukh ; orté ré, once in Asur and ort one in Kurukh; thauka, right; adde, place, also tülē, with $\bar{o} t o \eta$, single. Some of these are met with also in Mundāri and it may be a disputable question whether these words are Dravidian or Kolarian ; e.g., adde, thaukā, con = comhn, eøa.

50. Genuine Asur words.

There are many words in Asur which I am unable to derive either from Mundāri or Kurukh words, for example :

here	husks;	hurū	unhusked rice.
laini	harlot;	anyan	mercy, kindness.
pärila	good;	usad	anger.
lilai	distribute ;	sodor	arrive, perhaps the seter in Mundāri.
dukma	speak;	iri	conscience, wise (perhaps
minã	inside ; c	connected	h the Kurukh ērnā, see.)
baggi	for time, season;	; dohō	remain.
katin	a little;	usul	high.
$n \bar{a} p a ̄$	well, healthy ;	banai	many.
tejöt	daughter ;	roke	quickly.
hili	uncle (mother's brother) ;	javar	gather.
tejam	son-in-law ;	rod	embrace.
hata	grand-father ;	idana	to be.
huhī	brother-iu-law \&	\& iyad	sister-in-law, etc.
hed	and;	barkip	now-a-days.

F. Hahn-A Primer of the Aour dukma.

An Inscription of the time of Kapilèndra Dēra of Orissa, from Göpiñātha-' puru, District Cuttack. (With an Appendix on the last Hindu Kings of Orissa.)-By Babu Mon Mohan Chakratarti, M.A., B.L., M.R.A.S.
[Read April, 1899.]
This inscription comes from the village Gōpināthapura in District Cattack, Orissa. Ihe village is 13 miles N. E. of the town Kataka, and stands on the Birūpā branch of the river Mnhānadi. Its position would be about $20^{\circ} 31^{\prime}$ Lat. and $86^{\circ} 4^{\prime}$ long. The inscription is on a stone slab attached to the eastern gate of a middle sized temple of Jagannāthn. It commemorates the erection of that temple and of the companion temple of Gundicä, where the cars used to be driven to at the time of the great Ratha festival. Both the temples now lie dilapidated, and the car-festival is no longer held.

The stone slab containing the inscription is about $3^{\prime} 3^{\prime \prime} \times 2^{\prime} 6^{\prime \prime} \times 6^{\prime \prime}$. I edit the inscription from two inked estampages not very well done. The inscription is peculiar at least in one respect. The language is Sanskrit, but the characters are Oriyà. As yet this appears to be the earliest known inscription of such a kind.

To begin with, the characters generally resemble the modern Oriya letters. Small differences are observable in ca, jn, da, ta, dha, blia, ra, ln, ha, and ya, the differences being mainly in the terminal loop. The letter tar is still in Kuṭila type. The vowel marks do not differ. The conjunct consonants often differ, in several instances approaching the modern Bengali conjuncts, such as those of y (in yka, yga), those of y (in sya, dya), those of v (in dhva). The letters are fairly legible, except in the middle and in some of the lower lines. They vary in size, those in the first line being $1^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$, in the last line $1_{3^{\prime \prime}} \times \frac{3^{\prime \prime}}{4}$, and else-
 bat in a slipshodly curved way.

The orthography presents no great peculiarity. The halanta is generally conjuncted with the initial consonant of the next word (cf. ls. 6, 9 and 11); the guttural 1 is sometimes represented by anusvara J. І. 23
(sainga, rainga l. 8, bhaígi l. 20), and sometimes by y (niḩcaykah, papka, l. 4) ; the palatal \tilde{n} is represented always by anusvàra (caincala 1. 1, Kä̀mcihara l. 17); the dental n is sometimes represented by anusvāra (vaíndīnā̀m 1. 10); the avagralia is sometimes omitted kāle(')rpitã l. 6, prasannō(')stu l. 30.

The inscription takes up thirty lines. The language is of the later inflated style. Excepting the invocation and a short passage in line 29 , it is entirely in verse, 27 stanzas of various metres. It was composed by Jāgali Kavi, and was inscribed by one Vakākhya. Many verses show elegance and rhetorical skill.

According to the inscription, the temple of Jaganātha at Gōpināthapura was built under the orders of Gōpinātha Mahāpātra, the minister of the king Kapilëndra alias Kapilę̧̧vara Dēra of Orissa. The inscription mentions Gōpinātha's genealogy as follows :-

Lakṣmaṇa Mahāpātra,

The inscription mentions Kapilēndra also as Kapilę̧̄vara (1. 17), and describes him as belonging to the solar line (1.5) with the title Bhramaravara (1.7). Kapilendia is said to have defeated and caused terror in the hearts of the kings of Karṇata, Kalavaraga, Mālava, Gauda and Dhilli (l. 7, cf. also lines 16 to 19). Göpinātha is described as having assisted his master materially in the various conquests and to have led an invasion into Mālavendra's territory, crossing many hills (l. 19).

The inscription is undated, but its time can be approximately ascertained. Gōpinātha's father and elder brother having previously served the same King, Göpinātha must have taken service in the latter part of the king's reign. Then again the inroad to Mālava in line 19, verse 16 , is apparently identifiable with the invasion of the Orissa

1 Laksmaña Mahāpātra, the donor's father is mentioned in another Oriyā inscription as the "purठhita" or priest of Kapilëçara Dēva; cf. my article, Joarn. As. Soc. Beng., Vol. LXII, 1893, pp. 91-2.
king into Bidar. This invasion is timed by Ferishtah as 1461 A.D. ${ }^{1}$ After that some time must have elapsed before the new temple was erected. Hence the date of the inscription might approximately be put at 1465 A.D.

The temple contains the images of Jagannätha, Balarāma and Bhagavati Subhadrā (1. 22, v. 19). It was endowed with gardens, dancing girls, ornaments aud servants, \&c., (1. 24, v. 21). A Ganḍicā temple was also built in accompaniment (1.26, v. 23).

Text. 8

1. 2. Ṓn namah Cri-Puraṣōttamāya n

Maulau camं(ñ)cala-cūlini tilakinī bhālè mukhē hāsinī kanṭhē mauktika-mālini malayajaih praty-aggam =ālēpinil hastā$\mathbf{v}(\mathrm{b}) \mathrm{j} \boldsymbol{\Xi}$ navanitini caraṇayōb krī-

1. 2. -dă-rasān = narttinī jiyāc =chaiçava-çōbhinī cid-amalā Gōpānganàlingini il [1]
Samsaār-ārnava-karṇa-dhāram=api tam bhakt-ārtha-saṁsāriṇami vandē Çri-Puraṣōttamam tanu-bhrtāmi sanikalpa-kalpadrumamı। vēdānt-ārtham =udāhara -
 = api svāyam̉bhuvani dēhināmı ॥ [2]
Sadyah piyūṣa-pātō manasi nayanayōh kāma-cintā durantā şāntă kaş̧am vinaştamí janir = ajani satí lav(b)dha-
1. 4. $-\mathrm{m}=\mathrm{iṣta} \mathrm{\dot{m}}$ yathēestamil pāpā-kūpāra-pāram gatam =api pitarō dhvasta-v(b)andh-ānuv(b)andhā (yēn̄̄)= lōki trilōki-nilayamaṇir = ayam nila-çail-āvatamisaḥ $\|$ [3]
Niḥcaŋkah payka-magn-ākhila-dharaṇi-ta-
1. 5. -l-ōddhăra-bhū-dāra-simhaḥ svacchandạ் Mlēccha-vrndañı prati jagati Kalēr = $\bar{a} d y a-b h a ̄ g \bar{e}=p i \quad K a l k i l ~ b h a ̄ s v a d-v a m e ̣-\bar{a} v a t-~$ am்sas $=$ tri-jagad-adhipater $=$ nila-çail-ādhināthasy $=\bar{a} d e ̄ c ̧ a ̄ d ~=~$ Ōdra-dēçē samaja-
1. 6. -ni Kapilendr-ābhidhānō narēndrah ॥ [4]

Sadā-tulita-yat-tulā-puruṣa-dāna-k̄̄lē = rpitān = trilōka-vijayārjitān = kanaka-parvatān = sarvataḥ 1 vinidram =animēs aṇam divişadaç = cirarí rakṣitum mila-
I. 7. -uti kanak-ācalē vijayinō=sya dāna-bhıamāt $\$ [5]

Karṇāṭ-ōjjhāsa-simhah Kalavaraga-jayi Mālava-dhvamisalilājamighālō Gauḍa-mardi Bhramaravara-nṛpō dhvasta. Ḍhill I-ndra-garraḥ| sam̀grāmē dra-

[^23]8 From two ink impressions.
M. M. Chakravarti-Inscription of Kapiléndra Dḕa. [No. 2,
 syān = nāka-nāri-kuca-kalaça-tați-kuykum-āyk-[ā]mga-ram. gah I [6]
Yasy $=$ ōccair $=$ vāji-rāji-vikaṭa-khurapuṭ-ōdghāţita-ķ̧auni-prsthba-prādurbhūta-prabhāta-

1. 9. -ḳ̨iti-kaṇa-nikarair = lakşyamāṇē prayān̄̄। garjad-gambhira-bhēri-bhara-rava-vibhav-äkarṇi-karṇā vivarnā murcālāh
 Canḍ ko -
1. 10. -daṇ̣a-daṇdē sakrd = api samarē yasya samissakta-kāṇ̣ē samivartté sampravrttē gatavati vilayam vairi-jālé karālē \mid vam (n)dināmं krandininām naynna-ghana.ghan- $\bar{a}(\bar{o})$ tssädyamānair $=$ amānair $=$ durvārair $=$ vāri- ∇ āraih pratipada-mudito
1. 11. -bhinna-mudrah samudraḥ I [8]

Tasy = āpta-hamisah sa hi hanisa-vamệa-kētōh purōdhā ma-khakrd-vatamisah 1 vidvān = Mahāpātra-knl-āvatamsah ÇriLakṣmaṇ δ = bhūt = prathita-praçanisah ॥ [9] Mantri-çrāni-girōmaṇi(ni) h sa(su) maıasah santãua-cintā-

1. 12. -maṇị pāpa-vrāja-vį̣-aughà-gāruḍa-maṇiḥ sad-rrtta-rakṣāmaniḥ। padm-öllāsa-vilāsa-vāsara-maṇiḥ putrō s sya Nārāyaṇah satr-ārambha-parāyaṇō s jani jana-trāṇāya Nārrāyaṇaḥ ॥ | [10]
Yasy $=$ äsid $=$ anu -
1. 13. -jō matah kẹiti-bhujām Çri-Gơpināthō Mahāpātrah pātra-jan-ārccan-aika-rasikah pātram guṇāuäm mahat। çri-kāntas = tanayam krtāntam =arayaç $=$ cintāmaṇim màrgaṇà rājānaḷ sura-mantriṇnm vidur $=$ amam $k \bar{a}-$
1. 14. -ntąç-ca kāntaḿ ratēh ॥ [11]

Rājēndrād = adhignmyn şǫ̧aça rara-cclattrāni citrāṇy =asau
 va(ba)n-dikrtya raṇब̨̨u ṣōdaça nrpāndrō(miç $=c=\bar{o}$? $)$ pāharat $=$ svāminé

1. 15. varsē gacchati şọaçē svayam $=$ abhūn $=$ mantr-indra êkaḥ punaḥ" [12]
Manyé pūrvam = apūrvva-kīrttir=asakrvid-dvij-āhavē pārrthivān
 s bhād=Blıärgavaḥ $\mid v(b)$ nıdi-krtya narē-
1. 16. -ndra-manḍalam $=\operatorname{ayam} \operatorname{yad}(y \bar{o})=G a(G \delta)$ pinātha-cchalāt $=$ sadyaḥ saṃprati mumi(ñ)cat =iha vitaran svām் svām pratiṣthā̀m punaḅ 1 [13j
Krtvā saminati Mālav-ēndra-jayinam sēn-ādhinātham tu yam Gauḍ-èndrasya nitāntam = Otkala-patha-prasthāna-rōdh-ā-
1. 17. -rgalami O̧ri-Khaṇḍ-ādri-payō-dhar-סpari-karam nirmāya Kȧm-
 çriyā ! [14]
Cētō-vrttir = iv =ātmanah suvimalā lōkē = dhikā kirttidā sthir-ācaya-riti-vad = gnṇa-ma-
1. 18. -ṇi-çrēṇi $=$ va vistāriṇil samí(sa)nmārg-ānugatā ca santatir =iva prā̧ēna santāpinām santāp-ס̄mathanā krpāvad = amunā kluātā ca khāt-āvalī ॥ [15]
Garv-augham Gurjarēndraḥ pariharati-tarām =ąqu ḌhilliNarēndraḥ sāndrām ta-
1. 19. -ndrām = avindat = kuṇapa-gatim $=$ agād $=$ Gaudábhümi-mahendrah| bhū-blırn-mālām karālām pathi pathi militām ram. (ha*)s = ōllanghya sēnā-nāthē Çri-Gōpināthē paribhara(va)ti ca tām Málav-ēndrasya gu (?) tām (?) \ [16]
Prāsēda-
1. 20. $-\mathrm{m}=\overline{\text { ētan }}$ nayan-ābhirāmà் vyadhatta Häritakul-āv(b)dhicandraḥ। asāra-saṁsāra-gabhira-payka-niḩçaŋka-niękrānty-avalamv(b)a-daṇ̣am II [17]
Jīyāt-prāsāda-cūḍā-maṇi-rama-ramaṇēḥ prānta-samisakta-bham. (y)gi bham (y$) \mathrm{ga}$-prāgbhāra-vi(bi)mv(b)a-sphatá
1. 21. -ghaṭita-vr(br)hat-manthani maṇ̣alikah। uttānam nyasta-mārttiḥ prathita-sad-amrta-prāptik-ār'thō bhav-ब̄v(b)dhēragrajo (P)daḿ($\tilde{n})$ cad-ūrmmi pracaya-bhaya-bhuvō = mantha-manthānadanḍah ॥ [18]
Rāmam Çri-Puruşōttamam Bhagavatim $=$ asmin $=\mathrm{Su}$ -
1. 22. -bhadrām tathā ratn-ālam (y)krti-rāji-rājita-tanum bhakty \bar{a} =yam = asthāpayat \mid bliāty = ēạām tritayam navam tri-jagatīcintāmaṇinām trayam prāsā (d \bar{e}^{*}) ca samudgakē vinihitam kim madhyamē piṣtapē n [19] Sauvarṇ̣̆a-çruti-pāṇi-pā-
1. 23. -da-lırdayō Laima-prabhā-maņ̣alē bhāsvan-maṇ̣ala-saminibhē maṇi-lasat-tulā-sarōj-āsanah̆ sō s yam hāra-kiriţa-kuṇdaladharah samiskāra-dhāri sadā dhyēyā (yah) svarṇa-may-ākrtim pathi drsōr = nirmāti Nārāyaṇaḥ in [20] Udyānā-
1.24. -ni navāni mālya-vidhaye kartum tri-kāl-ārccanam lhōgān svarga-purōcitān = upacitān rāmāç = ca Ramblh-opamāḥ | nānā-ratna-viblıuşaṇāni bahuçõ vāsāmisi bhūyām்sy = asau prāyacchat -paramęş̣hiné parijanō da (?)
1. 25. -ttēna kim svāminē \| [21]

Pakẹatram trayi y $\overline{\text { anty }}$-ayam dvija-patih pakş-ōnnataç $=c=\bar{a} b h a-$ vat Kams-ārés sya samasta-vāsanam-abhūt = khyātō ha mē ca
drçaḥ। Drstē S sminn =adhip-ādhikāra-yugalè kāmē gatih samprati $=$ ty $=\bar{a} k h y a ̄ t=$ tam Garuḍah

1. 26. kṛt-äm($(\tilde{\mathrm{n}})$ jalir = asau papha (? ${ }^{\text {) purō vartatē || [22] }}$

Yēn = ākāri prasāri-dyuti-rajata-gatam Gunḍic-āgāram = İçō yasmin $=$ Kailāsa-vāsa-praṇayam $=$ adhigatō $=$ hanta dęcē s py $=$ amuṣmin I yasya prāgbhāra-khaṇ̣a-sthala-vikala-nabhō-

1. 27. -manḍal-ājasra-hinḍan-mārttā (ta) ṇdā (ṇda) $̧=$ ca pracanḍa-çrama-çamana-paṭur = mmaṇapē s bhūd $=$ akbanḍah I [23]
Svādhyāy-āblyāsa-ghōß̧air = mukharita-gaganē yajña-yūp-āvalībhir = bhūyah saṃçübhamānē dvija-vara-gahanē çōbhanē çāsanē s smi-
1. 28.

-nl àvairam ca prapamin(ñ)cam Naraka-ripur = ayam Kāmapālah
Suohadrā grām-éçasy =āparẹ̄ām =api bhavatu sadā mangalā gō-jalāya ! [24]
Prahlād-Ōddhava-Pārthānām bhaktānāற் viraha-vyathām । tyājitö Gōpinātliēna puṇdarika-vīlōcanaḥ ॥ [25]

1. 29. Mīmāmsakasya nigam-ānta-vicāra-pāra-sam̉cāriṇō s sya kavi-paṇịita-Gōpinātlă̄t। jātasya Jāgali-kave raman-ōktir = ẹ̣̄ā harę-ōnnatim sumanasām sarasäṁ tanōtu ॥ \odot ॥ [26] Çubham = astu || Vakākhyēna likhitam I
1. 30. Çrí-Gōpināthah prasaunō = sta siddhidō bhakta-vatsalạ̣। Guṇa-ratn-äkarah çrimān $=$ Kapilēndra-hrdi-sthitaḥ ॥

Abstract of contents.

The inscription begins with a salutation to God Puruẹōttama. Verses 1 to 3 invoke His blessings. By order of the God enthroned on the blue hill (i.e., Jagannätha), the king named Kapilēudra appeared in the Odra kingdom as an ornament of the solar line (v. 4). His constant gifts at the sacred places tempted even the gods to come down (v. 5). The king, surnamed Bhramaravara, conquered Karnāta, Kalavaraga (Kulbargā), Màlava and Gauda, and destroyed the pride of the Delbi king (v. 6). His march was indicated by the huge dust raised by the hoofs of his high horses, and the loud sounds of his bagles frightened the other kings and mude them fly to forests (V .7). The arrows of his bow put to death his enemies, the tears of whose imprisoned ladies removed the land-barrier of the sea (v. 8). He had a faithful priest named Lakęmnṇa Malıāpātra, an ornament of the Mahāpatra Kula (v.9). Lakṣmana's son was Nārāyaṇa, the head of the ministers (v. 10). Nārāyaụa's younger brother was Gōpinātha Mahāpatra, who was favoured by the king, and was in possession of the best qualities (\mathbf{v}. 11). He got from the king sixteen umbrellas, took sisteen forts, imprisoned in war sixteen
chiefs, and after sixteen years became the chief minister ($\mathrm{\nabla}$. 12). Methinks Paraçurāma in the guise of Gōpinātha conquered anew the circle of kings, but unlike his previous act, replaced each king in his territory ($\mathrm{\nabla} .13$). Having made him the Commander-in-Chief, him who defeated the Malava king, and who stood as a bar to the inroad of the Gauḍa king, the monarch Kapilęçvara enjoyed the Çri of Karṇātn, levied taxes over the Khanḍa hill, and carried the Kāñci city by force (v. 14). He (Göpinātha) dug tanks by the side of roads, clear watered, well-known, calm, wide and cool (v.15). The Commander-in-Chief Gōpinātha having crossed the terrible mountains on the way, and having conquered the Mālava king, the Gurjara king gave up his pride, the Delhi king felt dejected, and the Gauda king turned mean like a çavara ($\mathrm{v}, 16$). The moon of the Härīta line (Gopinātha) erected this fine temple as a staff for deliverance from the mires of this unsubstantial world (v . 17). The temple is the highest with the solar mandala as its finials, and serves as a staff for churning nectar (the meaning not clear throughout) (v. 18). In this temple he placed Rāma (Bnlarāma), Puruṣōttama (Jagannātha), and Bhagavati Subhadrā, fully ornamented (v. 19). The Nārāyaṇa was made as described in the dhyäna (hymn)-then follows a description of his ornaments ($\mathbf{v} .20$). For garlands new gardens, bhögus fit for heaven, maidens (charming) as Rambhā, many jewelled ornaments, ample dresses, he gave to the deities-what more shall be said about the servants given? ($\quad .21$). "Oh Lord! May this Garuda be your steed." On his (Göpinātha's) saying this as if Garuda himself stood in front with hands clasped and wings spread (meaning throughout not clear) (v. 22). By him was raised a Gundicā temple, bright and silver white, where Mahādēva felt the delights of Kailāça mountain, and on whose clouddividing top the sun rested (V .23). In this Çāsana resounding with Vedic teachings, decked with numerous sacrificial posts and crowded with high class Brahmins, may Jagannātha, Balarāma and Subhadrā bring good to the village lord, the residents, (the village) cattle and (its) water! (v .24). By consecrating this Viṣṇ, Göpinātha removed pangs of separation from the hearts of devotees like Prahlāda, Uddhava and Pārtha (i.e., Arjuna) (v. 25). May these charming verses of the Mimamsaka Vaidāntika poet Jāgali, born of the poet and the learned Gōpināthn, increase the delight of the wise! (v. 25). May it be good! Written by Vakākhya. May Gōpinātha (i.e., Vishṇa) beloved of Lakşmi, meditated by the King Kapilendra, fond of his devotees, fulfiller of desires, and like sea in qualities, may He be gracious (nnto us)! (v. 27).

APPENDIX.

The last Hindu Kings of Orissa.

In the Göpināthapura Inscription the King Kapiléndra Dēva is described as of the Solar line "blıāsvad-vamẹ-āvatamę̧a(h")." Very little authentic is known about these kings of Orissa. The time has now come to throw light into this dark chapter, and to give some account of them based on inscriptions supplemented at places by the Mādalā Pān̄ji and other records.

A. SƯRYA VAṀÇA DYNASTY.

(5 Kings).

I. Kapilêndra alias Kapiléçara Déva, Bhramaravara.

(1434-35 A.D.-1469-70 A.D.)

Up to date the undermentioned nuthentic dates of this King-the founder of the Solar line-have been found ${ }^{1}$:-

No.
Dates. References.

1. 4th Agka, Dhanu New moon, Left side Inacription No. 3 of the Jagan.
(O.) Sanday $=9$ th December, 1436 nätha temple [J.A.S.B., Vol. LXII, 1893, A.D. pp. 92-3].
2. 4th Agka, Kumbha (9) O̧akla The temple of Mukhalingę̧vara at Makha.
(0.) 13, Monday $=18$ th Febraary, liggam, District Gañjäm [Dr. Hultzsch's 1437 A.D. Epigraphical Report for 1895-6, No. 141, p. 14]. I am indebted to Dr. Hultzsch for an ink impression of this old Origa inscription.
3. 4th Agka, Mithana Saŋkrānti Right side Inscription No. 2 of the Bhn-
(0.) Krṣ̣a 1, Tuesday = 29th May, vanę̣vara temple [J.A.S.B., Vol. LXII, pp. 1437 A.D. 103-4].
4. 19th A gka, Talā Krsp̣a 2, Snn- Right side Inscription No. 1 of the Bha.
(0.) day=2nd November, 1449 vanę̨̄vara temple [J.A.S.B., Vol. LXII, A.D. p. 10-3].
N.B.-The purnimänta scheme has been nsed here, instead of the usual amainta scheme.
5. 19th A jka, Mëßa New moon, Right side Inscription No. 2 of the Jagan-
(0.) Sunday $=12$ th April, 1450 nãtha temple [J.A.S.B., Vol. LXII, 1893, A.D. p. 99].
6. Gaka 1373, Mägha Çakla 5, The प̧ri-Kürmam temple (near Gikikola),
(S. \& T.) Tharsday, Jovian year Prajä. 20th pillar, east and north face inscription pati=27th January, 1452 [Dr. Hultzsch's Epigraphical Report for A.D. 1895-6, p. 20, Nos. 317 and 818; and my Ms. transcript].

1 O. Signifies Oriyā in language, S. Sanskrit, and T. Telagu.

No. Dates. References.
7. 25th Agka, Çaka 1377, Bhā-The Ģrī-Kürmam tomple, 18th pillar, west
(T.) drapadal Çakla 3, Satardny face inscription [Dr. Haltzsch's Ep. Rep., $=26$ th August, 1455 A.D. 1895-6, p. 20, No. 318 ; and my Me.].
8. Ģuka 1377, Bhădrapada moon. Copper-plate inscription of the king Gänaeclipse (?), the year Yuvan Dēva of Könda-vida [Dr. Haltzech, Ind.
(S.) - August (?), 1455 A.D. Ant., Vol. XX, p. 391].
9. 1461 A.D. ... Ferishta, l. c. Elphinstone's History of Indin, Appendix, p. 755 ; and Sewell's sketch of the dynasties of Southern India, p. 23.
10. 32nd (33rd) Agka, Caka 1382, The Gri-Kurmam temple, 18th pillar, west
(T.) Jyêstha Va 5 (? 7), Monday, face inscription [Dr. Haltzsch's Ep. Rep., the year Vikrama $=12$ th May, 1895-6, p. 19, No. 284; and my Ms.]. 1461 A.D.
11. 35th (37th) Agka, Messa Krṣ̣a 4, Left side Inscription No. 5 of the Jagan-
(0.) Wednesdny $=25$ th April, 1464 nātha temple [J.A.S.B., Vol, LXII, pp. A.D. 95-6].
12. Circa 1465 A.I). ... The present inscription of the Gōpinatha(S.) parn temple.
18. 41st Agka, Dhanu Gukla 7, Left side Inscription No. 4 of the Jagan-
(0.) Snnday = 14th December, nātha temple [J.A.S.B., Vol. LXII, pp. 1466 A.D. 93-4].

From the Ayka inscriptions, Kapilēçvara's accession year can be ascertained as follows:-

4th Ayka or 3rd year	$=1436-7$ A.D.
19th Agka or 16th jear	= 1449-50 A.D.
25th Agka or 21st jear	$=1454-5$ A.D.
33rd Ayka or 27th year	$=1460-61$ A.I.
37th Anka or 30th year	$=1463-4$ A.D.
41st Agkn or 33rd year	$=1466-7$ A.D.
.**. The 2nd Ayka or lst year	$=1434-5$ A. $)$.

According to Ayka calculations, the last Ayka of Kapilēęvara and the second Agka of his successor Puruşōttama should fall in the same year. Hence Kapilēģvara's death took place in 1469-70 A.D. ${ }^{1}$

Narasimha Dēva IV. of the Gaŋga dynasty was reigning in 1397 A.D. [J.A.S.B., Vol. LXIV, 1895, p. 133]. The thirty-seven years intervening between this date and the accession of Kapilëģara Dēva in 1434-5

[^24]J. 1. 24
A.D. are at present epigraphically blank ${ }^{1}$. If the Mādalā Pāñji is to be believed, Kapileçvara succeeded a Blıānu Dēva, whose name (surname?) was, according to one version, Akaţā-Abațā, and according to another, Matta (drunk). Among the later Gangas, the usual succession was a Narasimha Déva followed by a Bhānu Dēva and so on. The thirtyseven years iutervening will allow either of only one Bhānu Dēva after Narasimha Dēva IV, or of one Bhānu Dēva followed by a Narasimin Dēva, and then a second Bliānu Dēva. Looking to the rather short period, and the average long reigns of the Eastern Gayga Kings, the first supposition of only one Bhānu Dēva appears more probable.

The accounts given in the Mādaḷā Pāñji show that Kapilęçvara got to the throne probably with the aid of the Bahmani king (Ahmad Shāh I.). The present inscription gives him an alias, Kapilēndra, and a title Bhramaravara. Gānadèva's Copper-plate inscription speaks of his capital being at Kataka on the bank of the river Mahānadi. He was evidently a powerful King, and extended his dominion from the bank of the Ganges on the north to that of the Krsmà on the south. His whole reign was spent in warring with the Hindu Kings of Vijayanagara, or with the Mahomedan Kings of the Balımani dynasty, or in suppressing internal revolts. The Mādaḷa Pāñji mentions that he had numerous sons, among whom Puruṣōttama Dēva was one, but not the eldest.

II. Puruṣōttama Dēta.

(1469-70 A.D.-1496-97 A.D.)

The following give all the reliable dates as yet known of this king:No. Dates. References.
(O.) day $=12$ th April, 1470 A.D. Right side No. 1 Inscriptions of the Jagannätha temple [J.A.S.B., Vol LXII, 1893, pp. 91-2, 98.]

(T.) Guddha pratipad, 'Tuesday $=$ face [Dr. Hultzsch's Epigraphical Report 25th September, 1470 A.D. for 1895-6, No. 365, p. 23].
3. 3rd Agka Märgaçira Kr. 13, Left side Inscription No. 1 of the Jagan-
(0.) Tuesday $=28$ th November, nätha temple [J.A.S.B., Vol. LXII, pp. 1470 A.D. 90-1].
4. Gaka 1393, year Khara, Caitra The Çri-Kūrmam temple, 49th pillar, west
(T.) Va (? Y̧a), Ãdivära (Sunday) and south faces [Dr. Haltzsch's Ep. Rep., $=31$ st March, 1471 A.D. 1895-6, No. 366, p. 23]. (if Va be $\boldsymbol{G}(\mathrm{c}$).

[^25]No. Dates.
5. 1471 A.D.

References.

Ferishta, 1.c., Elphinstone's Hist. of Ind. (1889 ed.), Appendix p. 756; and Sewell's sketch of S. Indian dynasties, p. 23.
6. 7th (4th) A jka, Çaka 1393, The Çri-Kūrmami temple, 2nd pillar, north
(T.) Asarha Çu 2, Thursday, the and west face [Dr. Hultzsch's Ep. Rep., Jovian year Kbara $=20$ th $1895-6$, p. 19, No. 274; and my Me.]. June, 1472 A.D.
6. 7. 1477 A.D. Ferishta, l.c. EHphin., App. p. 756 ; and Sewells' sketch, p. 23.
8. 15th (17th) Agka, Mēsa, Di 10 My reading of the Oriyā Copper-plate grant (0.) (11), new moon, Monday, to the Balasore Bhuñyās [Ind. Ant., Vol. solar eclipse $=7$ th Δ pril, 1483 I, p. 355]. The originnl reading seems A.D. to have been wrong, but Prof. Kielhorn has arrived at the correct English equivalent in Ind. Ant., Vol. XXII, p. 108.
9. 19th Agka, Simina Çu 8, Thars- Right side Inscription No. 4 of the Jagan-
(0.) day $\mathbf{- 1 8 t h}$ A pril, 1485 A.D. nätha temple [J.A.S.B., Vol. LXII, 1893, p. 100-1].
10. Ģaka 1411, the Jovian year A Konda-Viḍa Inscription [Jewell's sketch
(T.) Kilaka $=1488-89$ A.D. south, dyn., p. 48]. The Çaka year current was apparently nsed.
11. 25th A jika, Viṣā (Vrsa) Sny- Ģrī-Kūrmańn temple, lat pillar (of Nos. 272
(0.) krānti, Gu 8, Tharsday $=27$ th and 273), not reported in Ep. Rep. for May, 1490 A.D. 1895-6. I am indebted to Dr. Hultzech's for two ink impressions of this inscription.
12. Gaka 1417, the Jovinn year The Gri-Karmam temple, 41st pillar, north
(T.) Räkşasa, 32nd (? 33rd) Agka, face inscription [Dr. Haltzsoh's Ep. Rep., Kärtika Guddha 13, Manda- 1895-6, p. 202, No. 347]. vāra (Saturday) $\mathbf{- 3 1}$ st October, 1495 A.D.
With the help of the Anka inscriptions the precise year of Purusittama Dèva's accession can be found out. The Agka dates are

$$
\begin{aligned}
& \text { 2nd Ayka or 1st year } \\
& \text { 3rd Ayka or 2nd year } \\
&=1469-70 \text { A.D. } \\
& \text { 4th Ayka or 3rd year } \\
& \text { 17th Ayka or 14th year } \\
&=1471-2 \text { A.D. } \\
& \text { 19th Ayka or 16th year } \\
& \text { 25th Ayka or 21st year } \\
& \text { 25.D } \\
& \text { 32nd Ayka or 26th year } \\
&=1484-5 \text { A.D. }
\end{aligned}
$$

$$
\text { ** 'The lat year was } 1469-70 \text { A.D. }
$$

From his successor's Ayka dates. the time of Paruṣōttama's death can be deduced. It took place in 1496-97 A.D.

On the death of Kapilëģvara Dēva, his sons fought with one another for the throne. Ulimately Puruṣōttamn secured it. with the help of the Bahmani king Muhammad Shāh Il. For this aid, he had to cede to the

Bahmani king the southern-most districts of Kōṇ̣apalli and Rājamahēndri. Ferishta calls him "Amber Rai" which is apparently a corruption of the title "Bhramaravara Rāya"-a title still given in Orissa to a prince, not always the eldest one. Later on, the Orissa king appears to have repented of the bargain, and to have attempted a conquest of the ceded districts. This led to an expedition into Orissa in 1477 A.D. by the Bahmani king Muhammad, which Ferishta reports as having been successful. Anyhow these districts passed altimately into the hands of the Orissa king, as the Könḍa-Viḍu inscription of 1488-9 A.D. shows.

The king also waged war with Vidyānagara (or as the Mahomedans put it Vijayanagar). Caitanya-carit-ämrta, the well-known biography of the great Bengal Vaisnavite preacher, Caitanya, says that the King Puruạōttama Dēvaconquered Vidyānagara, and thence brought a jewelled simhāsana (throne) which he presented to Jagannātha, and also the image of Säksi-göpaila which he kept in his capital at Kataka (Çait. car. $\bar{a} m r$., Madhya Klanạda, 5th Paricchēda). The first Vidyānagara dynasty was then tottering on its throne, and was shortly after replaced by the second dynasty.

The few details given in the Mādalạ̄ Pāñji are mainly taken np in describing an expedition of this King into Kāñci. If there be any truth in it, then it is likely connected with the raid of the Bahmani king Muḥammad Shāh II, who in 1477-8 A.D. made a dash towards Conjeeveram, and returned with an immense booty. Puruşōttama Dēva might have joined the said king as an ally.

According to the Mädaḷa Pãñji this king erected the Bhōgamaṇdapa (refectory hall) of Jagannātha temple in his 7th A jka (1473-4 A.D.) ; and in his 9th Ayka (1475-6 A.D.) he built the inuer wall and the cooking rooms of that temple.

> III. Pratàpa Rudra Díva.
> (1496-97- P1539-40 A.D.)

The following dates of this King are known as yet:-
No. Dates. References.

1. Sth Aŋjka, Kakrā Çu 10, Wed- Left side Inscription No. 6 of the Jagan(O.) nesday $=17$ th July, 1499 A.D. nätha temple [J.A.S.B., Vol. LXII, 1893, pp. 96-7].
2. 5th Agka, Dhanu 3 (?) Kr. (?), Left side Inscription No. 7 of the Jagannātha
(O.) Monday - ? December, 1500 temple [J.A.S.B., Vol. LXII, 1893, p. 97]. A.D.
3. Çaka 1425, the Jovinn jear The Çī-Kürmam temple, 41st pillar, north
(T.) Rudhirōdgārīn, Kärttika face [Dr. Hultzsch's Ep. Rep., 1895-6, Çuddha Purnami, Friday = p. 22, No. 346]. 1503 A.D., (?) 3rd November.

No.	es.	Reference
	1509-10 A.D. (17th Agka of the Mädaḷā Pä̃ji).	Mahomedan historians, l.c. Hunter's History of Orissa, Vol. II, pp. 9-10, and App. VIII, p. 193.
5.	1510 A.D. (February and March).	Caitanya-carit-ämpta, beginning of the 7th paricchēda, Madhyama Khaṇ̣a; Caitanyamaygala, Antya Khaṇda, 2nd and 3rd Adhyāya.
6.	1511 A.D., Ratha festival.	Cait.-car.-ämr., Madhya Khanḍa, 14th paricohēda; cf. Cait. may., Antya Khanda, 5th Adhyäya.
7.	Çaka 1436 = 1514-5 A.D.	Two Inscriptions at Udayngiri [Sewell's sketch of the southern dynasties, p. 48, note 4].
8.	1515-6 A.D.	An Inscription in the Varadarāa-svāmi temple at Conjeveram [Chingleput District Manual, pp. 435-6, l.c., Sewell's sketch south. dyn., p. 119 and p. 48 note 4].
	? 1519-20 A.D.	Cait.-car.ämr., Antya Khanḍa, 9th paric\|chēda.
10.	1522 A.D. (32nd Aŋka of Mādalã Pāñji)	Ferishta, l.c., Elphinstone's Hist. Ind., App., p. 760; Hanter's IIist. Orissa, Vol. II, App. VIII, p. 193.

Pratāpn Rudra's accession year falls in 1496-97, as calculated from his only reliable Ayka date in the Jagannātha temple. 'I'he time of his death is uncertain. According to Mādaḷa Pāñji he was succeeded first by his son Kāla-ā Dēva who reigned for a year and five months, and then by another of his sons Kakhāru-ā Dēva who ruled for only three months. They were killed, one after the other, by their minister Gōvinda Vidyādhara. The latter then usurped the throne, and founded the small dynasty known as the Bhoi. One inscription of Gōvinda Dēva is known in the temple of Jagannātha. It is dated 4th Ayka, Bichā Çukla Trtiyā, Tuesday, or 30th October, 1543 A.D. [J.A.S.B., Vol. LXII, 1893, pp. 101-2]. From this it is dedacible that Govinda Dēva began to reign in 1541-42 A.D. So that if the Mādaḷa Pāñji's dates as regards Kakhāru-ā and Kālu-ā Dēvns be accepted, Pratāpa Rudra's last year would fall in 1539-40 A.D. According to a tradition noticed in the Jagannätha-carit-āmrta, an Orriyā biography of Jagannātha Dāsa -a disciple of Caitanyn and the founder of the Atibarn subsect of Vaisnavas in Orissa-Pratāpn Rudra survived Caitnnya. The latter died, according to his biographies, in 1455 Çaka or 1533-4 A.D. So then Pratāpa Rudra might have been reigning at least in 1535 A.D., and there is nothing improbnble in his reigning up to 1539-40 A.D.

It was a stirring time. In the north in Bengal, Husain Shāh had been consolidating his kingdom; in the south the Vidyänagara monarchy
was rising again under Narasa of the 2nd dynasty; and a few years later Quttb Shāh, general of the Bahmani king, founded the kingdom of Gölkōnḍă. Pratāpa Rudra, after he had been on the throne for about 5 or 6 years, became engaged in a war with Narasa. Mādalā Pānji says that he conquered the king; bat two Vidyãuagara copperplates, one of Acyuta Rāya and the other of Sadãciva Rāya, speak of Narasa conquering the Gajapati ruler. ${ }^{1}$ In 1509 A.D Ismāil Ghäzī (inamed Surasthāna in M. Pāñi), a general of the Bengal Nawab, made a dash into Orissa, ravaged the coantry, sacked Puri town and destroyed a number of Hiudn temples. Pratāpa Radra harried from the soath, and the Mahomedan general retreated. He was closely parsued and defeated on the bank of the Ganges (M. Päñji). The general took refuge in Fort Māudāran (Snbdivision Jehauabad, District Hooghly), and was besieged. But one of the Rāja's high officers, Gövinda Vidyādhara, went over to the enemy's side ; and so the Rājā had to raise the siege and to retire to Orissa. This war and the destruction of the Hindu images have been mentioned in several places in the Caitanya-maggala alias Bhāgavata, one of the earliest biographies of Caitanya the Bengal preacher (composed circā 1550-60 A.D.). ${ }^{\text {a }}$

It was also a period of considernble religious ferment. Vallabhācärya had begun his religious preachings in the north; and Caitanya began his religious wanderings in Bengal, Orissa and elsewhere. In Febraary 1510 A.D., Caitanya came to Pari and stopped for two months. At that time Pratāpa Rudra had gone to the soath, and was fighting with Kreṇa Rāya who had just then come to the throne of Vidyānagara. Wandering in the soath after a year Caitanya came back to Puri. There at the time of the Ratha festival the king and the preacher met ; and according to the biographies, Pratäpa Rudra was converted and became a devoted disciple.

Several of the king's officers also became Caitanya's disciples, among whom the most prominent was Rāmãnauda Rāya, for some time governor of Räjamahēndri. It is related in Cuitanya-carit-ämrtu (Antsa Khaṇḍa, 9th Paricchēda) that Rāmānanda's brother Gōpinātha Barajēnā, who was the revenue officer in charge of Māljyātha Danḍapāta (at present the eastern part of Midnapur District) fell in arrear of a large revenue-two lakh Kāhāns of cowries, and was ordered by the king to be put to death. He was however saved and reinstated by the mediation of Caitanya's disciples.

[^26]In another Vaiępavite work, Jayānanda's Oaitanya-maygala, it is snid that Pratāpa Rudra consulted Caitanya about invading Bengal. The preacher dissuaded him, pointing out that the war would be disastrous for Orissa [1.c. the Bengali Magazine Çri-gri-Viṣnupriya Patrika, Kärttik 1897, p. 477].

T'he latter part of Pratāpa Rudra's reign seems to have been spent chiefly in the sooth. Krẹna Rāya, the greatest king of the Vidyānagara second dynasty, invaded the Gajapati territory in 1514-5 A.D., defeated Virabliadra son of Pratāpa Radra, took prisoner lis uncle Tirumalappa Raya, and conquered all the tract south of the Gödāvari. The Vidyanagara generals also made incursions north wards up to Ganjam; and finally Pratāpa Radra had to make a treaty and to give his daughter in marriage to the victorious monarch.

In 1522 A.D. Pratāpa Rudra waged a long and desultory war with Quṭb Shāh of Gōlkōṇ̣ā. According to the Mãdnḷā Pāñji neither side gained any decisive victory; but Ferishta says that the Hindu king was defeated, and lost a part of his territory.
IV. Kālu-í Deva.
(P 1539-40 A.D. - P 1541-42 A.D.)

Pratāpa Rudra left several sons, and an ambitions and powerful minister, Gōvinda Vidyādhara. The eldest of the sons succeeded under the title Kāla-ā Dēva. No inscription of this king is known. According to the Mädalā Pāñji be ruled for one year, five months and three days. He was murdered by the minister.

V. Kakbāru-ī Dīta.
 (P 1541-42 A.D.)

Another son of Pratāpa Rudra succeeded Kālu-ā Dēva under the above title. After a brief and disturbed rule of three months, he, too, was killed by the all-powerful minister. Görinda then had the remaining sons of Pratāpa Rudra murdered, and ascended the throne under the title of Gövinda Dēva. He founded the small Bhō-i (writer) dynasty, which with Tëlinga Mukunda Haricandana ruled up to the final Mahomedan conquest of Orissa in 1568 A.D.

> B. BHŌ.I DYNASTY.
> (4 Kinas) :
> Gơvinda DẼVA.
> (1541-42 A.D. - P 1549 A.D.)

Only one inscription of this king is known :-
4th Ayka, Bichā Çukla 3rd, Tuesday= $\left.\right|_{\text {Right side }}$ Inscription No. 5 of the 30th October, 1543 A.D. (Oriyā). Jagannātha temple [J.A.S.B., 1893, pp. 101-2].
The first year fell in 1541-42 A.D.

According to one version of the M. Pãñji he ruled seven years; according to another version 11 years and seven months. The shorter period is accepted as being more probable. It is more consistent with the reigning years which follow; and as Güvinda Vidyādhara was in high service in 1509 A.D., he could not be expected to reign long after 1541 A.D. In his 7th Agka (1545-46 A.D.) he is said to have waged war with the king of Gōlkōṇ̣ā. While encamping in the south, his sister's son Ragha Bhañja Chōtarāya revolted in Orissa. The king hurried back, defeated the rebels who were being assisted by Bengal Mahomedans, and drove them beyond the Ganges.

II. Cakā Pratãpa Déta.

$$
\text { (? } 1549 \text { A.D.- ? } 1557 \text { A.D.) }
$$

This son of Gōvinda Dēva succeeded. According to one version, he ruled eight years; according to another, twelve years and a half. The shorter period has been accepted. He is represented as a bad king, who oppressed the people.
III. Narasimita Rãta Jēnā.

$$
\text { (? } 1557 \text { A.D.) }
$$

According to Mādalā Pāñji he had just ascended the throne of his father, when Mukunda Haricandana rebelled and murdered him. He was on the throne for only one mouth and sixteen days.

IV. Raghurãma Jenà.

$$
\text { (? } 1557 \text { A.D.- ? 1559-60 A.D.) }
$$

The brother of the above succeeded. Makunda Haricandana continued to revolt, defeated and imprisoned the king's chief minister Danē-i Vidyādhara, defeated and imprisoned Raghu Bhnñja Chōtarāya who had invaded again from the Bengal side, and finally murdered the king, after a disturbed rule of one jear, seven months and fourteen days.

> C. TELINGĀ DYNASTY. (one kina).
> Mukunda D̄̄va, Haricandana. (1559-60 A.D.-1568 A.D.)

The last independent Hindu King of Orissa :-
The following may be ascribed to his reign :-

1. A.H. $968=1560$ A.D. ... A silver coin of Jalāl Shah, mint Jājpur [Thomas' Chronicles of the Pathan Kings of Delhi, p. 417〕.
2. A.H. $973=1564-65$ A.D. ... Stewart's History of Bengal, ed. 1847, pp, 95-6; Hanter's History of Orissa, Vol. II. p. 12.
3. A.H. $975=1568$ A.D. (10 th Hunter's Hist. Orissa, Vol. II, page 10.
 note 29, p. 31 ; Mr. Beames, J.A.S.B., Vol. LII, p. 238 note.

Makunda Dēva was a Telugn by birth. He got to the throne by a successful revolt. The silver coin of Jalal Shāh with the mint mark of Jājpur shows that the Mahomedan king of Bengal assisted in 1560 A.D. Raghu Bhañja Chōtarāya in his invasion of Orissa, and the coin was struck apparently when on the march to Kaţaka. Makunda Dēra however defeated Raghu Bhañja, and imprisoned him. In 15034-65 A.D. the Emperor Akbar sent an ambassador to Orissa, and entered into a treaty with the king. The latter in return sent an ambassador to Delhi. The treaty was intended as a check to the Bengal king Sulaimān Karrarāni. The latter, however, kept quiet, until he found Akbar fally engaged in wars in the west. He then attacked the Orissa king who had come to the banks of the Ganges. Mukunda Dēva took refuge in Fort Kōtsamā and defended himself therein. Then the Bengal king detached a part of his force, and sent them round to Orissa through Mayürabhañja and thence southwards by the Kafsabãsa river. This force under Illāhābād Kālāpahāra began to ravage Orissa, and defeated the king's depaty; while one of the Oriyā chiefs raised the standard of revolt. Hearing this the Orissa king hurried sonth, fought with the rebels and was killed. The rebel chief was in turn killed by the Mahomedans. Raghu Bhañja Chōtarāya who was lying imprisoned, escaped and attempted to take possession of the throne. After four months' fight with Kälāpahāra, he too was slain; and the Mahomedans took final possession of Orissa. This conquest took place in 1568 A.D.

An Inscription of the time of Nayapāla Dēva, from the Rrṣna-duarika Temple at Gaya.-By Babu Monmohan Charravarti, M.A., B.L., M.R.A.S.
[Read A pril, 1899.]
This inscription is on a stone slab fixed in the right gateway of the Kṛ̣̊a-dvärikā temple in Gayā town. The present temple with its image of Kishenji was built 70 or 80 years ago by a Gayāwāl Brabmin, Dārōodar Lāl Dhōkrī. But it has been evidently set up on an old site on which had stood a temple containing images of gods Krspa and Mahādēva. The inscription was first bronght to public notice by General Cunningham, and a facsimile was printed in the Archæological Survey Report of India, Vol. III, Plate XXXII. Dr. Rājēndra Lāl Mittra tried to decipher it, but did not succeed, (see the Proceedings of the Asiatic Society of Bengal, August 1879). I edit the text from two fairly good ink impressions taken by Babu Paraneêçara Dayāl, Court of Wards' Head Clerk, Gaya. I have had also the advantage of consulting the original in cases of doubtful readings.

The writing consists of 18 lines and covers a space of $2^{\prime} 4^{\prime \prime} \times 1^{\prime} 0^{\prime \prime}$. The letters are well cut, and where entire are legible. But in many lines the letters are more or less damaged, particularly in the 4th, and 7 th to 14 th lines. The large number of damaged letters has caused much difficulty in decipherment. In size the letters are $\frac{3^{\prime \prime}}{10} \times \frac{4^{\prime}}{10}{ }^{\prime \prime}$. The written characters are of the type known as Kuțila. The Mātrās (the top horizontal lines) are in full swing; the marks of medial vowels $\overline{\bar{e}}$ and \bar{o} are pendent from the top lines as in modern Bēngali and Oriyā ; and the conjunct consonants including those of η and \tilde{n} are carefully engraved. ${ }^{1}$

The inscription is in Sanskrit, and excepting the invocation at the beginning, is in verse throughout. The verses are twenty-one in number and are in various metres. The orthography shows little peculiarity.

1 These peculiarities I have observed also in another Gayā inscription of the time of Nayapāla DḠa (Q̧ri-Nayapäla-dëva-nبpaté räjya-criyam bibhratah 1. 14). This inscription of 15 lines does not appear to have been published yet.

The conjunct consonants are correctly given; the nasals y and \tilde{n} are generally properly used; with $¢, \eta$ is used and not anusvāra (as vapce for vaíge in line 4, ayçu for aḿqu in line 16); in line 12 one lupta x has been shown with \bar{a} (yathärthà s lajkārah).

The inscription is a pracusti (1.17) describing the erection of a temple to Lord Jauārdana by a Gayā Brahmin named Viçvāditya. The dedicator was a Mahä-dvija (1.4), an euphemistic torm for a low class Brahmin who assists in the offering of pindas. His genealogy is thus given:-

The praçasti was composed by one Sahadeva, who was also a $v a ̈ j i$-vaidya or veterinary physician. The engraving was done by the artisan Sattea-Sōma son of Adhipa-8ōma.

The historically valuable portion of the inscription is to be found in the last verse. It states that the praçasti was written, while Nayapāla Dēva was reigning. The year is given as daça-pañca-samikhyasamvatsare, which ordinarily would mean "in the year 510." But unless the year be referred to some unknown era (like Harşa or Cēdi), the inscription cannot by any means be referred to so early a date. It seems more reason able to take the expression as daça and pañca, or the fifteenth year of the king Nayapāla Dēva. ${ }^{1}$

The Nayapāla Dēva of the present inscription is apparently identical with the well known king of that name belonging to the Pala dynasty of Magadha, who was the son of Mahipāla, and who has been mentioned in several inscriptions. The epigraphical characters and the find-spot of the inscription do not allow of any other identification. The time of this Nayapāla Dēva has not yet been precisely ascertained. An approximate idea of his time can, however, be deduced from the Tibetan Chronicles compiled by Rai Çaratcandra Dās Bahādur, in his article on "Indian Pandits in Tibet" (Journal of the Buddhist Text Society of India, Vol. I, pp. 7-31). Ācārya Dipaykara Çri-Jñāna alias Atiçā was a contemporary of Nayapāla Dēva, and Bu-Ston's Chos hbyuŋ gives the following relevant facts. Atiçā was residing at Vajrāsana

[^27](Bodh Gay§) when the king of the Karnya in the west invaded Mngadha, and a war ensued between him and Nayapala. The invaders sacked several towns at first, but were ultimately defeated. Atiça mediated and succeeded in bringing about a treaty between the two kings (p. 9 note). Apparently some time before this he bad been appointed by Nayapālal as high priest of the Buddhist Vihāra at Vikramaçila (p. 9). When he had been there for some time, the Tibetan king, Lha Lama Yes'es hod, sent a depatation to India under Rgyā-tsan for inducing Atiçā to come to Tibet, but the latter declined to go (p.13). Shortly after, this king died in captivity, and was succeeded by his nephew, prince Cān Cūb. After a year (p.15) the prince sent Nāg-tso to Vikramaçila again. In that monastery Nāg-tso stayed for three years ($p .23$), and at length persuaded Atiça to start for Tibet. En route while in Nepal, Atiçā wrote an epistle to the king Nryapāla, named Vimala-Ratna-Lėkhana (pp. 26 and 31). Atiçā lived in Tibet for twelve years ("thirteen years" in another place), and died in 1053 A.D. (p. 30).

The above data enable us to arrive at the following dates :-

1. Atiçā died in 1053 A.D.
2. He proceeded to Tibet in 1042 A.D.8 (twelve years)
3. He met Näg-tạo first in 1039 A.D. (three years)
4. The Tibetan king died in 1038 A.D. (one year)
5. Atiçā met Rgy $\bar{\alpha}-\mathrm{tsan}$ in \quad P 1036-7 A.D.
6. He mediated between Nayapāla and the king of Karnya in ? 1035 A.D.
7. He was appointed (by Nayapāla)
high priest of Vikramaçila ? 1033 A.D.
Apparently therefore the king Nayapāla Dēva was reigning in 1033 A.D. His accession could not have taken place much further back, for according to the Sārnāth inscription (Ind. Ant., Vol. XIV, pp. 139140), his father Mahīpāla was reigning in V.S. 1083 or 1026 A.D. Possibly the king of Karnya invaded Magadha expecting to have better success with a new, and therefore young and inexperienced king. Considering the various facts, the king Nayapala might be fairly assumed to

[^28]have ascended the throne between 1030 and 1033 A.D. The fifteenth year takes us to 1044 to 1047 A.D., or briefly, Circa 1045 A.D.

Babu Caratcandra Dās has compiled his article chiefly from Bu-Ston's Cos hbyay (rin-tsenn). Bu-Ston was the principal disciple of Atiçā (Rockhill, p. 227). Consequently his work might mainly be considered contemporaneons, and therefore more reliable than Tārānātha's or similar historical works, which appeared long after Atiçā's death.

Text. ${ }^{1}$

1. 2. Óㅛ Namo Bhagavatē Vāsudē̃āya U Unnidra-nīlakamal-ākara-kāya-kāntih svarṇn-ābhirāma-rucira-dyuti-pitavāsah । udbhāsyamāna iva cañcalayā ghanaughō Viṣ̣uh priyādvaya-varēna

1. 2. Vyānirmmāya samasta-vastu-sukhiñ viprān prajānā̀̀ patir $=$ yām=adhy āsta iv=ātman=aiva parits mūrtti-prapañcam dadhat। uttuŋgaih çarad-abhra-çubhra-çucibhih saudhaih krt-älaŋkrrtir= mmokęa-dvăram = anarggalam ja-
1. 3. -gati sā Ģrimad-Gayā giyatē n [$2 \|$]. ${ }^{3}$ Vēd-ābhyāsa-parāya-ṇa-dvija-gaṇ-ōdgirṇṇ-ōgra-pāṭha-kramād = nccair = nccarita-dhvani-vyatikarair = yatn-āvadhāryā girah । kiñ = c=ājasrita-horma-dhūma-paţala-dhvānt-āvrtau sāmpratam dharmmō
1. 4. Yatra mahā-bhayād = iva Kal̄̄h kālasya samitiş̧̧̧atē [$3 \|$]. Atyādrtair=guṇa-nayair=ura-nīla-padma-niçchadma-sadmani satām sukrt=ābhimarçē l nihāra-hāra-çarad-indu-vivn(bu)ddha-kunda-sandōha-sundara-Mahā-dvija-rāja-vay(\dot{m})çē
1. 5. [411].4 Ajāta-laķma-dvija-rāja-çēkharah samantatō=bhūri-vibhūti-bhūşanah । va(ba)bhūva dhanyō giri-rāja-putrikā-priyס́paméyah Paritōsa-saminjjakaḥ ॥ [5II].5 A nanya-sāmānya-dig-anta-mandiraih tri-vargga-samsarggi-guṇ-a-
1. 6. çrayair=jagatl çarat-sudhā-dhāma-gabhasti-taskaraih samantatō yasya yaçōbhir=āvrtami II [6I]. Dvija-vara-vinatā-nandana-niramya-gatikah samāçritō=lakşmyā I tasya tad=anu tanu-janmā mura-ripur=iva Çüdrako bhūtaḥ II [7॥]. ${ }^{6}$
1. 7. Dür-סdyăta-çarat-sudhā-nidhi-sudhā-knnd-ābhirāma-cchavi-cch̄̄-
 karpârair=iva pūritam malayaja-kọōdair = iv = ālēpitam kṣuvdha(bdha)-kṣira-payōdhi-tunga-labari-l̄̄hair = iv =āplā-

1 From the original and two ink impressions.

2 Metre Vasantatilalā.
8 Metre Ģärdūlavikrị̣ita; and of the next verse.

4 Metre Vasantatilakā.
6 Metre Vamiçastha; and of the next verse.

6 Metre Aryā.

1. 8. vitamin $\|8\|] .^{1}$ Satyam dharmma-sut天 sthiratvam $=$ acalē gāmbhiryam=ambhō-nidhau va(ba)hv-āçcarya-guṇā matiḥ suragurau tējasvitā bhăsvatil êtē santi guṇāh prthak = param = udañcadbhir=jigiẹā-rasair=Vviçvādityam=ajijanat=sutam=a-
1. 9. sā̄ =ēbhiḥ sumastaị̣ çritam \| [9\|]. Yas=tāpānta-karah
 àbhyuday-āçritō ravir=iva prauḍha-pratāp-odayaḥ। pratyantah karaṇ-ābhivããchita-phal-ājasra-pradāna-çribhiḥ çliş̧̣̄
1. 10. jaŋgama-kalpa-vrkşa iva jō jātaḥ samast-ārthinām \I [10 1]. Dōrdaṇḍa-dvaya-caṇḍa-vikrama-kaçā-dig-vāji-çaury-ādbhuta-krị̣-ōnmūlita-vairi-vargga-vipinaḥ prauḍha-pratāp(?)āruṇaḥ । vāry-ālīṣ yath = $\overline{\mathbf{a}} \mathrm{\nabla} d \mathrm{bi}(\mathrm{bdhi}) \mathbf{r}=\overline{\mathrm{a}}$ padi tathā pravya-
1. 11. kta-dhairya-kramah kiñ=ca prākrta-sarvva-garvva-vimukhah sampatsv= analpāsv = api \| [nlln]. Çriy = ānya-vyäsafgg visadrça-samācāra-vikalō janō madyēn = ̄̄va skhalanam = upahāsañ = ca bhajatē liyam sā yasya çrịh samucita-vi-
1. 12. lās-ābhyudayini yath-ārthā s laykārah samadhika-jan-ānandavişayah \| [12\|].a Yasy=ākrttrima-mēdur-äçrita-mahī-paryanta-samvãsibhir = nrty-ārambha-vijrmbhan-ōddhata-bhujair=udgīyamānā janaị̣ \mid sānand-ōtpulakam் vi-
l. 13. -mānam=asakrd=dēvair = vvilamv(b)-āmv(b)arē çlāghā-ghūrṇ-nita-mūrdhabhir=nipatitaiḥ kirttih samäkarṇ̣yatē n [13॥]. ${ }^{3}$ Sābhyasūya-paritoṣa-lēçatō viḳ̣itāni çanakaih sakaṭàkṣamı। yasya vidviḍ-anukūla-kulāni prāpnavanti nidha-
1. 14. -nāni dhanāni ॥ [14 \|]. ${ }^{4}$ Ninadanti danti-vara-hanti yāni kucitāni tāni ca durunnayānil ati-manda-mandam=atigahvarāsu nivasanti santi giri-kandarāsu ॥ [15 ॥]. ${ }^{6}$ Saṁtatēna talēna tējasā durnnayasya nayasya ridri-
1. 15. -şām । àkulāni kulāni durggamād = durggatāni gatāni durgga-
 mēkhalāyā asyā bhuvah kati na bhūmi-bhujō=va(ba)bhūvuḥ siddhim na kasya cid = agād = yad = analpa-kalpais = tōn = ātra kirttanam = akā-
1. 16. -ri Janārdanasya \ [17॥j.7 Kailās-ācala-çryga-sambhramam= adhaḥ-kurvat=prarūḍ-ōdaya-prālēya-dyuti-kunda-sundara-yaçạ̣-puñj-ōpamēy-ākrtil yatr=ōttuyga-çikh-āgra-saygata-çarac-candr-áy($\dot{m})$ ça-çubhra-çribhir $=$ mmuñcan $=$ nūtana-mañjarir $=$ iva patā-

1 Metre Çärdūlavikrịita; and of the next three verses.

2 Metre Çikhariṇi.
${ }^{8}$ Metre Çārdūlavikriḍita.

[^29]1. 17. -kābhir=nnabhō rājatē || [18॥]. Vāji-vaidya-Sahadēvaniruktiḥ tat-praçastir $=$ iyam = astu nitāntam \mid prēma-sauhrda-sukh-aika-dharitrì sajjanasya hrdaye ramaṇ-ivall [19n]a Çrimatós dhipa- Sōmasya ātmajēn =ārjitam yaçah 1 u-
1. 18. -tkirṇ̣̣a-karmmaụi Çrimat-Sattá-Sōmēna çilpinā $\|[20 \|]^{3}$ Samasta-bhū-maṇ̣̣ala-rājya-bhāram=āvi(bi)bhrati Çri-Naya-pãla-dēvé । vilikhyamānē daça-pañca-sam்(\mathfrak{y})khya-samvatsarē siddhim = agāc = ca kirttih \cap [21].4 $\|$.

Abstract of Oontents.

Óm! Salutation to Vāsudēva. May Viẹpun with his two wives, Lakṣmi and Sarasvati, bless you (v.1). The (town) Gaya where Brahmē has come to reside, and which is ornamented with high buildings, is praised as the unbarred door to salvation in this world (v.2). There the loud reading of Veda-studying Brahmins makes talk hearable only with care; and the constant smoke of sacrificial fires makes it as if a hiding place for dharmma afraid of the Kali-kāla (iron age) (v. 3). In the Mahā-dvija family-ever the home of Lakspmi on account of their virtues, and stainless as the kunda flower engrown by the autumnal moon-($\mathbf{v} .4$), like Çiva was born Paritōş by name (v.5); whose fame covered the whole world (v.6). From him was born, like Nārāyaṇa, Çūdraka (v. 7). His fame spread over the three worlds (v. 8). From him was born Viçvādityá in whom the qualities hitherto found separate have combined ($\mathrm{\nabla} .9$). Verses 10 to 16 sing the praises of Viçvāditya. Many chiefs arose on this earth, but none attained fulfilment so much as he (Viçvāditya) did by erecting a temple (kirttana) of Janārdana (v.17). V. 18 describes the temple in high-flown language. May this praçasti, the words of the veterinary physician Sahadeva, find its place in the bearts of good men like fair ladies! ($\mathbf{v} .19$). By the artisan Çrimat Sațṭa-Sōma, son of Çrimat Adhipa-Sōma, (this) fame in inscribing was obtained ($\mathrm{\nabla} .20$). While Çrī-Nayapāla Dēva was ruling the whole world, this monument written in (his) fifteenth year attained completion ($\mathbf{V} .21$).

[^30]
INDEX

TO THE

JOURNAL OF THE ASIATIC SOCIETY OF BENGAL,

Vol. LXIX, Part I.-1900.

${ }^{6}$ A bdallāh Khān, 2.
Apvins, shrine of, 84.
Aoyuta Rāya, King of Vidyänagara, 186.
Adhipasoma, artisan, 191, 195.
Agarwa, mound at, 83.
Ahmad Shāh, Bahmani King, 182.
Akațā-A bațā, biruḍa of Bhänadeva, King of Orissa, 182.
Alberani, statement by, regarding the use of palm-leaf and birch-bark for writing parposes, 124 ff .
A.li forest, 75.

Amnaur, 80.
$\Delta \mathrm{mra}, 80$.
Ancestor worship of Asur tribe, 149.
Arāda Kalāma, 77.
Araraj, 83.
Arrah, 77, 78.
Arrian, Indica, quotation from, 133 fr.
Asiwan, 75.
Asni, 84.
Asoha, 85.
Asoka pillars, site of, 83.
Asurs, non-Aryan tribe of Chota Nag-
par, language of, 147 ff .
Atharban pargana, 85.
Atiçā, Buddhist teaoher, 191 ff .
Ayodhyã, 75.
Bahmani kings of Kulbarga, 182, 184.
Baitalgarb, 89.
Bāla grove, 81.
Ball, 81.
Ballia, 87.
Bakhshāli MS., 126.
Belwa, 79.
Bengal, Palm-leaf MSS. from, 113 ff.
Besarh, 74, 77 ff., 83.
Bhägyadevi, queen, 69.
Bhinudeva, King of Orissa, 182.
Bharahia, 89.
Bheriagarh, 89.
Bhikaband, 79.
Bhimadeva, sändhivigrahika, 68, 73.
Bhiteura, 84.

Bhoi dynasty of Orissa kings, 185, 187 fir.
Bhramaravara, biruda of Kapilendra Deva of Orissa, 174, 175, 178, 180.
Bihar, Palm-leaf MSS. from, 115 ff.
Bijaigarh, 89.
Bijaipar, 89.
Birch-bark, use of, as writing material, 93 ff.

MSS. from Northern and Central India, 125 ff.
Bloch, T., article by, on a new copperplate insoription of Jayädityadeva II., 88 ff.
Bon festivals in Ladakh, 137.
Borassus flabellifer, 93 ff.
——earliest reference to, 184.
frait of, 132 fir
Bower MS., 127, 128.
Brähmi script, origin of, 130 ff.
Bu-ston, Tibetan work by, called chos hbyug, 191 ff.

Caitanya, visit of, to Puri, 186 fif.
Caitanya-carit-ämpta, quotation from, 184, 186.
Caitanya-maygala, reference to, 186.
Cakā Pratāpa Deva, King of Orissa, 188.
Campāhiṭtī, town, 68, 72.
Cān-Cūb, Tibetan King, 192.
Candrādevi, queen, 90, 91.
Çaŋkkaradevaçarman, brāhmaña, 62, 64.
Çajkusaṇ̆ā, village, 76, 90, 91.
Cāpāla Caitya, 79.
Çaunakaevàmin, brähmana, 68, 72.
Chaeravarti, M. M., article by, on an insoription of the time of Kapilendra Deva of Orissa from Gopinäthapura, 173 ff .
last Hindu kings of Orissa, 180 ff .
, article by, on an inscription of the time of Nayapala Deva, from the Krspodvärika tomple at Gaya, 190 ff.
Ohen-Chu, kiugdom of, 86 ff.
Cherand, 74, 78, 80.

Chilanla, 84.
Chos-hbyuy, Tibetan work by Bu-ston, reference to, 191 ff .
Citramatikā, queen, 68, 72.
Coin of Jalāl Shāh of Bengal from Jājpar Mint, 189.
Corypha elata, 97.
Corypha umbraculifera, 93 ff.
Grävasti, 75.
Gridhar (Marlidhar), anthor of Jangnā. mah of Farrakhbiyar and Jahāndār Shāh, 1 ff.
Grījiñanna, see Atiçã.
Güdraka. bràhmañ, 191, 193.
Çürapāla, king, 67, 68, 70.
Cgavana Ṛ̣i, 84.
Daddaraṇdikā, mañala, 76, 90, 91.
Daha, river, 82.
Dǎlabhya Resi, 84.
Dalman, 84.
Dane-i Vidyādhara, minister to Orissa King, 188.
Dead persons, burnt by Asars, 150.
___, not to be spoken of according to Ladakhi superstition, $1 \mathbf{4 2}$.
Delhi, see philli.
Devaçarman, hermitage of, 75.
Devapāla, king, 69.
Deulī, village, 76, 90, 91.
Dharma Chak, 79.
Dharmäditya, king, 90, 91.
Dlıarmapàla, king, 69.
Dhemaka, käyastha, 90, 92.
Dhilli, King of, 174, 175, 177, 178.
Dīpaŋkara Ácãrya, Çrī Jīāua, ses Atị̣ā.
Domangarh, 89.
Dravidian words in Asar language, 151, 171.

Eastern India, paper MSS. from, 121.
Evil oye, means of protection against, used by Asurs, 150.

Farrakhsigar, war of, with Jahāndār Shāh, 1 ff.
Francex, Rev. H., article by, on Ladakhi Proverbs,

Gäddhī, village, 76, 90, 91.
Gagason, 84.
Gundakī, river, 79.
Ganj-i-Shahidān, 79.
Garga, àcrama of, 84.
Gnaḍa, King of, 174, 175, 176, 177, 178.
Gaya, 77.
-, Krṣnadvärikã temple at, 190.
Ghagharra, 82.
Ghazipur, 86.

Golkonda, Kingdom of, 186.
Gopāla I., king, 69.
Gopāla II., king, 69.
Gopāla III., k ing, 67, 68, 71.
Gopinätha Barajena, revenue officer in Orisвa, 186.
Gopīnätha mahāpātra, minister, 174, 176, 178.

Gopinätbapura, temple of Jagannätha at, 173.

Gotama gate at Pataliputra, 77.
Govinda Deva, King of Orissa, 185, 187 ff.
Govinda Vidyādhara, ministor of Orissa kings, 185 ff.
Grahaknụda, mahäsämanta, 76, 90, 92.
Grah Kuṇ̣, 76.
Gundicä, garden honse of Jagannātha at Gopinàthapara, 173, 178, 179.
Gurhma, 88.
Gurjara, King of, 177.

Hahn, Rev. F., article by, on the Asur dukma, a dialect of the Kolarian langange, 149 ff.
Hälāvartta, mandala, 71.
Haricandana, see Mukunda Deva.
Harpar, 78.
Hasanpar, 82.
Hastigāma, 80.
Hastilaṇda, ditch, 76, 90, 92.
Hathwa, 80.
Hemantasena, king, 61, 62.
Hiaen Tsiang, statement by, regarding use of palm-leaf for writing parposes, 124.

Horrnie, A. F. R., article by, on Palm. leaf, Paper, and Birch-bark, 93 ff.
Hory, W., article by, on the identification of Kusinara, Vaisali, and other places mentioned by the Chinese pilgrims, 74 ff.
Husain Shāh, King of Bengal, 185.
Jnscription of Jryīditya II., 88 ff.

- of Kapilendra or Kapileq̧ara Deva of Orisea, 118, 173 ff.
of Laksmanasena, 61 ff. of Madanapāla, 66 ff. of the time of Nayapala from Gaya, 190 ff.
Irwine, W., article by, on the Jangnāmah of Farrakhsiyar and Jahāndär Shäh, 1 ff .
Ismã‘il Ghäzi, invaded Orissa, 186.
Jigali Kavi, inscription composed by, 194. 178, 179.

Jagđ̃nnätha-carit-ämpta, by Jngannātha Däsa, reference to, 185.

Jagannātha, temple of, at Gopināthapara, Cuttack, 173, 177, 179.
pri, 184
Jagattra, old tree near Hathwa, 81.
Jahāndār Shāh, war of with Farrakh. siyar, 1 ff.
Jājpur, mint name on coin of Jalāl Shāh of Bengal, 189.
Jalā Shāh of Bengal, coin of, 189.
Janārdana, temple of, at Gaya, 191, 195.
Jätaka. quotation from, 133.
Jau, Tibetan word, 146.
Jayäditya I., king, 90, 91.
Jayāditya II., king, inscription of, 76, 88 ff.
Jayapāla, prince, 69.
Jordanus, Friar, Mirabilia descripta, reference to, 134.
$K_{\text {äghaz, etymology of, } 123 .}$
Kakhāru-a Deva, King of Orissa, 185, 187.

Kãlapahār, general of Bengal King, conquers Orissa, 189.
Kalavaraga, see Kulbarga.
Kālu-ā Deva, King of Orissa, 185, 187.
Kaṇakamuni, stūpa of, 75.
Kanakavati, town, 85.
Kananj, 74.
Kanchavi, princess, story of, 86.
Käñcī, 177.
Kankotah or Kanak Kot, 85.
Kapia, 79.
Kapilavastu, 75, 76.
Kapileçvara or Kapilendra Deva, King of Orissa, chronology of, 180 ff .
————inscription of, 118, 173 ff.
Karṇāṭa, King of, 174, 175, 177, 178.
Karnya King (i.e., probably the Kalacari King Karṇa), 192.
Kasia, 83
Kāşţhägiri (?), village, 68. 71.
Keçuva, käynstha, 76, 90, 92.
Kesaria, 83
Khnṇ̣̣ādri, 177.
Khwàja Pir's mazār, 78, 79.
Kie-jo-kio-she-kwo, 74.
Ki.jou-i, 74.
Kolarian languages, Asur dialect of, 149 fi.
Kondapalli District, ceeded to Bahmani Kings, 184.
Konkanapnra, forest of Talipat trees near, 124.
Kosambi, 85.
Koțigāma, 79.
Koṭivarşa, risaya, 68, 71.
Krṣna Rāya, King of Vidyānagara, 186, 187.

Kalbargn, King of, 174, 175, 178.

Kumārapāla, King, 67, 68, 70.
Kumäraşap̣̂ikā, village, 76, 90, 91.
Kusinara, identification of, 74 ff .
Kuwalgarh, 89.
Kuchar, paper MSS. from, 129.
Ladakh, non-buddhistic festivals in, 137.
——, proverbs from, 135 ff.
Lalitavistara, quotation from, 132.
Lakṣmaṇa mahāpātra, purohita, 174, 176, 178.

Lakspmanasena, king, inscription of, 61 ff.
Leḍ̣ikā, viß̧aya, 76, 90, 91.
Lha Lama Yes'es hod, Tibetan King, 192.
Madanadevi, queen, 67, 71.
Madunapāla, king, inscription of 66 ff.
Mahäbhärata, reading of, 68, 72.
Mahädvija, low class Bratimin, 191, 193.
Mähakn, mahāsāmanta, 90, 92.
Mahipāla I., king, 70.
Mahipāla II., king, 67, 68, 70.
Maitra, A. K., article by, on a new copper-plate insoription of Lakṣmanasena, 61 ff.
Makhdūm Shāh's Dargāh near Harpar, 78.

Mālava, King of, 174, 175, 176, 177, 178.
Malayaketu, royal family, 90,91 .
Mandaran Tort, Haghli District, 186.
Manjhi, 82.
Marriage customs of Asur tribe, 150.
Marwargarh, 89.
Mäta Kumwar, 83.
Mātharaṇdiyā. village, 62, 64.
Matta, biruda of Bhānudeva, King of Orissa, 182.
Mayüradhvaja, Kíng, 78.
Mir Jumlah, 2.
Muhammadans introduce paper into India, 123.
Mahnmmad Shāh II., Bahmani King, 183 fif.
Maknada Deva Haricandana, last Hindu King of Orissa, 188 ff .
Mandäri language, connection of, with Asur dialect, 151, 169 ff
Mupdaris, tradition regarding origin of, 151.

Murlīdhar, see Ģridhar.
$\mathrm{Na}_{\text {adika, }} 79$.
Näg-tso, Tibetan ambassador to India, 192.

Na-po-ti po-kr-lo, 74.
Narasa, King of Vidyānagara, 186.
Narasimha IV., Ganga King of Orissa, 181.

Narasimha Rāya Jenā, King of Orissa, 188.

Närāyaṇa, minister, 174, 176, 178,
Nārāyaṇadatta, sändhivigrahika, 62, 65.
Nārā yaṇapàla, king, 69.
Navagraha, image of, later used by Muhammadans, 79.
Nayapāla, king, 70.

- 100 , inscription of, from Gays, 190 ff .
Newal, 74.
Northern India, Palm-leaf MSS., from, 99 ff.
, use of birch-bark in, for writing parposes, 125 ff.

Orissa, conquest of, by Kālapahār, 189.
\longrightarrow, last Hindu kings of, 180 ff .
——, Palm-leaf MSS. from, 117.
Oriyã characters, earliest epigraphioal record of, 118, 173.
'O-ye-mu-khi, 84.
'O-yu-t'o, 84.
Pabbosa, 85.
Pachgawan, 89.
Palm-leaf, use of, as writing materinl, 93 ff.
Palmyra palm, 93.
Paparr, 80.
Paper, use of, as writing material, 93 ff .
Paper MSS., occurrence of in India, 119 ff.
Paritoşa, brāhmana, 191, 193.
Pasha, 75.
Pataliputra, 77.
Patraṣaṇḍà, villıge, 76, 90, 91.
Panṇ̣̆ravardhana, bhukti, 62, 64, 68, 71.
Pā $\mathrm{Pa}, 80$.
Petrowski MS., 128.
Piẹvān, caste, 86.
Pi-so-kia, 75.
Polygamy, permitted among Asur tribe, 150.

Prajāpatisvāmin, brāhmaṇu, 68, 72.
Pratāpa Rudra Deva, King of Orissa, 184 ff .
Paruşottama Deva, King of Orissa, 182 ff.
Qutt Shāh, founder of kingdom of Golkonda, 186, 187.
$\mathrm{R}_{\text {aghn }}$ Bhäja Chotaräy, Oriesa chief, 188, 189.
Raghudevaçarman, brähmaṇa, 62, 64.
Kaghurāma Jenā, King of Orissa, 188.
Rajmahendri, ceeded to Bahmani kings, 184.

Rājyapāla, king, 69.
Rämacarita, 68.

Rāmagāma, 82.
Rämänanda Rāya, governor of Rajmahendri, 186.
Rämapāla, king, 67, 68, 70, 71.
Rämāvatí, town, 68, 71.
Ramgarh, 89.
Rumkot, capital of Ayodhyā, 75.
Religion of Asur tribe, 149 ff .
Rgyã-tsan, Tibetan ambassudor to India, 192.

Rohinịi, river, 76, 90, 92.
Rudra, käyastha, 90, 92.
Sadāciva Rāya, King of Vidyānagara, 186.

Sahadeva, väjivaidya and poet, 191, 195. Saina Maina, 77.
Säkşi-gopāla, image of, at Cnttack, 184.
Salannapur, 82.
Santhālī, connection of, with Asur dialect, 169 ff.
Saran, 77.
Saran Khass, 78.
Sarayū, river, 79.
Sārnāth Chak. 79.
Sattasoma, artisan, 191, 195.
Set-mahet, 75.
Sewan, 74, 81.
Sha-chi, country of, 75.
Shergarh, 89.
Shi-lo-ta-lo, 84.
Sinboya, name of creator in Asur lan. gange, 149.
Sondi, river, 82.
Southern India, palm-leaf MSS. from, 123.

Spithng monastery in Ladakh, 137.
Sulaimã Karrarānī, King of Bengal, 189.

Sun, identified with the creator by Asurs, 149.

Sumergarh, 89.
Sūrya-Närāyaṇa, temple of, 87.
Talipat palm, 93.
Tarigach, see Palmyra palm.
Tathāgatasara, artisun, 68, 73.
Tea, used as barter in Ladakh, 146.
Trelinga dynasty of Orissa kings, 188.
Telya, 80.
Tibetan proverbs, see Ladakh.
Tirumalnppa Rīa, 187.
Tutemistic sections of Asar tribe, 149.
Tuŋge Rist trakita chief, 69.
Turquoises, worn by Ladakhi women, 147.

Udaipar, kingdom of, 89.
Uravilva Kāçyapa, 77.

Index.

Urwal, 77.
Utkala, King of, 176.
Vaisali, identification of, 74 ff. Vakākhya, scribe, 174, 178, 179. Vākpāla, prince, 69.
Valaddnka, käyastha, 90, 92.
Vallālasena, king, 61, 62, 63.
Vasu, N. N., artiole by, on the Manahali copper-plate inscription of Madanapäladera, 66 ff.
Vaţẹvarasvāmin, brāhmaṇa, 68, 72.
Vatsasvāmin, brähmana, 68, 72.
Velava, 79.
Viçvāditya, brāhmana, 191, 194.
Vidyānagara, Hindu kings of, 182, 184, 185.

Vigrahapāla I., king, 69.
Vigrahapāla II., king, 69.

Vigraliapāla III., king, 67, 70.
Vijnyapura, town, 89, 90, 91.
Vijayasena, King, 63.
Vikramaçila, vihära at, 192.
Vikramapura, town, 62, 63.
Vimala-ratna-lekhana, a work by Atiçā 192.

Vipradāsadevaçarma, brāhmaṇa, 62, 64.
Virabhadra, con of Pratapa Rudra of Orissa, 187.
Vyäghrataţī, town, 62, 64.
Waina, 87.
Western India, Palm-leaf MSS. from, 119, 121.
, paper MSS. from, 121.
$Y_{\text {ogädevi, queen, 90, } 91 .}$

J O U R N A L

OF THE

ASIATIC SOCIETY OF BENGAL.

VOL. LXIX.

part il. (Natural History, \&c.).
(Nos. I то IV.-1900.)

EDITED BY tHE
Natural fistory Secretary.
" It will flourish, if naturalists, chemists, antiquaries, philologers, and men of science in different parts of Asia, will commit their observations to writing, and send them to the Asiatic Society at Calcutta. It will languish, if such communications shall be long intermitted ; and it will die away, if they shall entirely cease." Sir Wm. Jones.

CALCUTTA:

BAPTIST MISSION PRESS, OALCDTTA.

Digitized by
Google

Dates of Issue. Part 1I, 1900.
No. I.-Containing pp. 1-88, was issued on 9th July, 1900.
II.-Containing pp. 89-278, and Plate I (of 1898) was issued on 26th October, 1900.
" III.-Containing pp. 279-456, was issued on 22nd November, 1900.
" IV.-Containing pp. 457-489, was issued on 22nd January, 1901.

LIS'I OF CON'RIBU'TORS.

Page.
Alcoce, A.;-Materials for a Carcinological Fauna of India, No. 6. The Brachyura Catometopa or Grapsoidea 279
Bingham, C. T. and Thompson, H. N.;-On the Birds collected and observed in the Suuthern Shan States of Upper Burma 102
Dutt, Promothonath;-On a new method of treating the properties of the circle and analogous matters. 91
Finn, F.;-Notes on the Structure and F'unction of the T'racheal Bulb in male Anatidæ 14.7
————On the form of Cormorant inhabiting the Crozette Islands 143
—_ and Turner, H. H.;-On Two Rave Indian Pheasants. 144
Gamble, J. S. and Prain, D.;-Description of a new Himalayan genus of Orobanchaceæ 488
King, George;-Materials for a Flora of the Malayan Peninsula. l
Masson, W. P.;-Note on four Mammals from the neighbourhood of Darjeeling 89
Mukerji, P.;-Note on a method of detecting free Phosphorus 97
Nicevilee, Lionel de;-Note on Calinaga, an aberrant genus of Asiatic Butterflies 150
———————————ete on the avian genus Harpactes, Swainson 278
Kannra District of the Bombay Presidency, with a Revision of the Species of Butterflies there occurring 187
Prain, D.;-A list of the Asiatic species of Ormosia 175
————;-Some new plants from Eastern India 168
———, and Gamble, J. S.;-Description of a new Himalayan genus of Orobanchaceæ 488
Ray, P. C.;-I. Further Researches on Mercurous Nitrite and its Derivatives. II. On Mercurous Iolide and a new Methorl of its Preparation. 476
Rogers, L.;-The relationship of the water-supply, uater-logging, and the distribution of Anopheles Mosquitos respectively, to the prevalence of Malıric North of Calcutta 457
Thompson, H. N. and Bingham, C. T. ;-On the Birds collected and observed in the Southern Shun States of Upper Burma 102
Turner, H. H. and Finn, F.;-On Two Rare Indian Pheasants 144
Walton, H. J.;-Note on the occurrence of Rhodospiza obsoleta (Licht.) in the Tochi Valley 101
———Notes on birds collected in Kumaon 155

Digitized by GOOgle

JOURNAL

OF THE

ASIATIC SOCIETY OF BENGAL.

-re日。

Vol. LXIX. Part II.-NATURAL SCIENCE.

No. I. - 1900 .
I.-Materials for a Flora of the Malayan Peninsula.-By Sir George King, K.C.I.E., M.B., LL.D., F.R.S., \&C., late Superintendent of the Royal Botanic Garden, Calcutta.

No. 11.
After about two years of unavoidable delay, I am now able to offer to the Society a further contribution towards the completion of these Materials. The paper now submitted gives an account of the natural order which, in the sequence hitherto followed, falls to be numbered XLVII. An account of the family Myrtaces which ought, according to that sequence, to have immediately preceded this one of Melastomacess is now in preparation, and will I hope before long be ready for presentation to the Society. The present paper is not entirely my own work, the account of the genus Sonerila having been most kindly prepared for me by Dr. O. Stapf, First Assistant in the Royal Herbarium, Kew, whose contributions to the Botany of Borneo, pablished by the Linnean Society of London, have already marked him as an authority on the Malayan Flora.

Order XLVII. MELASTOMACEAT.

Herbs or shrubs, more rarely trees or climbers. Leaves opposite or rarely whorled, generally petioled, entire or nearly so, often palmately 3-5-7-nerved from near the base to the apex (mostly pinnateveined in Memecylon) ; stipules 0. Flowers spiked, panicled or oymose, J. II. 1
rarely solitary or fascicled, regular, hermaphrodite. Calyx-tube united by vertical walls to the ovary, rarely nearly free; limb nsually 4-5. (sometimes 3- or 6-)lobed, or truncate, rarely falling off in a cap. Petals as many as the calyx-lobes, contorted in bud, inserted on the margin of the calyx-limb. Stamens as many as or more than (frequently twice as many as) the petals, inserted with them; alternate stamens often shorter, sometimes rudimentary, filaments bent inwards in the bud; anthers opening at the summit by one or two pores, rarely by slits down the face ; connective often appendaged near the base by bristles, tubercles or a spar. Qvary 4-5- (rarely 3- or 6-)celled (in Memecylon 1-celled) ; style simple, filiform, rarely short; ovales very many (except in Memecylon) ; placentas axile, parietal or free central. Fruit included in the calyx-tabe, capsular or berried, breaking up irregularly or by slits throngh the top of its cells. Seeds minute, very many (in Memecylon one only) ; albumen 0 ; cotyledons short (or in some of the Memecyless long, thin and convolute).-Distrib. Species about 2700, tropical, with a few subtropical ; mostly in America, but many in southeast Asia, and a few in Africa and Polynesia.

Soborder I. Mrlastomere. Ovary 3-6-celled. Ovules very many, on placentas radiating from the axis. Seeds very many. Anthers opening by a single terminal pore (rarely by 2).

Tribe I. Osbrciera. Seeds curved through half a cirole, minately panctate. Stamens all nearly alike. Fruit a berry 1. Otanthbra. Stamens very unequal 2. Melabtoma.
Tribe II. Oxyspores. Seeds straight, oblong or cuneate, raphe often excurrent. Ovary with the verter asually free, conical. Petale more than 3. Inflorescence not scorpioid. Fruit capenlar.

- Infloresconee terminal (see also Oohthooharis).

- Inforescence axillary, stamens equal, fowers minute.

Tribe III. Soneriliss. Seeds straight, oblong or cuneate, often angular, raphe sometimes excurrent. Ovary flattened or depresed at the vertex. Fruit capsular.

Petals 8. Inflorescence scorpioid 8. Sonerila.
Petals 4. Flowers in a long-peduncled head ... 9. Phyllagatisis.
Tribe 1V. Medinilies. Seeds straight, ouneate or obovate, often angular. Connective often appendaged near the base. Fruit baccate.

- Longer stamene having two long bristles attached to the base of the connective in front.

Cymes lateral 10. Mardia.
Panicles torminal 11. Dissocaita.

* Longer sfamens having the connective at base variously appendaged but not woith two long bristles in front (oqual and with two short bristles in one species.)

Four vertical plates on the ovary 12. Anplectaux. *** Stamens equal or nertrly so.
Connective not at all or very shortly produced at the base, but having 2 tnbercles in front and a spur behind 18. Medimilla.

Anthers not produced at the base; connective with tufted beard at the base behind but not spurred ...
14. Pugonanthera.

Connective not produced at the base and with no appendrges in front, but minutely sparred behind, not bearded
...
15. Pachicentria.

Suborder II. Astronies. Ovary 4-5-celled; ovules very many on parietal nearly basal placentas. Seeds very many. Anthers short, opening by slits. Fruit baccate.

Calgx-tube smooth. Panicles terminal 16. Astronia.
Calyr-tube verrucose. Cymes small 17. Pternandra.
Suborder III. Memecyles. Ovary 1-celled; ovules about 9 ou a basal short free-central placenta. Stamens equal; anthers short, opening by pores or short slits. Berry l-seeded.-Leaves usually pinnatenerved.

Stamens 8 18. Memecylon.

1. Otanthera, Blume.

Slender shrubs. Leaves membranons, entire, 3-5-nerved. P'anicles terminal or sub-terminal, lax, cymose, few-finwered. Calyx bearing on its ovoid tabe simple or tufted bristles, rarely glabrous, the lobes 5 or 6 , equal to or shorter than the tube, deciduous. Petals 5-6, obovate, the apex rounded or acute. Stamens subequal, 10-12; anthers opening by a terminal pore, not beaked, the conuective not produced at the base, or slightly biauriculate in front. Svary half-inferior, with 5 or 6 bristles at its apex, 5-6-celled; style filiform, simple; ovales numerous on axile placentas. Fruit 5-6-celled, baccate. Seeds small, curved, punctrte. Distrib. Species 7 or 8; Malaya, Burmn, Philippines, N. Australia.

Oalyx-tube bearing simple bristles	1.	O. celebica.		
Calyx-tabe quite glabrous	2.	O. nicobarensis.

1. Otanthrra celebica, Blume, Mus. Bot. Lagd. Bat. I, 56. Leaves narrowly elliptic, shortly acuminate : upper surface sparsely strigose, the nerves g!abrous, lower usually glabrous, the main nerves (and sometimes the minor also) with sub-adpressed bristles: length 2.25-3.5 in., breadth $\cdot 5-1 \cdot 5$ in., petioles $\cdot 2-4$ in. long. Calyx-tube with simple acuminate bristles often bulbous at the base, the teeth setose. Naud., Ann. So. Nat. Ser. 3, XIII, 353; Cogn. in DC. Mon. Phan. VII, 342.
andaman Islands; common, King's. Collectors. Distrib. Celebes. 2. Otanthera nicobarensis, Tejsm. et Binn. Pl. Nov. Hort. Bogor. 29. Leaves lanceolate or oblong-ovate, acuminate, upper surface sparsely strigose, the nerves glabrous; lower glabrous except the strigose nerves; length 3 to 4.5 in., breadth $1 \cdot 25$ to 2 in., petioles ${ }^{\prime} 5$ to $1 \mathrm{in}$. . Oalyx-tube quite glabrous; the teeth sub-ciliate. C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 522 ; Kurz, Journ. As. Soc. Bengal, 1876, pt. II, 131 ; Cogn. in DC. Mon. Phan. VII, 342.

Nicobar Islands; Novara Expedition.

Abstract

This has been collected only by the botanists of the Austrinn expedition. It in the only apecies of the genus with a glabrons calyx.

2. Melastoma, Linu.

Scaly, strigose or villous shrubs. Lieaves petioled, oblong or lanceolate, entire, 3-7-nerved. Flowers terminal, solitury, clustered or panicled, rose or purple, 5-(rarely 6-7-) merous. Calyx-tube ovoid or campanalate, with simple (rarely with penicillate) hairs, lobes deciduous. Petals equal in number to the calyx-lobes. Stamens twice as many as the petals, very unequal, alternate longer ones with parple anthers having the connective long-produced at the base and terminating in two lobes, the shorter ones having yellow anthers, the connective not produced bat with two tubercles in front. Ovary ovoid, more or less united to the calyx-tube, 5-(rarely 6-7-) celled, apex bearing bristles; style filiform, simple; ovales very numerons, placentas axile. Fruit berried, succulent or coriaceous, enveloped in the calyx-tube, bursting irregularly. Seeds minute, very many, curved through half a circle, minutely panctate. Distrib. Species 40 ; Asia, North Australia and Polynesia.

Calyx-tube densely covered with long, flexuose, spreading, shining, coloured bristly hairs - 25 to ${ }^{-5} \mathrm{in}$. long ; young branches, petioles, and pedicels with stif spreading bristles; flowers 2 to 3 in. in dinm. ...
Calyx-tabe, young branches, petioles and pedicels with adpressed, lanceolate acuminate, serrulate scales: cymes condensed, flowers 1.25 in . across ...

1. M. decemfidum.
2. M. imbricatum.

Calyx-tabe densely clothed with linear acaminate, entire or serrate scales, those of the young branches, petioles and pedicels shorter and broader; corymbs with deoiduons (often large) bracts; flowers 2 to 8 in . aoross (only $1 \cdot 25$ in var. perakensis) ...
3. M. malabathricum.

1. Melabtoma decemfidim, Roxb. Hort. Beng. 90 ; Fl. Ind. II, 406. A shrab, 5 to 10 feet high; young branches at the nodes and near the tips, petioles and pedicels with numerous stiff, spreading bristles. Leaves narrowly-lanceolate or oblong-lanceolate, acuminate, 3 - to 5 -nerved; the upper surface smooth except for a few scattered
1900.] G. King-Materials for a Flora of the Malayan Peninsula. 5
adpressed hairs, the lower glabrous, glandular-punctate; length 2.5 to 5 in., breadth 6 to 1.8 in .; petiole 25 to $\cdot 5 \mathrm{in}$. long. Flowers solitary or two or three together, bright parple, 2 to 3 in. in diam., the bracts few, short, acuminate; pedicels under $\cdot 5 \mathrm{in}$. Calyx-tube densely covered with long, flexnose, shining, coloured, bristly lairs; 25 to $\cdot 5 \mathrm{in}$. long, the teeth rather shorter than the tube, ovate-lanceolate, acuminate, glabrous inside, deciduous. Fruit $\cdot 75 \mathrm{in}$. in diam., truncate at the apex, ovoid to ovoid-globular, $\cdot 5$ in. in diam. Jack in Trans. Linn. Soc. XIV, (182.2) 6 ; DC. Prodr. III, 146 ; Naud., Aun. Sc. Nat. Ser. 3, XIII, 282 ; Bl. Mus. Bot. I, 55 ; Cogn. in DC. Mon. Phan. VII, 345. M. sanguineum, Sims in Bot. Mag. t. 2241 ; DC. Prodr. III, 145 ; Don in Mem. Wern. Soc. IV, 289 ; Miq. Fl. Ind. Bat. I, pt. I, 504 ; Nand. l.c. 281 ; Triana in Trans. Linn. Soc. 60 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 524 ; Hemsl. in Jour. Linn. Soc. XXIII, 300. MI. malabathrica, Sims in Bot. Mag. (not of Linn) 529. M. Gaudichaudianum, Naud. l.c. 278. M. nacrocarpum, Naud. l.c. 281 (not of Don). M. porphyreum, Bipp. et Bl. in Flora 183I, II, 487. M. pedicellatum, Naud. l.c. 280 ; Cogn. in DC. Mon. Phan. VII, 346.

Penang; Wallich 4042! King, Curtis 683. Malacca; Griffith (K.D.) 2245/1! Maingay 773, 774! Ridley 3228. Pabang; Ridley 2667. Kedah; Ridley 5211. Perak ; Scortechini 2123! King's Collector 1540, 1853, 8754. Distrib. Burma, China, Hongkong, Tonkin.

Var. mollis, Clarke in Hook. fil. Fl. Br. Ind. II, 524. Young branches very hispid throughout their whole length; leaves with numerous subadpressed and spreading stiff hairs on both surfaces, especially on the nerves. Vidal Syn. Pl. Filip. t. 51 ; fig. D. M. molle, Wall. Cat. 4046 ; Triann in Linn. Trans. XXVIII, 60; Cogn. in DC. Mon. Phan. VII, 346. M. crinitum, Naud. l.c. 524. M. malabathricum Blanco, Fl. Filip. Ed. III, tab. 152 (not of Linn.).

Singapore; Wallich. Distrib. Lazon; Ouming 853.
2. Melastoma imbricatox, Wall. Cat. 4047. A spreading shrub, 5 to 15 feet high; young branches (especially at the nodes and tips), petioles, pedicels and calyx covered with adpressed, lanceolate acuminate, serrulate scales. Leaves elliptic-oblong to ovate-oblong, rather abruptly narrowed at the base, the apex acute or acuminate; main nerves 5 (the two lateral slender) ; both surfaces strigose, the main nerves on the lower with adpressed scales; length 3.5 to 8.5 in., breadth 1.5 to 4.5 in., petiole 35 to 1.35 in. Cymes solitary, terminal, condensed, 1.5 to 2 in. in diam., enclosed in bud by deciduous, lanceolate bracts and bracteoles. Flowers 7 to $15,1 \cdot 25 \mathrm{in}$. in diam.; the pedicels $\cdot 15 \mathrm{in}$. long. Calyx-tube urceolnte, the teeth shorter than the tube, lanceolateacuminate, deciduous. Petals oblong. Anthers short. Fruit ovoidglobose or sub-globose, truncate and shortly toothed at the mouth,
pulpy, 8 in. in diam. when ripe. Triana in Trans. Linn. Soc. XXVIII, 60 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 524 ; Cogn. in DC. Mon. Phan. VII, 355. M. obovatum var. oblongum, Bl. ex Triana l.c. 60.

Perak; Scortechini 162! King's Oollector 444, 6023, 8696, 10946! Wray 2980. Penang; Wallich, Curtis. Distrib. Sumatra, Forbes 2072! Brit. India (Khasia and Assam) ; Tonquin.

Easily recognised by its condensed oymes and rather small flowers.
3. Melastoma malabatericum, Linn. Sp. Pl. 559. A spreading shrub, 3 to 6 feet high; young branches, petioles and pedicels densely clothed with rather short, acate to acuminate, often serrulate scales. Leaves ovate-lanceolate, ovate-oblong or elliptic, the apex acate or shortly acuminate, petioles short, 3- to 5 -nerved (the marginal pair when present slender) ; both surfaces strigose, the hairs sparser on the upper and pale; on the lower the hairs more numerous (especially on the minor nerves) and darker, the main nerves clothed with broad-based acuminate scales: length 2 to 5.5 in., breadth 75 to 2.5 in .; petioles $\cdot 2$ to $\cdot 5$ in. long. Corymbs terminal, few-flowered, enveloped in bud by large, deciduous, ovate-cordate bracts; flowers 2 to 3 in . across, the pedicels 2 to $\cdot 4$ in. long. Calyw; the tube cylindric-campanulate, densely clothed externally with linear acuminate, entire or serrate, pale scales, almost glabrous within; the teeth shorter than the tube (rarely equal to it), acute or abruptly acuminate, the apex deciduous, scaly only near the midribs. Flowers 2 to 3 in. across. Petals purple. Fruit subglobular, truncate, pulpy, $\cdot 25 \mathrm{in}$. in diam. when dry. DC. Prodr. III, 145 ; Roxb. Hort. Beng. 33 ; Fl. Ind. 1I, 405 ; Wall. Cat. 4040 ; Bl. Bijdr. 1076; Bot. Reg. t. 672; W. and A. Prodr. 324; Wight Ill. t. 95 ; Dalz. and Gibs., Bomb. Fl. 32 ; Nand. in Ann. Sc. Nat. Ser. 3, XIII, 285 ; Thwaites Enum. 106 (α and β) ; Benth. Fl. Aust. III, 293; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 523 ; Kurz, For. Fl. I, 503, not of Miq. Fl. Ind. Bat. I, pt. I, 507 ; Naud. in Ann. Sc. Nat. Ser. 3, XIII, 273 ; Cogn. in DC. Mon. Phan. VII, 349. M. affine, D. Don in Mem. Wern. Soc. IV, 288 ; DC. Prodr. III, 145. MC. obvolutum, Jack in Trans. Linn. Soc. XIV, 3 ; Cogn. in DC. Mon. Phan. VII, 348. M. articulatum, M. heterostegium, M. novæ-hollandiæ and M. sechellarum, Naud. in Ann. Sc. Nat. Ser. 3, XIII, 285, 286 and 290. M. velutiuum, Seem. Fl. Vit. 90. M. Banksii, Cunn. ex Triana. Trembleya rlinanthera, Griff. Not. 1V, 677.

In all the provinces. Distrib. British India and Malayan Archipelago, W. China, Seychelle Islands, N. Caledonia, N. Australia.

A widely distribnted species varying in reality very little in localities widely separated. The differences have however been taken as the bases of many bad and doubtful species. In his Flora Australiensis, Mr. Bentham remarks (and apparently with justice) that the whole twenty-four species described by Naudin in Ann. So.

Nat. Ser. 3, XIII, pp. 283 to 293 ; should be reduced here. It is not withoat reluctance that I give four varieties as follows :-

Var. 1. polyantha, Benth. Fl. Aust. III, 292. Bracts of inflorescence small and very early deciduous or altogether absent; teeth of calyx usually short ; leaves not exceeding 2.5 in . in length. M. polyanthum, Blume in Flora for 1831, 480 ; Mus. Bot. I, 52, t. 6 ; Naudin in Ann. Sc. Nat. Ser. 3, XIII, 287 ; Miq. Fl. Ind. Bat. I, pt. I, 502 ; Trians in Linn. Trans. XXVII, 59 ; O. B. Clarke in Hook. fil. Fl. Br. Ind. III, 523. M. brachyodon, Naud. l.c. 292 ; Miq. Fl. Ind. Bat. I, 570, t. 8, fig. A. M. malabathricum, Desr. in Lam. Encyc. Bot. IV, 36 ; Ill. Gen. tab. 361, f. 1 ; Jack in Linn. Trans. XIV, 4, fig. 1, a to g; Poir. Dict. IV, 37 ; Bl. Bijdr. 1070. M. erecta, Jack l.c. 5 ; DC. Prodr. III, 145. M. tidorense, Bl. in Flora 1831, p. 482, Miq. l.c. 514. M. Royenii, Bl. l.c. 483. M. tondanense, Bl. Mus. Bot. I, 54. M. Hombronianum, M. oliganthum and M. microphyllum, Naud. l.c. 278, 292 and 293.

Andamans; King's Collector. Singapore; Anderson, King. Malacca; King. Penang; Curtis, King. Distrib. Burma, N. China, Sumatra, Java and other islands in the Malay Archipelago, Lazon, N. Australia.

Var. 2. adpressa, C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 523. Leaves narrowly oblong-lanceolate, smaller than in the typical plant and with harsher pabescence. M. adpressum, Benth. in Wall. Cat. 4081, Naud. l.c. XIII, 27 ; Cogn. in DC. Mon. Phan. VII, 349. M. anophanthum, Naud. l.c. 277.

Malacca; Maingay 771 to 773 in Herb., Kew. Penang; Wallich, King, Curtis. Provincr Wellesley; Ourtis.

This is scarely worthy of separation as a variety. It is slightly smaller and more strigose than the type and differs from var. polyanthum, so far as I can see, only by the large size of the bracts of the infloreecence.

VAR. 3. normalis, King. Hairs of both surfaces very numerous, those of the upper sub-adpressed, of the lower sub-spreading, softer (almost silky); calyx-teeth long, adpressed hairy within. M. normale, Don Prodr. Fl. Nep. 220 ; DC. Prodr. III, 145 ; Nand. in Ann. Sc. Nat. Ser. 3, XIII, 289 ; Kurz, For. Flora I, 504 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 524; Triana in DC. Mon. Phan. VIII, 352. M. Wallichii, DC. l.c. 146. M. napalense, Lodd. Bot. Cab. t. 707. M. pelagicum, Naad. l.c. 279. M. longifolium, Naud. l.c. 293.

In most of the provinces.
Var. 4. perakensis, King. Leaves more or less broadly elliptic, 5- to 7-nerved, the upper surfaces strigose (sometimes nearly glabrous in old specimens), the lower softly and rather densely pubescent; branches, petioles and pedicels with long, spreading, rather soft hairs; calyx-tube densely clothed with long, flexuose, soft, often ciliate setae,
the lobes large, adpressed strigose on both surfaces : flowers occasionally only 1.25 in. in diam.

Perak; Ridley 2935! Curtis 1298! Wray 1733, 1883! King's Collector 2173, 2091, 8463! Scortechini 780. Singapore; Hullet 5728. Selangore; Ridley 1996. Distrib. Java; Forbes 1142a.

This has broader leaves more softly hairy than VAB. normalis. The bristles of the calyx are much longer than in any other form of M. malabathricum and approach in number, length and density those of M. sanguineum, Don. A form of this from Perat, with the calyx-hairs shorter than the type, connects it with M. imbricatum, Wall.
3. Oxyspora, DC.

Large spreading shrubs with drooping branches terminated by large, lax, almost naked panicles of rose-purple flowers. Leaves opposite, long-petioled, large, 5- to 7-nerved, ovate, acuminate. Panicle long, lax, sometimes narrow, the branches decussate, the flowers on the branchlets not glomerulate, bracts very small. Oalyx-tube ovate, cylindric or funnel-shaped, its teeth 4, short, triangular. Stamens 8, four large with elongated anthers and four small, or all equal, opening by a single apical pore; the base produced and bilobed, the connective with or without an appendage. Ovary inferior, 4-celled, its apex glabrous; style simple, elongate; ovales numerous; the placentas axile, radiating. Capsule dry, elongate, double fusiform, with 8 ribs. Seeds numerons, falcate; the raphe lateral, produced at the apex into a point in front. Distrib. Seven species, Indian and Malayan.

Anthers dissimilar; petioles not winged	\ldots	\ldots	1.	O. stellulata.	
Anthers similar :-					
Petioles not winged	\ldots	\ldots	\ldots	2.	O. acutangula.
" winged	\ldots	\ldots	\ldots	8.	O. Curtisii.

NOTE.

The geners Allomorphia and Oyyspora were so diffioult of separation even before the disoovery of the new species herein described (vis., A. alata, Scort., O. acutangula and O. Curtisii) that Baillon (Hist. des Plantes VII, 48) united them. In Baillon's time Oxyspora was distinguished mainly by having four of its eight stamens moch larger than and differently coloured from the other four. The three older species (all British Indian) O. paniculata, O. vagans, and O. cernua and the new Malayan one O. stellulata have this character, which would form an excellent head-mark for the genus if it did not break down. The charaoter, however, does break down, for in the two Malayan plants here published as O. acutangula and O. Curtisii the eight anthers are all equal, although in all other respects these plants have the facies of the older species of Osyspora. I have referred these to Owyspora as preferable to the alternative coarse of patting them into Allomorphia, and I have therefore, in order to admit them, modified the generic character of Owyspora as regards anthers. Oxyspora, as here defined, thus depends for its separation as a genus on its open panionlate inflorescence and long double fusiform boldly-ridged capsules, while Allomorphia is characterised by shortly-branched panicles, on the ultimate branchlets
of which the flowers are clastered in pseado-glomerali, while the capsules are not much longer than broad and are often urn-shaped.

1. Oxpspora stellolata, King, n. sp. A shrub, 15 to 20 feet high; young branches, petioles, inflorescence and calyx-tube covered with pale, minute, stellate-hairy scales. Leaves somewhat unequal, ovate, slightly cordate at the rounded base, the apex shortly apiculate, 7 -nerved (the middle nerve very strong) ; both surfaces free from hairs, but (especially the upper) with numerous minute hairy scales most numerons on the nerves, the transverse veins on the lower very distinct and straight; length 5 to 9 in. ; breadth 2.25 to 4.5 in. ; petiole 1.25 to 4 in. Panicle solitary, terminal, longer than the leaves; the branches in pairs, divaricate ; flowers in umbels of 4 to 6 on the ultimate branchlets. Oalyx-tube funnel-shaped, sub-tetragonous, the mouth with four small triangular teeth, narrowed at the base into the short pedicel. Petals 4, orbicularovate, blunt, glabrous. Stamens 8, ver'y unequal, four linear, purple and twice as long as the other 4 short, yellow. Disc of 4 incurved plates. Ovary 4 -winged. Capsule clavate, opening by 4 broad truncate valves; seeds minute, shortly beaked.

Perak ; Scortechini 249 in part! King's Oollector 418, 2851 ! Wray 1224. Distrib. Sumatra, Forbes 3034.
2. Oxispora acotangula, King, n. sp. A bush; young branches boldly 4 -angled, glabrous. Lenves elliptic-oblong, somewhat narrowed to the rounded base, the apex acute, 5-nerved; upper surface glabrous, the lower minutely lepidote-pubescent on the nerves and veins; length 4 to 6 in., breadth 1.75 to $2 \cdot 5$ in., petiole 6 to $\cdot 75$ in., minutely lepidote. Panicle solitary, terminal, usually somewhat shorter than the leaves, broadly pyramidal, lepidote-puberulous, many-flowered. Flowers (including the stamens) $\cdot 5$ in. long. Calya-tube funnel-shaped, minutely rufous-stellate lepidote, the mouth with 4 small triangular teeth, Petals 4, glabrous, broadly ovate, blunt. Stamens 7 or 8, equal, lanceolate, acuminate, slightly carved, the lobes at the base short, rounded, appendages none, but a grooved, narrow process on the back of the connective in the lower half. Capsule ovoid, narrowed to the equally long pedicel, 8 -1idged, glabrous, the mouth with an everted rim, $\cdot 25 \mathrm{in}$. long.

Perak; Wray 329.
3. Oxpspora Curtisir, King. A shrub; branchlets bluntly 4 -angled not winged, puberulous. Leaves ovate-acuminate, the base rounded, not passing into the petiole, 7 -nerved, upper surface sparsely strigose, minutely lepidote, the lower glabrous, the edges glandular-serrulate; length 5 to 7 in., breadth 3 to 4 in., petioles $1 \cdot 5$ to $2 \cdot 5$, broadly winged, the wing much expanded at the base and joining that of the opposite leaf. Panicle solitary, terminal, spreading, longer than the leaves, with J. II. 2
numerous 4-angled branches, bracteate, everywhere minutely lepidote; the larger branches bearing a pair of very unequal bracts near the base exactly like the stem-leaves but smaller. Flowers on slender pedicels as long as the calyx-tube. Oalyx-tube cylindric, 8-ribbed, tapering to base and apex; the mouth expanded and truncate but with 4 minute teeth. Petals 4, as long as the scaberulous filaments. Stamens 8, much exserted; the anthers longer than the filaments and longer than the calyx-tabe, linear, acuminate, very slightly lobed at the base and inappendiculate. Oapsules fusiform, $\cdot 2 \mathrm{in}$. long, much expanded at the month.

Perak ; Ourtis 1300.
The only specimen of this which I have seen is in Mr. Curtis's Herbariam.
The species resembles Allomorphia alata, Scort. in its eight equsl stamens, in the shape of its leaves and in its winged petioles; but differs in its more elongated capsules (which are fasiform instead of globose), in its larger laxer panicles and in its conspicnously bristle-serrate leaves. The two species just described form very marked connecting links between the genera Allomorphia and Oxyspora.

4. Allomorphia, Blume.

Shrubs, tall or short. Leaves opposite, long-petioled, large, lanceolate, ovate or orbicular, nerved, glabrous or nearly so. Panicles terminal, compound, with small flowers in clustered whorls. Calyx-tube fannelshaped or campanulate, limb of 3 or 4 very short lobes. Petals 3 or 4, rose or white, small. Stamens 6 or 8 , nearly equal ; anthers attenuated at the top with ons pore, cells long-produced and diverging at their bases; connective without appendage. Ovary 3- (rarely 4-) celled, enclosed by but nearly free from the calyx-tube; style filiform, simple; ovales very many, placentas axile, 2-fid. Capsule small, dry, not much longer than broad, usually urn-shaped, ribbed, opening at the top by 3-4 valves. Seeds very many, narrowly obtrapezoidal. Distrib. Species 5: whereof 4 are from the Malay Peuinsula and its attached islands; 1 from Canton.

1. Allomorphia exigua, Blume in Flora 1831, II, 523. A shrub, 2 to 10 feet high ; branches slender, subangular, puberulous or glabrous. Leaves elliptic-ovate to ovate-lanceolate, acuminate, those of the same pair often unequal in size; the base rounded or narrowed, not cordate;
1900.] G. King-Materials for a Flora of the Malayan Peninsula. 11
upper surface very sparsely strigose (glabrous in old leaves) ; the luwer glabrous, pale, the transverse nerves prominent; length 4.5 to 11 in ; breadth $1 \cdot 5$ to 5 in. ; petiole $\cdot 75$ to 4 in. Panicle usually solitary, ter* minal, often longer than the leaves, lax, minately rusty-pubescent; bracts lanceolate or oblong, deciduons; the flowers $\cdot 1 \mathrm{in}$. long, shortly pedicellate, in stalked umbels on the altimate branchlets or in subsessile fascicles. Calyx rasty-puberalous, with 3 or 4 short broad teeth. Stamens 6 or 8, alternately long and short, sagittate at the base and with a small linear appendage behind. Petals 3 or 4, rosy. Capsule less than $\cdot 1$ in. long, boldly 6-ribbed. Naud. in Ann. Sc. Nat. Ser. 3, XV, 310 ; Triana in Trans. Linn. Soc. XXVIII, 74; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 527 ; Cogn. in DC. Mon. Phan. VII, 464. Melastoma exigın, Jack in Trans. Linn. Soc. XIV, 10, tab. 1, fig. 2; DC. Prod. III, 149. M. impuber, Roxb. Fl. Ind. II, 405 ; Wall. Cat. 4048.

Malacca ; Grifith 2263 \& 4 (K.D.) ; Maingay 776 (K.D.) ; Harvey. Penang; Wallich 4048 ; Curtis 399 ; Griffith; King. Perak; Scortechini 227, 383; Wray 160; King's Oollector 450, 2302, 3106. Distrib. Sumatra; Forbes 3062.

There is some variety in this plant as regards size and inflorescence. A slevder form, which never exceeds 2 or 3 feet in height and which has smaller leaves than the type, seems worthy of separation as a variety. It appears to have been so recognised by Wallich who, in distributing his Herbariam, distingaished it by the letter a. A less distinctly marked form is one in which the flowers are grouped on the branches of the inflorescence in dense almost sessile fascicles.

Var. minor, King. Leaves narrowly elliptic, tapering much to base and apex, 2 to 4.5 in . long; inflorescence slender, few-flowered, very lax: height ouly 2 to 3 feet.

Penang; Wallich, Cat. 4048a; Curtis 73. Perak; Scortechini 1702; Wray 161, 3414; King's Collector 2302.
2. Allomorpeia Wrayi, King, n. sp. A shrub, 2 to 4 feet high; branches and petioles with flexuose, spreading, ferruginous hairs. Leeaves 7-nerved, broadly ovate to rotund-ovate, the apex shortly and abruptly acuminate, the base narrowed, the edges obscurely and minutely bristle-toothed: upper surface very sparsely strigose or glabrous, often with minute, brown scales on the chief nerves; lower glabrous; length 5 to 9 in., breadth 3.5 to 5.5 in . ; petiole 2.25 to 2.75 in . Panicles solitary, axillary, slightly longer than the petioles but much shorter than the leaves, glabrons or rusty puberulous towards the extremities : the branches short, spreading, rather condensed when young, few flowered. Calyx-tube widely campanulate, minutely rusty-puberalous or alnost glabrous, without ribs; the month truncate, slighly waved but not toothed. Petuls 4. Stamens 8, equal, the anthers lobed but not sagittate at the base, the back with a slight supra-basal appendage.

Capsule glabrous, sub-globular, slightly contracted below the sub-membranous trancate mouth, under 1 in . in diam.

Perak; Wray 2483; King's Collector 2061, 2380, 2773 ; Scortechini 50, 425. Penang; Curtis 2008.

A species allied to A. exigua, Bl. bat with pubescent branches and petioles, shorter and more contracted panioles, a wider, toothless calyz-tabe, sub-globalar oapsules and equal anthers only slightly lobed at the base. In Mr. Wray's field-note on his specimens he remarks that the flowers are white and the leaves dark shining green above and crimson beneath.
3. Allomorphia alata, Scortechini Mss. A glabrous shrnb, 3 to 6 feet high; the branchlets broadly winged. Leaves ovate or ellipticovate, the apex shortly acuminate; the base narrowed into the broadlywinged petiole, 5 -nerved; both surfaces glabrous, the edges shortly bristle-toothed; length 5 to 10 in., breadth 2.5 to 4.5 in., petiole $\cdot 75$ to 4 in. Panicle solitary, terminal, often nearly as long as the leaves, lax; its branches diverging, 4 -angled and 4 -winged, very minately rusty lepidote-puberulous. F'lowers clustered in small umbels near the ends of the branches, the bases of the umbels sometimes with a ring of bracteoles and minute imperfect flowers. Calyx-tube cylindric-ovoid, the limb expanded and with 4 small, persistent teeth. Petals 4, twice as long as the calyx-teeth but shorter than the filaments. Stamens 8 , equal, exserted, much longer than the calyx-tube. Anthers linear-acuminate, longer than the scaberulous filaments, very slightly lobed at the base and almost inappendiculate. Capsules sub-globular, 8-ribbed, glabrous, the mouth truncate, diam. 1 in.

Perak ; Scortechini 236; Wray 1327; Ourtis; King's Collector 572, 2047.

The leaves of the same pair differ, often considerably, in size.

5. Blastus, Lour.

Shftubs. Leaves membranous, petiolate, ovate- or oblong-lanceolate, acuminate, entire or sinuate-serrate, 3- to 5 -nerved. Flowers small 4-merous, ebracteolate. Calyx-tube oblong-campanulate or shortly oblong; the limb not expanded, truncate, minutely 4-lobed. Petals 4, ovate, obtuse, glabrous, convolute into a cone before expansion. Stamens 4, equal, the filaments thin : anther incurved subulate, opening by a single apical pore; basal lobes divaricate, the connective inappendiculate. Ovary adhering to the calyx, 4 -celled; style filiform; stigma punctiform. Capsule obovoid or sub-globular, slightly 4-grooved; dehisching slowly by 4 valves. Seeds minute, numerous, irregularly recurved, reniform. Distrib. 3 species in Malaya, China, Cochin China and lndia.

Blastus Coanlauxir, Stapf in Hook. Ic. Pl. t. 2311. A shrub, 6 to 10 feet high; young branches slender, as thick as a crow-quill, scaly, glabrous or puberulous. Leaves equal, oblong-lanceolate, narrowed at the base, the apex acuminate, 5 -nerved (the marginal pair faint), the edges sub-entire; upper surface glabrous, with a few scattered, small glands; lower glandular-punctate, miuutely furfuraceous on the nerves; length 4 to 7 in. ; breadth 1 to $2 \cdot 25$ in., petiole 3 to $\cdot 75$ in. Panicles axillary or terminal, slender, much shorter than the leaves, glandularscaly, the few divaricate branchlets bearing the flowers in dense terminal glomerali of 6 to 9 . Calyx shortly tubular, scaly, the teeth minute. Anthers narrowly ovate with many small yellow glands near the base. Capsule subglobular, truncate, 1 in. in dinm., subglabrous; seeds linear. Ochthocaris parviflora, Cogn. in DC. Mon. Phan. VII, 421.

Perak; common. Distrib. Borneo.
This is closely allied to B. cochinchinensis, Lour., but differs notably in its paniculate inflorescence.

6. Ochthocharis, Blume.

Small, erect, glabrous shrubs, branches round or obtusely 4 -angled. Leaves opposite, petioled, oblong or lanceolate, 3-7-nerved, minutely denticulate-servalate. Flowers minnte, in axillary clustered cymes, rarely in axillary lax cymes or in lax terminal cymose panicles. Oalyxtube obovoid, smooth ; teeth 5, small, persistent. Petals 5. Stamens 8 or 10, equal ; anthers oblong, obtuse at the top, opening with one pore, at the base shortly produced or not; connective with or without an appendage. Ovary inferior, 4- or 5-celled, glabrous at the apex ; style simple, filiform ; ovules very many, placentas axile. Capsule globose, 5-valved, enclosed by the membranous culyx-tube. Seeds very many, irregularly clab-shaped. Distrib. Species 5 or 6, extending from Singapore to Borneo.

1. Ochthocharis paniculata, Korth. in Verh. Nat. Gesch. Bot. 247 t. 64. A small shrub with slender quadrangular branches, rusty pabescent towards the tips. Leaves membraneous, elliptic-lanceolate, tapering to each end, the edges minutely bristle-serrate, 5 - to 7 -nerved (the marginal pair faint) ; upper sarface glabrous; the lower somewhat pale,
scaly-puberulous on the nerves and prominent transverse veins; length 2.5 to 5 in., breadth $1 \cdot 25$ to 2 in., petiole 35 to 8.5 in. Panicle cymose, terminal, spreading, less than half as long as the leaves; branches opposite, pedicels unequal, bracteolate at the base, not quite so long as the flowers. Petals 5, ovate-acuminate. Stamens 10, anthers oblong, blunt, not produced at the base and with the connective inappendiculate. Capsule depressed-globular, glabrous, with 5 shallow grooves, 2 in. in diam. Blume Mas. Bot. I, 40 ; Naud. in Ann. Sc. Nat. ser. 3, XV, 307, with fig. ; Miq. Fl. Ind. Bat. I, pt. I, 556 ; Triana in Trans. Linn. Soc. XXVIII, 74. C. B. Clarke in Hook. fil. Fl. Br. Ind. Il, 528 ; Cogn. in DC. Mon. Plıan. VII, 480. Melastoma oxyphyllum, Benth. in Wall. Cat. 4083.

Singapore; Wallich. Distrib. Borneo.
2. Ochthocharis borneensis, Blume Mus. Bot. Lugd. Bat. I, 40. A shrub, 3 or 4 feet high. Leaves membranous, elliptic-lanceolate, 5 -nerved (the lateral pair small), acuminate, the base cuneate, the edges minutely dentate, apper sarface glabrous, the lower pale, minutely and furfuraceously stellate-hairy on the main and rather prominent tranverse nerves; length 3 to 4.25 in . ; breadth 1.25 to 1.75 in .; petioles sparsely stellate-hairy, unequal, 3 to 1.8 in . long. Flowers in fascicles of 4 to 7 , from tubercles on the stem below the leaves; the buds conical, ${ }^{-1}$ in. long; pedicels slender, ebracteolate, $\cdot 25$ to $\cdot 3 \mathrm{in}$. long. Petals 4, broadly ovate, narrowly acaminate. Stamens 8; the anthers oblong, blunt, neither produced nor appendiculate at the base. Capsule depressed-globular, glabrous, faintly 5 -grooved, $\cdot 2 \mathrm{in}$. in dinm. Naud. in Ann. Sc. Nat. Ser. 3, XV, 307 ; Cogn. in DC. Mon. Phan. VII, 480. O. buruensis, Teysm. and Binn. in Nat. Tijdschr. Ned. Ind. XXV, 426 ; Miq. in Ann. Bot. Lugd. Bat. I, 216.

Singapore ; Ridley 6221. Distrib. Borneo, Molluccas.
3. Ochinocharis javanica, Blume in Flora 1831, 523 . A shrub, 2 or 3 feet high. Leaves subcoriaceous, lanceolate or oblong-lanceolate, aoute, the base cuneate, 3 -nerved; both surfaces glabrous and with the nerves indistinct; the lower rather pale when dry, the edges remotely bristle-serrate; length 2 to 3.5 in.; breadth 6 to 1 in .; petiole $\cdot 2$ to $\cdot 5$ in. Cymes or fascicles about as long as the petioles, fewflowered ; pedicels slender, minutely bracteolate at the base, $\cdot 15$ to $\cdot 45$ in. long. Flower-buds $\cdot 15$ in. long, much pointed. Petals 5, broadly ovate, abruptly acuminate. Anthers 5 , twice as long as the filaments, minutely spurred at the base behind. Oapsule subglobular, with 5 shallow grooves, glabrous, $\cdot 15$ to $\cdot 2 \mathrm{in}$. in diam.; the placentas persistent, woody, rough on their outer surfaces. Naud. in Ann. Sc. Nat. Ser. 3, XV, 307 ; Miq. Fl. Ind. Bat. I, pt. I, 556 ; Kurz, For. FI. I, 507. Triana Melast. 74, tab. VI, fig. 67; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 528 ;

Cogn. in DC. Mon. Phan. VII, 480. Melastoma ? littoreum, Wall. Cat. 4087.

A sea-shore plant, Singapore, Johore, Malacca, Perak. Distrib. Burma, Borneo, Java.
4. Ochthocharis decombens, King, n. sp. A creeping or decumbent shrub, 3 to 5 feet long; stems as thick as a swan's quill, rounded, often rooting at the nodes. Leaves thinly coriaceons, elliptic-lanceolate, shortly acuminate, ronnded or cuneate at the base, the edges obscurely bristle-serrate, 5-7-nerved ; opper surface glabrous; the lower pale and with a few minute, scattered scales; length 5 to $7 \cdot 5$ in. ; breadth 2 to 3 in. ; petioles unequal, stout, sparsely scaly, $\cdot 5$ to 1.25 in . long. Flovers in dense, axillary cymes shorter than the petioles, the pedicels short, bracteolate. Calyx-tube glabrous, faintly ribbed, the teeth 4, small. Petals 4, broadly ovate, acuminate. Stamens 8; the anthers curved, tapering to the truncate apex, slightly produced at the bare and with a minute tubercle behind. Capsule depressed-globose, glabrous, faintly 4 -grooved, 18 in . in diam.

Perak ; King's Collector, 2833, 10425.

7. Anerincleistus, Korth.

Shrubs ; branches often round. Leaves petioled, ovate or lanceolate, entire, 3-7-nerved. Flowers small. Calyx-tube campanulate or funnelshaped; lobes 4, asually very small. Petals 4, minute, glabrous. Stamens 8, equal; anthers attenuate at the top, opening by one pore, scarcely produced at the base; connective with or without a short spur. Ovary nearly free, 4-celled; style filiform, simple; ovules many. Capsule splitting by 4 large valves at the summit. Seeds exceedingly minate, cuneate-obovoid. Distrib. Species 9 or 10; Malaya and Burma.

Influrescence umbellate; leaves small, oblong- or elliptic-lanceolate :-
Nearly glabrons in all its parts 1. A. macranthus.
More or less pilose :-
Calyx-tnbe mealy tomentose, the teeth narrow, glandular ciliate on the edges 2. A. Scortechinii. Oalyx-tube not tomentose but with many long spreading gland-tipped hairs, the teeth minute and without hairs
8. A. Ourtisii.

Inflorescence a large panicle; leaves large, ovate :-
Panicle densely tomentose, leaves 7 -nerved
4. 4. floribundus.

Panicle clothed with short, flat, adpressed, scale-like hairs, leaves 5-nerved 5. A. sublepidotus.

1. Anerincleistus macranthos, King, n. sp. A small shrub; joung branches with pale lenticels, glabrous except for a few adpressed hairs at the apices. Leaves nearly equal, elliptic-lanceolate, much narrowed to the base, the apex shortly acuminate; both surfaces
glabrous, the lower pale when dry; length 2.5 to 4 in., breadth 8 to 1.5 in., petiole $\cdot 4$ to 8 in., strigose. Umbels axillary or terminal, usually solitary, 4-5-flowered, on slender, sparsely strigose peduncles shorter than the leaves. Flowers (including the stamens) 5 in. long. Calyx-tube infundibuliform, sparsely adpressed-pilose, nearly as long as the slender strigose pedicel; the mouth with 4 narrowly triangular acnminate, erect, persistent teeth nearly as long as the tube. Petals 4, ovate, acuminate, glabrous, slightly longer than the calyx-teeth. Stamens 8, slightly unequal, the alternate 4 shorter but of the same shape as the longer 4, the base in all emarginate, scarcely lobed but with a very short process behind. Scales of disc 4, their apices broadly truncate and slightly toothed. Capsule globose-ovoid, 25 to -3 in. long.

Perak; at elevations of 2000 to 4000 feet, Scortechini; Wray 297, 1621.

A species near to A. hirsutus, Korth., bat differing in being glabrous and in having larger flowers which, according to Mr. Wray, are pink. The umbels of this, when in bad, are enclosed in oblong, decidnoas, sparsely strigose bracts.
2. Anerincleistus Scortechinif, King, n. sp. A slender slirub, 3 to 4 feet ligh; young branches, petioles and inflorescence with many spreading and sub-adpressed, gland-tipped hairs. Leaves very unequal (one of each pair very small), oblong, slightly narrowed to the rounded base, the apex acuminate, the edges ciliate; main nerves 3 to 5 , the minor nerves transverse, rather faint; both surfaces usually glabrous, the upper sometimes sparsely strigose, the main nerves on both and the transverse on the lower surfaces bristle-hairy; length of the larger leaf of the pair 2.5 to 4 in., breadth 8 to $1 \cdot 4 \mathrm{in}$.; petiole 3 to $\cdot 4$ in ; the smaller leaf of the pair from one-fourth to one-half as large and subsessile. Inflorescence axillary, solitary on a slender peduncle about as long as the smaller leaf, umbellately cymose, 6- to 10 -flowered. Calyxtube globose-campanulate, minutely mealy tomentose, about as long as the pedicel ; teeth 4, narrow, reflexed, each ending in a bristle aud the margins bearing 6 or 8 long straight hairs with small glandular apices. Petals 4, ovate, glabrous, shorter than the calyx-teeth, each with a slender, gland-tipped, reflexed hair at the apex. Anthers 8, equal, acute, very slightly lobed at the base and inappendiculate; style thick, straight; stigma small. Ovary crowned by obtuse, sometimes crenulate. scales.

Perak; Scortechini 51, 450; Ourtis.
This closely resembles A. Curtisii, Stapf, bat is distingaished at once by the calyx which has its tube covered with minate mealy pubescence while the teeth are long, reflexed, with long glandular hairs on the edges, whereas in A. Curtisii the calyx-tabe bears many long glandular hairs and the teeth are triangalar, minate
and hairless. The leaves of A. Curtisii moreover are atrigome between the nerves on both surfaces.
3. Anerincleistos Curtisir, Stapf in Kew. Bull. for 1892, p. 196. A small shrab, like A. Scortechinii, the young branches, petioles, and inflorescence spreading slightly and not gland-tipped; leaves as in A. Scortechinii but strigose on both surfaces. Oalyx-tube with numerous subulate, gland-tipped, spreading hairs; the teeth minute, triangular and without hairs. Anthers blant.

Penana; Curtis 412.
4. Anerincleistus floribundus, King, n. sp. A shrub, about 15 feet high : young branches, petioles and panicles densely and shortly tawny-tomentose. Leaves unequal, ovate, shortly acuminate, 7 -nerved at the rounded base, (the main nerve giving off a pair about 1 in . from the base) ; upper surface with a few short scattered bristles, the main nerves densely bristly-pubescent; lower surface with short coarse hairs especially on the nerves and veins; length 5 to 9 in .; breadth 4 to 5.5 in . ; petiole 1 to 2 in ., one leaf of each pair smaller than the other. Panicle terminal, solitary, longer than the leaves, much branched, the branches unequal and in pseudo-whorls, many-flowered, the altimate branchlets few-flowered, cymose. Calyx-tube funnel-shaped, tapering into and longer than the pedicel, adpressed-pilose: the mouth truncate and with 4 small broadly triangular teeth and 4 alternating tufts of inwardly-directed hairs. Petals 4, shorter than the calyx-tube, broadly triangular or occasionally quadrate, apiculate, glabrous. Stamens 8, equal, or 2 smaller and sometimes suppressed; anthers curved, with two deep broad lobes at the base but no appendage. Capsule broadly obovoid, truncate, tapering at the base; seeds minute, broadly linear.

Prrax; Scortechini 249 in part; Ridley 5342 ; Curtis 1299.
5. Anbrincleistus sublepidotus, King, n. sp. A shrub, 10 to 15 feet high; young branches, petioles and inflorescence densely clothed with short, flat, adpressed, scale-like pale hairs. Leaves somewhat nnequal, ovate, shortly acuminate, on long petioles, 5 -nerved, entire; upper surface glabrous except for a few minate scale-like hairs, the main nerves hairy like the petiole; lower surface much reticulate, minutely lepidote-hairy, the middle nerve hairy like the petiole; length 4 to 8 in., breadth 2 to 4 in.; petiole 1 to 1.5 in. Panicle terminal, solitary, erect in flower, pendent in frait, usually longer than the leaves, fewbranched; the ultimate branches unequal, short, few-flowered, some of them in pseudo-whorls, pedicels less than $\cdot 1 \mathrm{in}$. long. Calyx-tube $\cdot 15$ in. long, (when dry) reddish, clothed with scattered, adpressed scale-like hairs, tabular-campanulate; the teeth 4, short, acute. Petals 4, orate, acuminate, glabrons, shorter than the calyx-tabe. Stamens 8, J. 11. 3
subequal, all yellow, curved, deeply lobed at the base bat inappendiculate. Oapsule obovoid, much tapered to the pedicel, 15 in . long (when dry), scabrid from the stiff, strigose, scale-like hairs. Seed minute subulate.

Praak ; Scortechini 310 ; King's Collector 8068.

NOTE.

I take the opportanity to describe here the andernoted new species from Borneo.

Anerincleibtid qlomeratus, King, n. ap. A shrub; young branches, petioles, main nerves of leaves and inflorescence densely covered with short, coarse, adpressed, pale hairs. Leaves narrowly oblong, narrowed towards the base, the apex acuminate; apper sarface glabrous bat with a few scattered glands; lower surface with a feve pale hairs of anequal length on the bold transverse veins; length 3.5 to 8 in.; breadth 1 to 2 in ; petiole 5 to $15 \mathrm{in} .\mathrm{Panicle} \mathrm{solitary}, \mathrm{terminal} ,\mathrm{very} \mathrm{narrow}$, bearing a few very short, almost sessile, 4- to 6-flowered umbels. Flowers on pedicels about half the length of the calyx-tube. Calyw-tube short, campanulate, pubescent; the moath wide and with 4 short, triangular, acate, spreading teeth alternating with tafts of hair. Petals 4, narrowly oblong, spreading. Stamens 8, equal; anthers slightly lobed at the buse, inappendiculate. Ovary 4-ridged, 4-celled; ovales numerous. Capsule sub-globalar.

Borngo ; Sarawak, Hullett 257.
A species resembling A. anisophyllus, Stapf, in the shape of its lenves. The inflorescence is however very different; and in its short subsessile panicle recalls to one's memory A. Beccarianus, from which its leaves distingaish it at once.

8. Sonerila, Roxb.

Low herbs, rarely half-shrubs. Leaves membranous or more or less fleshy, opposite, those of a pair similar in shape, although often very difforent in size, or distinctly heteromorphous and then often apparently alternate, usually more or less oblique, 3-7-nerved from the base or near the base, rarely pinnate-nerved. Flowers pink or white, in scorpioid simple or psendo-umbellate cymes, 3 nerved. Oalyx subcylindrical, turbinate or campanulate, 3-lobed or 3-toothed. Petals ovate, obovate or oblong, acute, acuminate or obtuse. Stamens 3, equal, rarely 6 and slightly unequal; anthers linear, oblong or lanceolate, obtuse, acute or (often long) acuminate, minutely 2 -lobed at the base, without appendages, dehiscing with apical pores. Ovary attached to the calyxtube by narrow longitudinal septa, depressed at the apex, 3 -celled; style filiform; stigma punctate or capitellate. Fruit enclosed in the persistent, ultimately spongy calyx-tube and forming with it a asually more or less trigonous, subcylindrical, turbinate or hemispherical false capsule, dehiscing from the centre of the depressed top with 3 valves or $\cdot 6$ fine teeth. Seeds minute, numerous, ovoid, pyramidal or clarate,
1900.] G. King-Materials for a Flora of the Malayan Peninsula.
smooth or asperulons; raphe asually thick, spongy. Species over 100 throughout tropical Asia.

Leaves similar, although often very nnequal in size. Stamens 3. Fruit usually smooth (see No. 12-14) ; valves entire, distinct, exceeding the margin of the mature calyz (§ Eu-Sonerila) :-

Erect or ascending herbs with fibrous roots and without rhizome:-

Calyx very slender (also in fruit); stem with 2 somewhat raised, commissural lines. Very scantily hairy or glabrons, often mach branched and small- or marrow-leaved (ezcept No. 1) herbs :-

Leaves ovate, 1-1•7 in. by $7-9 \mathrm{in}$.

1. S. epilobioides.

Leaves much smaller or at least very much narrower:-

Anthers -12-•18 in. long: -
Leaves oblong to elliptio-oblong, $3-5$ by
-15-23 in.
Leaves lanceolate, $1-1 \cdot 75$ in. by $15-23$ in. ...
Anthers -06-09 in. long
Calyx more or less oblong- or ovoid-campanalate ; frait turbinate or obpyramidal. Stem terete or quadrangular: -

Leaves more or less ovate, long acuminate, 1-2 in. by $9-1 \mathrm{in}$. or still smaller, acutely and coarsely toothed, thin, 3-5-nerved from the very base; petioles long, very slender
Leaves usually larger, not coarsely toothed :-
Upper side-nerves starting from above the base:-
Leaves pinnatinerved, acute or acuminate at the base
Leaves not pinnatinerved (rarely subpinnatinerved in No. 7); all the side-nerves springing from near the base, rarely the appermost from near the middle :-

Cymes distinctly peduncled:-
Anthers subacute, '09-12 in. long; leaves membranous, rounded or sabcordate at the base Anthers slender, acuminate, $\cdot 2-3$ in. long:-

Stem, petioles and inflorescence minately tomentose; leaves thinly membranous, subcordate at the base on very long and slender petioles
Stem, petioles and inflorescence with long hairs ; leaves acute or rounded, but not subcordate at the base :-

Leaves membranous, more or less oblong, usually acute at the base ... 9. S. pallida.
2. S. calaminthifolia.
3. S. hyssopifolia.
4. 8. erecta.
8. 8. populifolia.

Leaves somewhat fleshy, rounded at the base :-

Hairs more or less spreading, often very long, particularly on the petioles and near the leaf margins; leaves light-brown beneath .. 10. 8. rudis.
Hairs adpressed, very soft; leares glaucous beneath with rufong hairs 11. 8. mollis. Cymes sessile, reduced to few-flowered fascicles:-

Unbranched or almost unbranched herbs:-
Leaves fleshy, very dark and glabrous above, glancous or pale-brown with rafons nerves beneath; calyx with senttered gland-tipped hairs 12. S. albifora.

Leaves membranous, more or less covered on both sides with rufons flexnous hairs; calyx densely hirsute
13. S. lasiantha.

Suffrutescent, much branched.
14. 8. suffruticosa.

All the nerves springing from the very base of the lenf; adult leares quite glabrous, broadly elliptic, fleshy
... ...
...
15. S. elliptica.

Herbs with short stems, springing from a creeping rhizome and with nsually crowded to rosulate leaves and terminal or subterminal pedancled oymes :-

Leaves 3-7 in. by 2-4 in., 7 -nerved from the very base
with conspicnous subhorizontal transverse veins :-
Stem, petioles and peduncles very succulent, stout 16. S. succulenta.
Stem, petioles and peduncles nsually slender
17. S. repens.

Leaves small; uppermost side-nerves springing from
above the base; transverse veins indistinct or 0 :-
Leaves oblong to lanceolate-oblong, 2-3.7 in. by $\cdot 3-1 \cdot 4$ in., pinnatinerved
...
18. 8. muscicola.

Leaves mach smaller, not or very indistinctly pinnatinerved, lateral nerves springing from below the middle :-

Leaves oblong-lanceolate to lanceolate, acute at both ends
Leaves ovate to elliptic or oblong, rounded or sab. cordnte at the base :-

Stem 1-3 in. long; leaves broad, crowded, in abont 3 pairs; petioles $8-7$ in. long :-

Leaves entire, not oiliate; $\cdot 9-1 \cdot 7$ in. by $\cdot 6-1 \cdot 2$ in. ; petals 35 in . long; anthers 1 15-2 in. long Leave toothed, ciliate, $4-8$ in. by $\cdot 4-6$ in.; petals - 25 in. long; anthers $12-15$ in. long ...
Stem shorter; leaves narrower, more numerous, subrosulate ; $\cdot 8-1 \cdot 4 \mathrm{in}$. by '4-6 in., often beantifully variegated; petioles up to 1 in. long, very alopder
19. S. saxosa.
20. S. congesta.
21. S. Griffthii.
22. 8. Cyclaminella.

1900.] G. King—Materials for a Flora of the Malayan Peninsula.

Leaves of each pair similar in shape, but very unequal in size or one quite suppressed. Stamens 6. Frait as in En-Sonerila (\$ Sonerilopsis, Miq.)
Leaves of each pair very dissimilar in shape and size, one very small and more or less rotandate or reniformcordate, often deciduons. Cymes usually from the axils of the small leaves, hence often apparently leaf-opposed. Anthers 3, oblong, obtuse, not over $\cdot 15 \mathrm{in}$. long. Frait more or less tarbinate or semiglobose, obsourely trigonons, usually conspicnously maricate ; valves not or very slightly exceeding the margin of the mature calyx, often not or indistinctly separating from each other at the periphery, bat each of them always aplitting into 2 membranons teeth in the depressed centre of the fruit. (§ Hexodon, Stapf) :-

Cymes distinctly, densely and persistently bracteate, distinctly and often long pedancled :-
Cymes simple or 2 or more, sessile on a common peduncle, forming a danse head :-

Cymes simple, at length $1-1 \cdot 5$ in. long; leaves obliquely oblanceolate to obovate-oblong, 8-7 in. by $1-1.5$ in. :-

Leaves fleshy, glabrous with the exception of the minately strigillose nerves of the underside ...
Leaves membranoas, with rather long and spreading hairs beneath and along the margins
Cymes nsually 2 or more, sessile on a common peduncle, very short, gathered in a dense head; leaves obliquely obovate, elliptic or oblong, 4-6 in. by $1 \cdot 75-3 \mathrm{in}$.
Cymee usually 8 or more on a common peduncle, epoh with a special peduncle, gathered in a loose umbel; leaves obliquely elliptic, 8-5 in. by 1.75-2.75 in.
Cymes ebracteate, or indistinctly or deciduonsly bracteate :-
Oymes sessile or subsessile; peduncle, if any, less than $\cdot 5$ in., when mature ; frait maricate :-

Cymes dense, indistinotly bracteate, sessile :-
Bracts linenr, usually minuto, or suppressed; calyx pabescent; leaves fleshy, firm when dry, glabrous above, shortly and adpremsedly pubescent or tomentose beneath ...
Bracts filiform, ciliate, hidden among long spreading hairs; calyx shaggy; leaves membranous, very hairy on both sides
... ...
Cymes subsessile somewhat loose, ebracteate or deciduously breoteate :-

Leaves obliquely obovate-lanceolate to oblong, $2.5-6 \mathrm{in}$. by 1-2.5 in.

Leaves nomewhat fleshy, firm, when dry with conspicuous transverse veins; pedicels very
23. 8. heterostemon.
25. S. bracteata.
26. S. capitata.
27. S. caesia.

```
                slender, to `25 in. long; onlyx with short, fine,
                spreading hairs; fruit 08-1 in. long, finely maricate
30. S. microcarpa.
```

Leaves membranous with conspicuous raised transverse veins; pedicels slender, 08-12 in. long; calyx with long spreading hairs; fruit -15-18 in. long, coarsely maricate ..
31. S. costulata.

Lunves obliquely elliptic, $4-6 \mathrm{in}$. by $2 \cdot 2-3.5 \mathrm{in}$; frait 2 in . long
32. S. macrophylla.

Cymes distinctly, often long, peduncled :-
Cymes 2 or more gathered in an ambel, or if simple, then with a pair of (often minate) leaves at the middle :-

Calyx hairy ; fruil marioate :-
Cymes asually compound, minately bracteate, axis shaggy; leaves more or less hairy all over Cymes usually simple, deciduously bractente; bracts small; axis shortly hairy; leaves glabrous (in the Peninsular specimens) with the exception of the very shortly and scantily hairy nerves and veins of the anderside

Cymes simple, ebracteate ; pedancle naked:-
Softly hairy or tomentose all over :-
Leaves oblong-elliptic or obovate, $2 \cdot 2-2 \cdot 8 \mathrm{in}$. by $1-1 \cdot 2$ in., petals $\cdot 18$ in. long Leaves oblong to lanceolate-oblong, $3-6 \mathrm{in}$. by 1-1.5 in. ; petals 35 in . long
36. S. elatostemoides.

Shortly tomentose on stem, petioles and pedancles and pabescent on the nerves on the underside of the leaves, otherwise glabrous; frait smooth ...
33. S. paradoma.
34. S. begoniaefolia.
85. 8. glabrifora.

Sonerila epilobioldes, Stapf and King
88. 8. Calycula.

1. Sonerila epilobioides, Stapf and King. An erect, sparingly branched, almost quite glabrous herb, about 6 in. high. Stem with 2 prominent very minutely hairy lines or quite glabrous. Leaves of each pair similar in shape and equal or almost equal in size, ovate, acute or subacnte, acuminate at the base, minntely toothed, thinly membranous, green, glabrous or with few scattered, soft, adpressed hairs above, 1-1.75 in. long by •7-9 in. broad, finely 5 - (rarely 3 -) nerved from the very base with a few delicate side nerves higher up; petiole $\cdot 4-5$ in. long, slender. Cymes terminal, peduncled, rather loosely 5-6-flowered, glabrous; peduncle $\cdot 6-8 \mathrm{in}$. long, slender ; pedicels at length up to $\cdot 2 \mathrm{in}$. long, very slender. Calyx very slender, obconical, $\cdot 25-\cdot 3 \mathrm{in}$. long; teeth broad, triangular, mucronulate. Petals elliptic-oblong, acuminate-apiculate, 2 in . long, pink. Anthers subacute; $\cdot 12$ in. long. Style filiform, $\cdot 12-15$ in. long; stigma subcapitate. Mature fruit unknown.

Kedah; Santow, on the limestone islands, Ourtis 2114!
2. Sonerila calaminthifolia, Stapf and King. An ascending or almost prostrate branched herb, from a few inches to 1 ft . high, with very minute, spreading hairs all round or along the 2 commissural lines of the stem and branches, or glabrescent below and with scattered, adpressed, short, straight or flexuous hairs on the upper side of the leaves. Stem terete below, quadrangular in the upper part, purple, like the branches slender and often flexuous. Leaves petioled, rarely the uppermost subsessile and then sometimes apparently whorled, those of a pair similar in shape and size, symmetrical, oblong to elliptic-oblong, subobtuse; narrowed into the petiole, acutely toothed with the teeth usually mucronate and the margin revolute, rather stoutly membranous or almost fleshy, pale-green, parple along the midrib, $3-5 \mathrm{in}$. by $\cdot 15-23 \mathrm{in}$, l-nerved or with 1 very fine side-nerve on each side from near the base; petioles $\cdot 08-12 \mathrm{in}$. or less. Cymes terminal, 2-5-flowered, ultimately lax or flowers solitary ; peduncles filiform, $\cdot 4-8 \mathrm{in}$. long; pedicels very slender, about 08 in . long. Calyx slender, obconical-oblong, $\cdot 15-2 \mathrm{in}$. long; teeth triangular, broad, acate. Petals elliptic, cuspidate, about .33 in. long, pink. Anthers shortly acuminate, $\cdot 12-17$ in. long. Style filiform, $\cdot 2$ in. long; stigma punctiform. Fruit oblong, sabtrigonous, smooth, $\cdot 25-3$ in. by $\cdot 08-1$ in.

Perak; Gunong Batu Pateh, 4300 ft ., Wray 1022 !
3. Sonerila hyssopifolia, Stapf and King. An erect, simple or branched herb, 6-9 in. high, with two lines of short, curled hairs on the stem and branches, and with whitish, flexnous, longer hairs on the upper side of the leaves. Stem subterete below, quadrangular above. Leaves sessile or petioled, those of a pair similar in shape and size, lanceolate, subacute, coneate at the base or the uppermost sessile and rounded at the base, symmetrical, minntely and somewhat remotely toothed with very acute or mucronate teeth, membranous, green, pale below, 1-1.75 in. by $\cdot 15-3$ in., indistinctly 3 -nerved from near the base; petioles very variable in length, up to $\cdot 4 \mathrm{in}$. long, or 0 . Cymes few-flowered, at length lax; peduncles $8-1$ in. long, very slender, pedicels very slender, $04-08 \mathrm{in}$. long. Calyx very slender, almost cylindric, $\because 24-28$ in. by 04 in . ; teeth triangular, macronulate. Petals ellipticoblong, acute, $\cdot 27$ in. long, pink. Anthers acuminate, $\cdot 12-\cdot 18$ in. long. Style filiform, about $\cdot 18 \mathrm{in}$. long; stigma sabcapitate. Fruit trigonouscylindric, slightly obconical at the base, $\cdot 5$ in. by almost $\cdot 1$ in.

Perak; Gunong Hijan ; Scortechini 1426 !
4. Sonrrila brecta, Jack in Malay Misc. I, 7. A copionsly branched herb, $1-1 \cdot 5 \mathrm{ft}$. high, more or less hairy with the exception of the inflorescence, hairs flexuous, finely pointed, those of the stem and branches short, along 2 lines, those of the leaves longer, whitish, all over both surfaces. Stem subterete below, quadrangular above,
branched all along, branches more or less divaricate, 1 or, in luxuriant specimens, 2 from each leaf axil; often branched again. Leaves sessile or petioled, often apparently whorled on the upper or, in vigorons specimens, almost on all nodes, those of a pair similar in shape and size, lanceolate or ovate, acute or subacute, contracted or subcuneate at the base, rather symmetrical, entire or minately toothed, membranous, green or greyish when very hairy, ${ }^{4}-1 \cdot 2 \mathrm{in}$. by $2-\cdot 4 \mathrm{in}$., indistinctly 3 -nerved from near the base ; petioles slender, very variable in length, up to 3 in. long, or 0 . Oymes 2 - 9 -flowered, at length very lax; peduncles filiform, -4-2 in. long; pedicels very slender, 04 in . long or hardly any. Oalyx very slender, almost cylindric, - $15-2$ in. by 03 in ., teeth triangular, short. Petals elliptic-oblong, cuspidate-acuminate, $\cdot 15 \mathrm{in}$. long, pink. Anthers ovate-lanceolate, acute or subacnte, $\cdot 06-09$ in. long. Style filiform, $\cdot 12 \mathrm{in}$. long; stigma punctiform. Fruit almost cylindric, slightly trigonous, smooth, $\cdot 3-45 \mathrm{in}$. by $\cdot 06-08 \mathrm{in}$. Jack in Hook. Bot. Misc. II, 63 ; Blume in Flora (1831), 491 ; Benn. Pl. Jav. Rar. 217 ; Nand. in Ann. Sc. Nat. Ser. 3, XV, 324 ; Miq. Fl. Ind. Bat. I, 563 ; Triana in Trans. Linn. Soc. XXVIII, 75 ; C. B. Clarke in Hook. f. Fl. Brit. Ind. II, 530 ; Cogn. in DC. Monogr. VII, 492 ; Stapf in Ann. Bot. VI, 304.

Penang; Government Hill, Curtis, Porter in Wall. Cat. 4092; Maingay 2214 (778, Kew Distrib.). Distrib. Northwards as far as Moulmein.

Var. flexuosa, Stapf and King. Stems ascending, like the very slender branches more or less flexuous. Leaves lanceolate to linearlanceolate, acuminate at the base, $\cdot 4-8$ in. by $\cdot 12-\cdot 2$ in., more or less pubescent or scaberulous from very short hairs, mainly above, margins usually finely bat sharply toothed and often revolute. Cymes 3 -1-flowered with capillary pedancles. Fruit $\cdot 27-35$ in. long, by $\cdot 6-8 \mathrm{in}$.

Psnang; on rocks, 2000 ft ., Ourtis 1238 ! Perak; Larut, on rocks in rich, moist soil, 300 to 600 ft., Kunstler 2364 ! Scortechini 91 !

Var. discolor, Stapf and King. Stems ascending or erect, branches very slender, slightly flexuons, very minutely hairy along lines or almost glabrous. Leaves oblong-lanceolate to ovate-lanceolate, minutely toothed, narrowly revolute on the margins, very pale benenth, 3-5-nerved near the base, nerves fine, but rather distinct. Cymes 4-1-flowered, rather congested, also when mature. Anthers $08-09$ in. Fruit oblong-cylindric, $-3-35 \mathrm{in}$. by 08 in .

Perak; Scortechini 160!
5. Sonerila tenoifolia, Blume in Flora 1831, 491. An erect or asoending, branched or unbranched herb, 6-12 in. high, naually with scattered, spreading, gland-tipped hairs in the upper part of the stem, on the peduncles and pedicels, and near the mouth of the calyx and with few
adpressed, finely attenuated, pale hairs on the upperside of the blades, rarely almost quite glabrous. Stem slender, terete below, more or less quadrangular apwards. Leaves of a pair similar in shape, but unequal in size, ovate to ovate-lanceolate, long acuminate, symmetrical or slightly asymmetrical and rounded at the base, acutely and coarsely toothed, thinly membranous, dark- or pale-green, the larger 1-2 in. by $4-1 \mathrm{in}$, distinctly 3 -, rarely $4-5$-nerved from the very base, very faintly pin-nate-nerved higher up; petioles very slender, reaching $1 \cdot 5 \mathrm{in}$. in length, purple. Cymes 1-6-flowered, almost pseudo-ambellate; peduncle -5-1 in. long, like the slender pedicels parple or crimson, the latter $\cdot 25-3$ in. long. Calyx campanalate-oblong to ovoid-oblong, about - 15 in. long; teeth distinct, triangular. Petals elliptic, apiculate, $3-35 \mathrm{in}$. long, glabrous, rose-coloured. Anthers lanceolate-acuminate, acute or subobtuse, $\cdot 12-13$ in. long. Stigma capitate. Fruit trigonous, obconical, $\cdot 23-27$ in. long, smooth ; valves $\cdot 23$ in. broad. Benn. Pl. Jav. Rar. 211, t. 44 ; Naud. in Ann. Sc. Nat. ser. 3, XV, 324 ; Miq. Fl. Ind. Bat. I, 563. Triana in Trans. Linn. Soc. XXVIII, 76; C. B. Clarke in Hook. f. Fl. Brit. Ind. VIII, 536. Stapf in Trans. Linn. Soc. 2nd Ser. IV, 156 ; Cogn. in DC. Monogr. VII, 502 ; Stapf in Ann. Bot. VI, 301.

Perak; Scortechini 312! Kunstler 722! Wray 427! on Gunong Batu, 4500 ft., Wray 273! 406. Malacca; Mt. Ophir, Maingay 2582! Distrib. Sumatra, Java, Borneo.

Var. hirsuta, Stapf and King. Leaves hairy on both sides; hairs copious at least above, longer, wavy or curled, less adpressed than in the type ; blades often very small (0.6 in . by 0.3 in .) ; flowers solitary.

Perak; Scortechini 790! Larut, top of Ganong Bubu, 5000-5300 ft., Kunstler 7406! Wray 3841!
6. Sonerila flaccida, Stapf and King. An erect or ascending, usually branched herb, $\cdot 5-1 \mathrm{ft}$. high, with a very fine, furfuraceous, dark rusty and often scanty indumentum in the lower part and on the underside of the leaves (at least on the nerves), otherwise glabrous. Stem quadrangular. Leaves of a pair similar, equal or unequal in size, oblong or oblong-elliptic, subacute or subacuminate at both ends, or the tips obtuse, sometimes decurrent at the base, entire or nearly so, symmetrical or more or less asymmetrical, thinly membranons, dark- or light-green and often spotted with white circular or elliptic spots above, whitish green beneath, 2-4 in. by •75-1•75 in., pinnate-nerved, distinct side-nerves usually 3 on each side, the others like the tertiary nerves very faint or quite obscure; petiole up to 6 in . long, often very short, slender. Cymes terminal and axillary, short, few- to 9 -flowered, pedancled, peduncle very slender, $\cdot 75-1 \mathrm{in}$. long; pedicels very slender, $\cdot 08-15$ in. long. Calyx slender, obconical to oblong, $\cdot 13-15$ in. long, rose-coloured, tecth triangular, very short and broad. Petals oblong, acute, $\cdot 15 \mathrm{in}$.
J. II. 4
long, rose-coloured. Anthers acute, $\cdot 12 \mathrm{in}$. long. Style filiform; stigma capitate. Fruit trigonons, truncate-obovate, $\cdot 2 \mathrm{in}$. long, smooth; valves - 12 in. broad.

Perak; Gunong Panti, 600-800 ft., Kunstler 219! Ridley 4184! Ganong Inas, $3500 \mathrm{ft} .$, Wray 4066! 4067 !

Certain small specimens, collected by Scortechini in Perak (272), represent only a dwarf state of S. faccida; their larger leaves measare $1-1 \cdot 5 \mathrm{in}$. by $\mathbf{6 - 8} \mathbf{~ i n . ~}$
7. Sonerila andananensis, Stapf and King. An erect or ascending, branched or unbranched herb, 3-6 in. high, more or less hirsute, particularly on the stem and petioles, with flexuons, finely pointed hairs. Stem reddish-brown when dry, quadrangular. Leaves rather approximate, those of a pair similar in shape and size, or more or less unequal, ovate to ovate-oblong, acute or subacuminate, rounded or subcordate and often slightly asymmetrical at the base, membranous, green or purple above, purplish glaucous below, length 1.5 to 3.3 in., breadth 1 to $1 \cdot 7$ in., $5-8$-nerved from below the middle, the lower nerves more or less opposite, the uppermost 1 or 2 usually alternate, transverse veins oblique, fine or obscure ; peduncle $\cdot 5-1 \cdot 5$ in. long. Cymes few- to manyflowered, much contracted, peduncles solitary and terminal, or 2-4 from the top and the uppermost leaf-axils, 1-2 in. long ; pedicels slender, up to $\cdot 1$ in. long, like the flowers with scanty and sometimes minutely glandtipped hairs. Calyx very slender, obconical, up to 2 in . long; teeth short, broad, triangular. Petals elliptic, acuminate, $\cdot 25 \mathrm{in}$. long, rosecoloured. Anthers ovate-lanceolnte, subacute, $\cdot 09-12$ in. long. Styls filiform, $\cdot 2-\cdot 25 \mathrm{in}$. long ; stigma capitate. Fruit oblong with a cuneate base, -22-27 in. long, smooth; valves scarcely $\cdot 1 \mathrm{in}$. broad.

Andamans; Mount Harriet near Port Blair, on rocks, King's Collector 48!
8. Sonerila popdlipolia, Stapf and King. An erect or ascending, simple or sparingly branched herb, 6-9 in. high, more or less covered with minute hairs and with a few soft, adpressed, whitish, small bristles on the surface and the margins of the ultimately often glabrescent leaves, with the hairs of the inflorescence often minutely gland-tipped. Stem finely rusty-tomentose, subterete below, quadrangular above. Leaves of a pair similar in shape and equal or somewhat unequal in size, ovate, acute or acuminate, usually minutely cordate at the base, with the lobes often more or less unequal and close, subentire or toothed in the upper part, thinly membranons, light-green, $1 \cdot 5-3$ in. by $1 \cdot 2-1 \cdot 75$ in., finely 7 -nerved from near the base, upper pair $2-3$ in. from the base; petioles very slender, 1-2 in. long, finely tomentose. Cymes few. to 12 -flowered, much contracted and almost umbelliform, terminal; peduncle slender, $\cdot 5-1 \cdot 2 \mathrm{in}$. long; pedicels slender, $\cdot 15-22 \mathrm{in}$. long.
1900.] G. King-Materials for a Flora of the Malayan Peninsula. 27

Oalyx subcampanulate-oblong, $\cdot 18-2$ in. long; teeth broad, triangular. Petals elliptic, shortly acuminate, $\mathbf{3 - 4} \mathbf{4}$ in. long, deep- to blueish-pink. Anthers acuminate, tips sometimes very fine and curved, $\cdot 2-3 \mathrm{in}$. long. Styls filiform, $\cdot 35-45 \mathrm{in}$. long; stigma minutely capitate. Fruit trigonous, truncate-obovoid, $\cdot \mathbf{2 - 2 5}$ in. long, smooth, often finely puberulous ; valves • $15-\cdot 16 \mathrm{in}$. broad.

Perak; Scortechini 136!300-500 ft., King's Goll. 10055! Larut, dense jungle, 500-800 ft., King's Ooll. 5791 ! Briah plains, Wray 4201! Tapah, Curtis!

The uppermost pair of leaves is often much reduced, resembling a pair of bracts. One of the leares of the preceding pair is sometimes suppressed, whilst the pedancle and the petiole of the other leaf are so turned that the lattor seems to form the continuation of the axis; hence the former appears to apring from a long petiole. This is ohiefly the case with the inforescences which terminate branches.
9. Sonerila pallida, Stapf and King. An ascending, branched or nubranched herb, 6-12 in. high, hirsute all over, but chiefly on the stems and petioles, hairs pale reddish when dry, those of the inflorescence short, stiff and spreading. Stem decumbent at the base, rooting in the lower part, quadrangular. Leaves of a pair similar in shape, but usually rather unequal in size, oblong to ovate-oblong, acuminate, symmetrical or more or less asymmetrical and acute (rarely obtuse) at the base, minutely denticulate, membranous, light green, the larger 1.5-4 in. by $8-1.8$ in., finely bat distinctly 5 -7-nerved from near the base, the upper pair $\cdot 4-6$ in. from the base, petioles up to $\cdot 6-75 \mathrm{in}$. long. Cymes few- to 8-flowered, short, on apparently terminal peduncles; peduncles slender, 1-2 in. long; pedicels $08-15 \mathrm{in}$. long, slender. Oalyx slender, trigonous, obconical-campanulate, $\cdot 15-2$ in. long ; teeth distinct, triangular. Petals elliptic-oblong, apicalate, $\cdot 45-5 \mathrm{in}$. long, with a line of short, stiff, spreading hairs on the back, pale pink. Anthers acuminate, slender, $\cdot 23-24$ in. long. Style filiform, stigma punctiform. Fruit trigonous, obconical, -25-3 in. long, sparingly muricate, valves 15 in. broad.

Perak; Gunong Inas, 5000 ft., Wray 4100! Malacca; Bujong, Curtis 3155! Selangore; Bukit Hitam, 2500-3500 ft., Kelsall! Ridley 7320 !
10. Sonerila rodis, Stapf and King. A semidecumbent, sparingly branched or unbranched herb, about 1 ft . high, densely clothed with short, or often very long, fine and spreading, curved or curled hairs on the stem and petioles, with somewhat coarse, more or less adpressed hairs on both sides of the leaves and gland-tipped, spreading hairs on the peduncles, pedicels, calyx and the midrib of the petals, hairs reddish when dry. Stem often rooting in the lower part, terete or subquadrangular
in the upper part. Leaves of a pair similar, subequal or rather different in size, ovate to oblong or elliptic, acute or subacnminnte, rounded at the base, entire, somewhat fleshy, green above, pale beneath, distinctly 7 -nerved from near the base (upper pair $2-25$ in. above the base) ; petioles $\cdot 4-1 \cdot 2 \mathrm{in}$. long. Cymes $2-6$-flowered, umbelliform, terminal, peduncled; peduncle slender, $5-1 \mathrm{in}$. long ; pedicels $\cdot 08-1 \mathrm{in}$. long. Oalyx rather slender, subcampanulate, $\cdot 12-15$ in. long; teeth short, broad, triangular. Petals elliptic to obovoid, obtuse or subacute, $\cdot 5-6$ in. by $\cdot 35-4$ in., pink, with a line of gland-tipped hairs on the back. Anthers acuminate, slender, $\cdot 23-\cdot 27$ in. long. Style filiform; stigma panctiform. Fruit trigonous, shortly obconical, about 27 in . long, muricate, on stont muricate pedicels; valves ' 2 in . broad.

Perak; Scortechini! Tumbung Parbat, Scortechini 422! Gunong Batu Pateh, 4500 ft., Wray 260. Malacca; Bajong, Curtis 3297 !
11. Sonerila mollis, Strpf and King. An ascending, sparingly branched or unbranched herb, about 1 ft . high, densely and adpressedly tomentose along stem and petioles, and on the anderside of the leaves along the nerves, and besides almost cobwebby on both sides of the young leaves; all the hairs soft and reddish when dry. Stem often rooting in the lower part, terete or subquadrangular in the upper part. Leaves of a pair similar, but differing more or less in size, elliptic to ovate-elliptic, shortly and acutely acuminate, rounded at the base, entire, somewhat fleshy, very dark green and quite glabrous above when adult, pale and glabrescent beneath between the nerves, the larger 2-3 in. by 1-2 in., distinctly 5-7-nerved from near the base (upper pair of side nerves $25-27$ in., distant from the base) ; petioles $4-1 \mathrm{in}$. long. Cymes 2-4-flowered, umbelliform or flowers solitary, terminal, peduncled, glabrous; peduncle about $\cdot 5 \mathrm{in}$. long, slender; pedicels $\cdot 2-\times 24 \mathrm{in}$. long, very slender. Calyx slender, subcampanulate, $\cdot 18-\cdot 2 \mathrm{in}$. long; teeth very short and broad, triangalar. Petals elliptic-oblong, acute, $\cdot 4 \mathrm{in}$. long. Anthers acuminate, $\cdot 2-22 \mathrm{in}$. long. Style filiform; stigma punctiform. Fruit trigonous, shortly obconical, ${ }^{-24} \mathrm{in}$. long, smooth; valves $2-24$ in. long.

Perak; Wray, Scortechini! Summil of Gunong Batu Pateh, 6700 ft., Wray 375 !
12. Sonerila albiflora, Stapf and King. An ascending or suberect, more or less branched herb, 9-12 in. high, densely and adpressedly hirsute along stem and petioles and more sparingly on the underside of the leaves, and with gland-tipped spreading hairs on pedicels, calyx and midrib of petals. Stem rather slender, terete or subquadrangular in the apper part. Lea ces of a pair similar and rather equal in size, lanceolate to ovate- or obvate-lanceolate, acute or subacuminate at both ends, entire or almost so, fleshy, very dark green (almost black when
dry) and glabrous above, pale and adpressedly hairy beneath (at least on the nerves), 1-3 in. by $\cdot 5-1 \cdot 25$ in., distinctly $3-5$-nerved from near the base; petioles $\cdot 2-4$ in. long. Flowers axillary and terminal, solitary or paired; pedicels $\cdot 1-2$ in. long, slender. Calyx subcampanulate, ovoid, $\cdot 1$ in. long; teeth distinct, broadly triangular. Petals oblong, apiculate, 2 in . long, white, with a line of gland-tipped hairs beneath. Anthers oblong, obtuse, $\cdot 08-1$ in. long. Style slightly and gradually thickened upwards; stigma punctiform. Fruit trigonous, shortly obconical, $\cdot 2$ in. long, very scantily muriculate ; valves 2 in . broad.

Perak; Scortechini 1886! Gunong Kledang, 1000 ft., Ourtis 3293 ! Ridley 9691 ! Goldham! Kinta in dense jangle, 3500-4000 ft., King's Collector 7169!
13. Sonerila lasiantha, Stapf and King. An erect herb, 4-6 in. high, hirsute all over with flexuous, finely pointed, rufous hairs. Stem terete, with the hairs more or less adpressed. Leaves of a pair similar in shape, very unequal in size, obliquely lanceolate or subovate, acute, attenuated at the base, membranous, green above, pale beneath, the larger 1•5-3 in. by $6-8$ in., with 2-3 side-nerves in the broader and 1 in the narrow half, the uppermost $\cdot 75-1$ in. above the base; petiole slender, $\cdot 3-6$ in. long. Fascicles few-flowered, terminal and axillary, subsessile; pedicels rather stout, $\cdot 1-15 \mathrm{in}$. long. Calyw obconical, densely hirsute, $\cdot 15-18$ in. long. Petals oblong, caspidate-acuminate, $\cdot 12$ in. long. Anthers oblong, subacute, 06 in. long. Style filiform, raiher stout; stigma punctiform. Fruit broad, obconical, muricate, to $\mathbf{~} 25 \mathrm{in}$. long; valves 18-2 in. broad.

Psrak; Gunong Bubu, Wray 3863! (in part).
The speoimen which we have here in view is so different in habit and in the size of the comparatively long peduncled leaves from the others bearing the same number in Wray's colleotion, but described under 8. suffruticosa, that we believe ourselves justified in considering it for the present as a distinct species.
14. Sonerila suffroticosa, Stapf and King. An erect, repeatedly branched half-shrab, over 1 ft . high, shaggy all over from coarsely adpressed, crimson (reddish, when dry) hairs, or glabrescent at length at the base. Stem terete, woody below, hollow. Leaves mainly crowded near the tips of the branches, those of a pair similar in shape, but rather nnequal in size, oblong to ovoid-oblong, acute, more or less asymmetrical or almost symmetrical and acute at the base, obscurely serrate or toothed, thickly membranous, dark green above, paler beneath, the larger 1-1.4 in. by $4-6$ in., 3 - 5 -nerved from near the base; petioles $\mathbf{2 5}$ in. long to very short. Flowers unknown (petals white according to Wray). Fruits axillary, solitary or in pairs on stout short pedicels, obconical, $\cdot 2 \mathrm{in}$. long, strigose from tubercle-based hairs, or muricate from their persistent bases; valves • 12 in . broad.

Perak; Larat, Gquong Bubu, 5000 ft., Wray 3863! (in part).
15. Sonerila elliptica, Stapf and King. An erect or ascending, usually unbranched herb, 6-9 in. high, with a very fine, furfuraceous, darkrusty indumentum in the lower parts and on the young leaves, glabrous or soon glabrescent higher up. Stem somowhat stout and succulent, terete. Leaves of a pair similar in shape, slightly unequal or equal in size, broadly elliptic, rarely ovate or almost orbicular, very obtuse, usually symmefrical and rounded or subcordate at the base, minutely and inconspicuously toothed, thick, fleshy, dark-green, often mottled with white along the nerves above, waxy yellowish-green beneath, $1-2.5 \mathrm{in}$. by $75-2 \mathrm{in}$., distinctly 5 -nerved from the very base, upper nerves usually quite indistinct; petioles 1-2 in. long. Cymes manyflowered, dense, axis at length up to $\cdot 75 \mathrm{in}$. long; peduncle slender, $1-2.5 \mathrm{in}$. long, pedicels at length up to $\cdot 2 \mathrm{in}$. long. Oalyx obconical, trigonous, •12 in. long, glabrous, teeth distinct, broad, triangular. Petals oblong, apiculate, $\cdot 2-23$ long, glabrous, pinkish white. Anthers oblong, obtuse, scarcely $\cdot 1$ in. long. Stigma panctiform. Fruit trigonous, obconical, $\cdot 15 \mathrm{in}$. long, smooth; valves $\cdot 12 \mathrm{in}$. broad.

Perak; Kinta, on limestone rocks, 500-800 ft., Kunstler 7037! 7225 ! Sungie Siput, Ourtis 3156 !
16. Sonbrila succolenta, Stapf and King. A succulent, erect herb, quite glabrous with the exception of a very few gland-tipped hairs on the calyx. Stem stout, very short to 3 in . long, very fleshy. Leaves few, crowded, of a pair equal, symmetrical or almost so, long-petioled, elliptic to ovate-elliptic, rather long and acutely acuminate, rounded at the base or very slightly subcordate, entire, very thinly membranous when dry, 6-7 in. by 3-4 in., 7 -nerved from the base, with lax, subhorizontal transverse nerves, petioles succulent, 2-4 in. long. Cymes terminal and axillary, 2-5 ou a long common peduncle, subebracteate, rather few-flowered, very short and dense; common peduncle stout, 4-7 in. long; special peduncles 1 to over 3 in. long, bracts very minute, subulate, the lower soon deciduous; pedicels hardly any. Calyx oblongcampanulate, up to ${ }^{25} \mathrm{in}$. long; teeth short, triangular. Petals oblong, cuspidate-acuminate, $\cdot 18 \mathrm{in}$. long. Anthers long-acuminate, incurved, over $\cdot 25$ in. long. Style 35 in . long; stigma subcapitate. Fruit subtrigonous, obconical, smooth, up to ' 25 in . long ; valves over • 15 in . broad.

Perak; Maxwell's Hill, 3000 ft., Scortechini 279 !
17. Sonerila repens, Stapf and King. A herb with a long creeping rhizome and a very short succulent stem bearing 2-3 usually much approximated pairs of leaves, with few, whitish, more or less adpressed, papilliform hairs on both sides of the leaves and with very few, minate, gland-tipped hairs on the stems, petioles and inflorescences, or glabrous with the exception of the leaves. Leaves of a pair similar in shape,
equal or, more usaally, very unequal in size, ovate, rarely oblong, acately aouminate, cordate, rounded or rarely subacate at the base, rather symmetrical, entire or slighty wavy and denticulate, thinly membranons, dark- or pale-green, the larger 3-7 in. by $2-4.5 \mathrm{in}$., distinctly 7 -nerved from the very base, with somewhat distant transverse veins; petioles $1-2 \cdot 5 \mathrm{in}$. long, slender or stoat, fleshy. Cymes long-peduncled, often many-flowered, solitary or usually 2-4 on a common subterminal peduncle from the leaf axils or close to the top; peduncle $2-5 \mathrm{in}$. long, first slender, at length rather stont, pedicels slender, $1-12$ in. long. Calys slender, obconical-campanalate, 2 to 23 in . long; teeth triangular. Petals elliptic, acate, $2-25 \mathrm{in}$. long, white or greenish white. Anthers slender, acuminate, $\cdot 23-27$ in. long. Style filiform; stigma punctiform. Fruit trigonous, obconical with straight sides, $22-3 \mathrm{in}$. long, smooth ; valves $\cdot 15-16 \mathrm{in}$. long.

Perak; 2000-4000 ft., common, Ourtis 2015! Scortechini 1911! Maxwell's Hill, Scortechini 18/a! Ridley! Larat, on rocks in dense jungle, 2000 ft., Kunstler 2005! in open jungle on hill sides, 500-800 ft., King's Collector 5152! Kinta, Curtis! Malacca; Bujong, 3000 ft., Curtis!
18. Sonbrila muscicola, Stapf and King. A flaccid, ascending, unbranched herb, 4-6 in. high, with a creeping rhizome, with pale, fine, curved or curled hairs in the upper part of the stem and the leaves, and with scanty, gland-tipped hairs on the pedicels, calyx and on the back of the petals. Stem slender, weak, quadrangular. Leaves of a pair similar in shape and size, oblong to lanceolate-oblong, subacute or subacuminate at both ends, symmetrical or almost so, minutely toothed or almost entire, thinly membranons, pale-green, $2-3 \cdot 7 \mathrm{in}$. by $8-1 \cdot 4 \mathrm{in}$., pinnatenerved, nerves 3-4 on each side, fine, very oblique; petiole $3-8 \mathrm{in}$. long. Cymes few-flowered, terminal, peduncled, umbelliform, peduncles very slender, 1-1-5 in. long; pedicels very slender, 08-12 in. long. Calyx slender, obconical-campanulate, 2 in . long; teeth triangular, broad. Petals elliptio, apicalate, $35-4$ in. long, pink, with a few glandtipped hairs along the middle nerve beneath. Anthers very slender, acuminate, tips carved, $\cdot 2 \cdot 2 \cdot 24 \mathrm{in}$. long. Style filiform ; stigma punctiform. Fruit trigonous, truncate-obovoid, $\cdot 2 \mathrm{in}$. long, smooth; valves $\cdot 12 \mathrm{in}$. broad.

Kbdan; Gunong Raya, on mossy trees, Ourtis 2573 !
19. Sonerila saxosa, Stapf and King. An erect, delicate herb, 2-4 in. high, scantily hairy with the exception of the glabrous flowers, hairs pale, flexuous with long, fine tips; with a slender, creeping rhizome. Stem very slender, quadrangular. Leaves in 3-4 pairs (of which the apper are rather close), those of a pair similar in shape and size, oblong-lanceolate to lanceolnte, acate at both ends, rather symmetrical,
finely toothed in the upper part or almost entire, membranous, green above, purplish beneath, $8-1 \cdot 7 \mathrm{in}$. by $\cdot 3-6$ in., 5 -7-nerved from below the middle; petiole $\cdot 2-3$ in. long. Oymes 4-7-flowered, much contracted, terminal; peduncles very slender, $\cdot 5-1 \cdot 5 \mathrm{in}$. long; pedicels very slender, • 15 in . long, glabrous. Calyx very slender, linear-subcampanulate, $\cdot 15 \mathrm{in}$. long, teeth broad, triangular. Petals elliptic, acuminate, cuspidate, $\cdot 3-35$ in. long, pink. Anthers acuminate, $\cdot 19$ in. long. Style filiform, $\cdot 3 \mathrm{in}$. long; stigma punctiform. Fruit obconical, truncate, sides almost straight, passing into the thickened pedicel, $\cdot \mathbf{2 5}$ in. long; valves $\cdot 12-15 \mathrm{in}$. broad.

Penang; Government Hill, 2500 ft., on rocks in damp shady ravines; Ourtis!
20. Sonerila congesta, Stapf and King. An erect or saberect, rather delicate herb, $3-3.5 \mathrm{in}$. high, quite glabrous with the exception of an extremely scanty, furfuraceons, dark-rusty indumentum in the lower part; with a slender, creeping rhizome. Stem $1-1.5 \mathrm{in}$. long (exclusive of the peduncle), quadrangular. Leaves in about 3 crowded pairs, those of a pair similar in shape and size, broad, orate to elliptic, obtase or sabobtuse, rounded or obscurely cordate at the base, rather symmetrical, subentire, thinly membranous, green, $9-1 \cdot 7 \mathrm{in}$. by $\cdot 6-1 \cdot 2$ in., $5-7$-nerved from near the base, upper pair $\cdot 4-6$ in. from the base ; petiole slender, $\cdot 6-7$ in. long. Cymes 4-9-flowered, contracted ; peduncles slender, 1.2 in. long ; pedicels slender, $\cdot 12-15$ in. long. Calyx slevder, subcampanu-late-oblong, $\cdot 15 \mathrm{in}$. long ; teeth triangalar, short. Petals elliptic-oblong, cuspidate-acuminate, 35 in . long, pink. Anthers acuminate, $\cdot 15-2$ in. long. Style filiform, ${ }^{-25-\cdot 3} \mathrm{in}$. long; stigma punctiform. Fruit (semimature) obovoid-oblong, $\cdot 15 \mathrm{in}$. long.

Kedah; Gunong Chinchang, Ourtis 2572 !
21. Sonerila Griffithir, C. B. Clarke in Hook. f. Fl. Brit. Ind. II, 539. An ascending, delicate herb, quite glabrous with the exception of the margins and sometimes the upper surface of the leaves; with a rather stout rhizome. Stems very slender, 2-3 in. long (exclusive of the panicle), rooting from the lower, soon leafless nodes, quadrangular. Leaves in 3-4, often crowded pairs, those of a pair similar in shape and size, broad, ovate to rotundate-elliptic, obtuse or subobtuse, obscurely cordate, rarely sabobtase at the base, rather symmetrical, toothed and ciliate on the margin, membranous, green, $4-8$ in. by $\cdot 4-6$ in., 5 -nerved from near the base, upper pair $\cdot 1 \mathrm{in}$. from the base ; petioles slender, $\cdot 3-5$ in. long. Cymes 2-3-flowered, much contracted, peduncles slender, 1-2.2 in. long; pedicels very slender, $\cdot 1$ in. long. Calyx slender, subcampana-late-oblong, $\cdot 12 \mathrm{in}$. long; teeth triangular-ovate. Petals elliptic-oblong, cuspidate-acuminate, scarcely 25 in. long, pink. Anthers acuminate, $\cdot 12-15$ in. long. Style filiform, not quite $\cdot 25$ in. long; stigm
punctiform. Fruit truncate, obovoid-oblong, cuneate at the base when quite ripe, $\cdot 19-23$ in. long, obtasely trigonous. Cogn. in DC. Mon. VII, 513 ; Stapf in Ann. Bot. VI, 308.

Malacca; Mt. Ophir, on dripping places, Griffith 2300! Maingay 2583! Lobb 182.
22. Sonerila Cfclaminella, Stapf and King. A rather delicate, perfectly glabrous, almost acaulescent herb, with a creeping rhizome. Stem nsually extremely short, quadrangular. Leaves in about 4 pairs, almost crowded into a rosette, those of a pair similar in shape and size, ovate to oblong-obtuse or subobtuse at both ends or sabcordate at the base, rather symmetrical, undulate-orenulate or almost entire, membranous, light or dark brownish green above with silvery bands along the midrib and often also along the side, nerves more or less rich violet underneath, $8-1 \cdot 4$ in. by $4-6$, distinctly although finely $5-7$-nerved below the middle, often with 1 or 2 delicate side-nerves higher up; petioles slender, $4-1 \mathrm{in}$. long. Oymes $2-5$-flowered, very mach contracted; peduncles slender, 2-5 in. long, pedicels slender, $08-1$ in. long. Calyx slender, subcampanulate-oblong, $\cdot 12-15$ in. long; teeth triangular, short. Petals elliptic, cuspidate-acnminate, searcely 25 in . long, light pink. Anthers acuminate, $\cdot 12$ in. long. Style filiform, $\cdot 25$ in. long; stigma minutely sabcapitate. Fruit truncate, obovoid, obtusely trigonous, $12-16 \mathrm{in}$. long.

Perak; on rocky hilltops, 800-1000 ft., King's Collector 10745! 10746! 10744 (in part)!

Var. canescens, Stapf and King. Leaves more or less covered above with long, flexuous, white hairs ; some of Ridley's specimens have leaves up to 3 in . by 1.2 in .

Perak; with the type; King's Collector 10741 (in part)! Selangore ; Bukit Kinta, 3000 ft., on rocks, Ridley 7318 !
23. Sonerila heterostemona, Naud. in Ann. Sc. Nat. Ser. 3, XV, 326, t. XVIII, fig. 4. An erect or ascending, often branched herb, -5-2 ft. high, ravely quite dwarf, quite glabrous apart from an extremely fine, furfuraceons, rusty indumentum in the younger parts and, occnsionally, a few scattered, short, whitish hairs on the apper surface of the leaves. Stem somewhat stout, quadrangular. Leaves of a pair similar in shape, but usually very unequal or one arrested at a very early stage or quite suppressed, rarely both more or less equal, usually conspicuously asymmetrical, obliquely orate, subacute or shortly acuminate, rounded or shortly narrowed at the base, minutely toothed, membranous, metallic green, oftou spotted above, parplish beueath on the nerves, 1.5-4.5 in. by 1-2.3 in., 5-6-nerved from the very base with fine, lax, more or less horizontal tiansverse veins; petioles very unequal in length, $\cdot 5-2$ in. long. Cymes axillary and terminal, much contraoted J. II. 5
and compact, very many-flowered, distinctly bracteate, at length 1-2.5 in. long, pedancle $\cdot 6-1 \cdot 2 \mathrm{in}$. long; bracts spathulate or obovate, very obtase, ap to $\cdot 2 \mathrm{in}$. long, persistent; pedicels hardly any. Calyx short, obconical-oblong, $15-16 \mathrm{in}$. long; teeth obscure, very obtuse: Petals elliptic, obtuse, pink, 15 in. long. Stamens 6,3 slightly curved, parple, $\cdot 15 \mathrm{in}$. long, 3 straight or almost so, yellow, $\cdot 12-15 \mathrm{in}$. long. Fruit subsessile, tarbinate, $\cdot 19-23 \mathrm{in}$. long; valves $\cdot 19 \mathrm{in}$. broad. Miq. Fl. Ind. Bat. I, 565 ; Trinna in Trans. Linn. Soc. XXVIII, 77; C. B. Clarke in Hook. f. Fl. Brit. Ind. II, 540. S. obliqua, Cogn. in DC. Monogr. VII, 515 ; and Stapf in Ann. Bot. VI, 310 (in part), not of Korth.

Preak; Scortechini! Ipoh, Curtis 315́8! Cliangkal Serdang, Wray 783 ! Larut, Scortechini 54/a! Goping, Kunstler 787! Tapa, Wray 1308. Malacca ; Griffth 2302!2294! Maingay 1223! (782, Kew Distr. partly), Cuming 2349! Lobb 183! in dense forest between Jassing and Ayer Bombon, Maingay 1425! (782, Kew Distrib. partly). Malacca; Batang, Holmberg 876! Ulu Gajah, Harvey! (dwarf specimens). Singapore; Maingay 3098! (782, Kew Distrib. partly) ; Bakit Timah, Hullet 893 ! Pafana; Tahan, Ridley! (dwarf specimens). Distrib. Sumatra to Borneo.
24. Sonerlla integrifolia, Stapf in Ann. of Bot. VI, 312. An erect or ascending, simple or branched herb, $\cdot 5-1 \cdot 3 \mathrm{ft}$. high, rufously strigose on the stem, the petioles, the nerves on the underside of the leares and the inflorescence, including the calyx, but exclusive of the bracts, hairs of the leaves very tightly adpressed, like those of the inflorescence very short. Stem rather robast, often swollen at the nodes, subflexuons, almost woody below. Leaves very dissimilar, the larger of a pair asymmetrical, rarely symmetrical, usually obliquely oblong-lanceolate to obovate-oblong, distinctly (sometimes long) acaminate, minately cordate or acute at the base, entire, sometimes with slightly wavy margins, somewhat fleshy, soft, quite glahrous above, dark- or yellowish-green, $3-5 \mathrm{in}$. by $1-1 \cdot 5 \mathrm{in}$, sub-5-nerved from near the base with the lowermost pair of nerves faint, and the uppermost (in the narrow half) -2-1.2 in. above the base, with fine oblique transrerse veins; small leares minute, orate to rotundate, often cordate, sessile or shortly petioled. Cymes terminal and apparently leaf-opposed, peduncled, bracteate, few- to many-flowered, very dense, up to 1 in . long, peduncles very short to $\cdot 5 \mathrm{in}$. long; rhachis often flexuous when long; bracts oblong to linear-lanceolate, fleshy, up to $\cdot 12 \mathrm{iu}$. long, often much smaller, sometimes extremely numerous and crowded; pedicels very short or 0 . Calyx oblong-campanulate, nearly $\cdot 1$ in. long; teeth trinugular, up to 04 in . long, acate. Petals oblong, acate, $\cdot 15 \mathrm{in}$. long, white to pink. Anthers oblong, obtuse, almost $\cdot 1 \mathrm{in}$. long. Style $\cdot 2$ in,

1900.] G. King-Materials for a Flora of the Malayan Peninsula.

long; stigma punctiform. Fruit semiglobose-tarbinate, $\cdot 12-\cdot 18 \mathrm{in}$. long and wide, bullate-muricate.

Perak ; Larut, 200-800 ft., Kunstler 1917! 2791 ! Changkal Serdang, Wray 755 ! Blanda Mobok, Wray 3954! Maxwell's Hill, Scortechini 16a! Hermitage, Ourtis 1302! Selangor; Dusun Tua, Ridley 7334! Kwala Tampan Caves, Ridley 306 !

Var. acuminatissina, Stapf and King. Leaves mostly very long and finely acuminate, on the whole narrower and less asymmetric than in the type, margins often slightly wavy to remotely serrulate, not rarely with a row of white spots close to them. Petals white.

Prrak ; Larut, 1800-4000 ft., in dense old jungle, Kunstler 2004! 2161!
25. Sonerila bracteata, Stapf and King. An erect or ascending, unbranched or very scantily branched herb, $\cdot 5-1 \cdot 5 \mathrm{ft}$. high, softly and densely birsute to tomentose from rafons, flexnous or curved, more or less spreading, fine hairs in all parts with the exception of the upper side of the leaves which is glabrous apart from scattered, adpressed, pale bristles. Stem rather stout below with swollen nodes, subflexnous, leafy part 2 to over 6 in. long. Leaves very dissimilar, the larger of a pair shortly petioled, somewhat asymmetrical, oblanceolate, long and finely acuminate, unequally cordate at the base with a small rouuded lobe on the outer, and a still smaller or obscure lobe on the inner side, entire, ciliate along the margin, membranous, light-green, 3-7 in. by 1-1.7 in., 5 -nerved from near the base (the uppermost nerve $\cdot 5-1 \cdot 5 \mathrm{in}$. above the base), with oblique, transverse veins; petioles 2 to 4 in. long; smali leaves reniform, very minate or up to 3 in . in diam. Oymes terminal and axillary, long-peduncled, very dense, subcapitate at first, at lengtli to 1.5 in . long, multibracteate, many-flowered; pedancle rather slender, up to 2 in . long; bracts linear, membranous, ciliate, up to $\mathbf{~} \mathbf{1 2} \mathrm{in}$. long; pedicels very short. Calyx shortly oblong-campanulate, 07-08 in. long; teeth lanceolate-triangular, about 04 in. long. Petals oblong, caspidate-acuminate, white, 08 in. long, with Ω line of gland-tipped hairs on the back. Anthers short, oblong, obtuse, 06-07 in. long. $\$$ givle $\cdot 15 \mathrm{in}$. long; stigma punctiform. Fruit shortly turbiuate, $\cdot 15 \mathrm{in}$. long and wide, densely muricate.

Perak; Larut, in dense old jungle, 3200-3500 ft., Kunstler 2133 ! Maxwell's Hill, Scortechini 12 !
26. Sonerila capitata, Stapf and King. An ascending, unbranched or scantily branohed herb, 3-12 in. high, rufously strigillose on the stem, the petioles and the nerves on the anderside of the leaves, and also in the cymes, and with few or very few scattered, short hairs on the upperside of the leaves. Stem prostrate at the base, stout, succulent, swollen at the nodes, leafy part ap to 7 in . long. Leaves very dissimilar,
the larger of a pair petioled, asymmetrical, obliquely obovate, elliptic or oblong, abruptly contracted into a narrow acumen, unequally cordate at the base with a small rounded lobe (to $\cdot 2 \mathrm{in}$. long) on the broader side and gradually narrowed on the inner side, entire, membranous, lightgreen, 4-6 in. by 1-75-3 in., 5-8-nerved from near the base, with 2-5 nerves in the broad, and 2 in the narrow half, with oblique, on both sides distinctly raised, transverse veins; petiole stout, $\cdot 5-1 \cdot 5 \mathrm{in}$. long, small leaves orbicular-reniform, acate, cordate, sessile, up to ${ }^{4} \mathrm{in}$. in diam. Cymes terminal and axillary, long-peduncled, capitate, very dense, bracteate, few- to many-flowered; peduncles rather slender, glabrescent in the upper part, bracts numeroas, linear, up to 25 in . long; pedicels slender, $07-09 \mathrm{in}$. long. Calyx oblong, densely shaggy from short hairs, thickened below, $07-09 \mathrm{in}$., teeth narrow, triangular, $\cdot 04 \mathrm{in}$. long. Petals oblong, acuminate, white or pinkish, ' 12 in . long, with a line of short, thick hairs on the back. Anthers short, oblong, obtuse, $\cdot 1$ in. long. Style filiform, $\cdot 1 \mathrm{in}$. long, stigma punctiform. Fruit semiglobose, densely maricate, $\cdot 15 \mathrm{in}$. long and wide.

Perak ; Scortechini 1886! Gunong Batu Pateh, in donse jungle, $3000-4000 \mathrm{ft}$. Kunstler 8075 ! 4500 ft . Wray 222 !
27. Sonerila caesia, Stapf and King. An ascending or creeping, low herb, densely hairy on the stem, petioles and the nerves and veins on the underside of the leaves, less so in the inflorescence and with few or no hairs on the upperside of the leaves, hairs rufous, fine, straight and adpressed, particularly on the nerves, or more or less spreading on the petioles, coarse on the rhachis of the cyme and at the base of the umbels. Stem rather stout, prostrate below, leafy-part rarely more than 5 in. long. Leaves very dissimilar, the larger of a pair long-petioled, asymmetrical, obliquely elliptic, subacuminate or subobtase, anequally cordate at the base with a large rounded lobe ($4-6 \mathrm{in}$. long) on the outer, and a minate or quite obscure lobe on the inuer side, entire or subentire, sometimes ciliate along the margin, somewhat fleshy, blue-green above, pale, green beneath with reddish nerves and veins, $3-5$ in. by $1 \cdot 75-2 \cdot 75$ in., 6-7-nerved from near the base, 3-4 nerves in the outer (larger), 2 nerves in the inner (narrow) half, with subhorizontal or oblique transverse veins; petiole $1-3.5 \mathrm{in}$. long; small leaves minate, ovatecordate, shortly petioled, or suppressed. Cymes terminal and from the upper leaf-axils, usually $2-3$ in peduncled ambels with small bracts at the base, bracteate, few- to very-many-flowered, very dense; common peduncle slender, $1-2 \cdot 5 \mathrm{in}$. long; special peduncles $25-1 \mathrm{in}$. long; pedicels slender, $\cdot 08-1$ long; bracts oblong, obtuse, as long as or shorter than the pedicels, glabrous, persistent. Calyx obconical-campanulate, $\cdot 12$ in. long, scabrid, crimson; teeth triangular, acate, distinct. Petuls oblong, cuspidate-acuminate, $\cdot 22$ in. long, pale pink. Anthers
short, oblong, obtase, $\cdot 1 \mathrm{in}$. long. Style $\cdot 25$ in. long ; stigma panctiform. Fruit semiglobose, $\cdot 15 \mathrm{in}$. long and wide, tabercled, tabercles rounded.

Prrak; Gunong Batu Pateh, 3,400 ft., Wray 1035! Upper Perak; 300 ft., Wray 3442 ! 3553 !
28. Sonerila Nidularia, Stapf and King. An ascending, simple, rarely farcate herb, 3-8 in. high, densely rusty-tomentose on the stem, petioles and the nerves (rarely also between the nerves) on the anderside of the leaves, pubescent in the inflorescence (including the calyx), otherwise glabrous; bairs fine, flexuous, short to very short and more or less adpressed or, in the apper part of the stem, sometimes longer and more or less spreading. Stem prostrate at the base, stout, straight or flexuous, rooting at the base, leafy part l-5 in. long. Leaves very dissimilar, the larger of a pair shortly petioled, asymmetrical, obliquely oblong to obovate-oblong, sabacuminate or subobtuse, unequally cordate at the base with a larger, rounded lobe ($12-2 \mathrm{in}$. long) on the outer and a similar, but mach smaller lobe on the inner side, entire, fleshy, rather firm, dark-green above, sometimes with a row of large white spots on each side of the midrib, $3-4.5 \mathrm{in}$. by $1-2 \mathrm{in}$., 5 -nerved from near the base with oblique transverse veins, the outer nerve of the inner (narrow) side marginal and often indistinct; petiole stout, ${ }^{15-6}$ in. long; small leaves sessile, reniform or orbicular, cordnte, 2 in . or less in diam. Cymes terminal and axillary, sessile, minately or obscurely bracteate, few- to many-flowered, much contracted; pedicels very short at first, ultimately up to 3 in . long, and stout. Calyx campanalate-oblong, $: 12-15 \mathrm{in}$. long; teeth triangular, acuminate, up to 06 in . long. Petals obovate-elliptic, cuspidate, almost 25 in . long. Anthers short, oblong, obtase, $\cdot 14 \mathrm{in}$. long. Style $\cdot 25 \mathrm{in}$. long, stigma punctiform. Fruit shortly turbinate, sabtrigonons, muricate, -25 in . long and wide.

Perax ; Scortechini 650! Larat, 1000-2000 ft., Kunstler 2345 ! on hills in open jungle, King's Ooll. 5764 ! Ganong Haram (?), Scortechini 655! Waterloo, common, Curtis!
29. Sonerila brachyantha, Stapf and King. An ascending simple or scantily branched herb, 3-8 in. high, softly hirsute or shaggy all over, hairs dense and more or less spreading on the stem, the petioles and all parts of the inflorescence (inclusive of the calyx), looser on both sides of the blades, reddish, rather long and flexuous. Stem rather stont, subflexuous, leafy part 1-3 in. long, branches, if any, spreading, resembling the main stem. Leaves very dissimilar, the larger of a pair petioled or subsessile, more or less asymmetrical, obliquely ovate-lanceolate to oblong-lancoolate, acuminate, unequally cordate at the base with a rounded lobe ($\cdot 15-25 \mathrm{in}$. long) on the outer and a minute lobe on the inner side, entire, membranous, dark brownish-green above, reddish or

38
 G. King-Materials for a Flora of the Malayan Peninsula. [No. I,

deep-red or violet beneath, $2-4 \mathrm{in}$, by 1-1.5 in., 5 -nerred from near the base, with 3 side-nerves in the broad and 2 side-nerves in the narrow half, uppermost side-nerves sometimes $\cdot 4-5$ in. above the base, with indistinct oblique transverse veins; petioles usually short or very short, rarely up to 5 in . long; small leaves ovate-cordate, acute or reniform, $\cdot 15 \mathrm{in}$. long and broad, on slender, short petioles. Cymes terminal and axillary, solitary or in fascicles of $2-3$, subsessile, indistinctly bracteate, few- to many-flowered, very dense; peduncles very short, slender, with 2 petioled small leaflets at the base; rhachis slaggy, bracts finely filiform, ciliate, hidden among the hairs of the rhachis; pedicels very slender, abont $\cdot 1$ in. long. Calyx campanulate-oblong, $\cdot 12-15 \mathrm{in}$. long, shaggy ; teeth triangular-lanceolate, $\cdot 07 \mathrm{in}$. long. Petals oblong, subacute, suberect, over $\cdot 25$ in. long, pinkish white or pink, with a line of hairs on the back. Anthers short, oblong, obtuse, $\cdot 1 \mathrm{in}$. long. Style over $\cdot \mathbf{2 5} \mathrm{in}$. long; stigma punctiform. Fruit semiglo-bose-turbinato, muricate, $\cdot 2 \mathrm{in}$. long and wide.

Prrak; Scortechini 1873! 1875! Goping, in dense jungle, Kunstler $434!440$! Larut, in dense jungle, 500-800 ft., King's Collector 5752! Malacca; Kinta Gunong, 1000-1500 ft., on rocky places, King's Collector 7179! Gunong Inas, 5000 ft., Wray 4088.
30. Sonerila microcarpa, Stapf and King. An ascending herb, 3-6 in. high, rusty-tomentose on the stem, petioles and the underside of the leaves, more coarsely hairy in the inflorescence (including the calyces) from short, somewhat stiff and spreading, or soft and more adpressed (underside of the leares) hairs, and besides with scattered, longer and stouter, flexuous hairs on the upper side of the leaves. Stem long, prostrate at the base, somewhat stout, straight or subflexuous, leafy part $2-4 \mathrm{in}$. long. Leaves very dissimilar, the larger of a pair shortly petioled, asymmetrical, obliquely obovate-lanceolate or oblanceolate, abruptly acuminate, unequally cordate at the base with a larger rounded lobe ($\cdot 1-2$ in. long) on the outer, and a similar, bat very minate or obscure lobe on the inner side, subentire or entire or obtusely serrulate, fleshy, rather firm, dark-green above, sometimes with numerous small white spots, $2.5-4$ in. by $1-1.5$ in., $4-5$-nerved from near the base with oblique transverse veins, petiole $\cdot 15-4$ in. long; the small leaves sessile, reniform or orbicular, cordate, $\cdot 2$ in diam. Cymes terminal and from the upper axils, sabsessile or shortly peduncled, ebracteate, few- to manyflowered, rather lax ; peduncle very slender, if any, up to 5 in . long; pedicels filiform, up to 25 in . long. Calyx campanalate-ovoid, 12 in . by 08 in. ; teeth triangular. Petals oblong, acute, almost $\cdot 25$ in. long, like the calyx pink. Anthers short, oblong, obtase, $08-1$ in. long. Siyle -25 in. long; stigma punctiform. Fruit pale pink, sabtrigonons, turbinate, minately muricate, $\cdot 08-11 \mathrm{in}$. long, $\cdot 15 \mathrm{in}$. broad.

Perak; Scortechini! Upper Perak, 300 ft., Wray 3445! 3446!3621!
31. Sonerila costulata, Stapf and King. An ascending, unbranched herb, a few inches high, densely hirsute or tomentose on the stem, the petioles and more or less also in the inflorescence, including the calyx; adpressedly strigillose on the nerves and veins on the underside of the leaves, and with scattered, often very few, stonter hairs on the upper side of the leaves, hairs rufous, those of the stem, petioles and inflorescence flexuons, more or less spreading. Stem prostrate below, sabflexuous, leafy part rarely more than 1 in . long. Leaves crowded, the larger of a pair petioled, more or less asymmetrical or the upper sometimes almost symmetrical, obliquely (if asymmetrionl) obovateoblong or oblong, subacuminate, unequally cordate at the base with a rounded lobe (2 in . long) on the larger and a minate lobe on the narrower half, entire, ciliolate along the inargin, membranous, dark green, 3-6 in. by 1.3-2.5 in., 6- or rarely 7 -nerved from near the base with 3 (rarely 4) nerves in the broad and 2 in the narrow half, with oblique, conspicuously prominent, transverse veins on both sides; petiole stout, $3-5$ in. long; small leaves ovate-cordate to reniform, minute or up to 33 in. long, on short petioles. Cymes terminal and in the upper axils, solitary or 2 on a common very short peduncle, ebractente, few- or many-flowered, contracted; rhachis very slender; peduncles very short; pedicels slender, $08-12$ in. long. Flowers unknown. Fruit semiglobose-turbinate, muricate, $\cdot 15-18 \mathrm{in}$. long and wide.

Perar (?) ; foot of Ganong Panti, Kunstler 220 !
Bather olosely allied to 8. Beccariana, Cogn.; bat this has on the whole narrower, more acuminate leaves and much larger fraits.
32. Sonerila macrophilla, Stapf and King. An ascending simple herb, 3-5 in. high, softly hirsute or shaggy all over; hairs dense and more or less spreading on the stem, the petioles and all parts of the inflorescence (inclusive of the calyx), looser on both sides of the leaves, pale reddish, rather long and flexuous. Stem prostrate below. Leaves very dissimi. lar, the larger of a pair petioled, asymmetrical, obliquely elliptic, acuminate, unequally cordate at the base with n large, rounded lobe ($4 \mathrm{in} . \mathrm{long}$) on the outer and a mach smaller lober on the inner side, entire or subentire, membranous, on both sides light-brown when dry, $4-6 \mathrm{in}$. by $2 \cdot 2-3 \mathrm{in}$., about 7 -nerved from near the base, with 4 nerves in the broad, 2 in the narrow half and with nsually indistinct, fine, pblique, transverse veins, uppermost side-nerve 1-1.25 in: above the base; petiole stout, $\cdot 5-1.2 \mathrm{in}$. long; small leaves ovate-cordnte to reniform, up to $\mathbf{- 2 5}$ in. long, on short, slender petioles. Cymes terminal and in the ppper axils, solitary or 2 or a common short peduncle, ebracteate, rather many-flowered, apparently very dense owing to the long interwoven
hairs; rachis slender ; common peduncle very short to 7 in . long, slender, with a pair of spathulate-lanceolate, petioled leaflets at the point of branching; special peduncles very short ; pedicels very slender, up to $\cdot 15$ in. long. Calyx campanalate-oblong, nbout $\cdot 14$ in. long, very shaggy; teeth triangular-lanceolate, up to 06 in. long. Petals oblong, acute, suberect, $3-35 \mathrm{in}$. long; stigma panctifurm. Fruit semigloboseturbinate, muricate, about $\mathbf{2} \mathbf{i n}$. long and wide.

Perak; Scortechini!
Var. laxipilosa, Stapf and King. All parts loosely hairy with the hairs as in the type. Leaves up to 6 in. by 3.5 in., rather thinner. Common and special peduncles short or ap to 3 in . long (together).

Perak; Ipoh, Kinta, Curtis 3154! Pulau Batong, Curtis!
33. Sonerica paradoxa, Naud. in Ann. Sc. Nat. Ser. 3, XV, 32]. A low, crceping herb, softly hirsute or shaggy all over; hairs dense and more or less spreading on the stem, petioles and all parts of the inflorescence (including the calyx), looser on both sides of the blades, reddish, rather long and flexuous. Stem creeping, slender to rather stout, rooting, the leaf-bearing, terminal part rising rarely more than 5 in. above the ground. Leaves crowded, very dissimilar, the larger of a pair petioled, asymmetrical, obliquely obloug or elliptic, shortly acuminate, unequally cordate at the base, with a large rounded lobe ($25-5 \mathrm{in}$. long) on the outer and a similar but much smaller lobe on the inner side, entire or subentire, membranous, soft, light-green, $3-6$ in. by $1 \cdot 2-2 \cdot 5$ in., 6-8 nerved from near the base ($3-5$ nerves in the broader half), with oblique curved transverse veins; petiole -4-2 in. long or the uppermost very short; small leaves rotundate-ovate or reniform, cordate, $08-4 \mathrm{in}$. in diam., on very slender petioles ($08-6 \mathrm{in}$. long). Cymes terminal and from the upper axils, solitary with n pair of small petioled leaflets at the middle of the peduncle, or in umbels of $2-4$, ebracteate or inconspicnously bracteate, few- to many-flowered, dense; common peduncle slender, usually $1-2 \mathrm{in}$. long; special peduncles much shorter; rhachis very shaggy; bracts linear to filiform, ciliate, short, usually hidden among the hairs of the rhachis or suppressed; pedicels $\cdot 08-1$ in. long, very slender. Calyx campanulate-oblong, about $\cdot 15$ in. long, shaggy; teeth short, triangular. Petals oblong, acute, suberect, over $\cdot 25 \mathrm{in}$. long, white. Anthers oblong, obtuse, $\cdot 1$ in. long. Style over 3 in. long; stigma punctiform. Fruit semiglobose-turbinate, $\cdot 12-15 \mathrm{in}$. long, $\cdot 18 \mathrm{in}$. wide, maricate-fuberculate. S. moluccana, Jack. Misc. I, 8; Wall. Cat. 4089 ; Beın. Pl. Jav. Rar. 215, (p.p.) ; Blume, Mas. I, 10 (p.p.) ; Miq. Fl. Ind. Bat. I, 562 (p.p.) ; C. B. Clarke in Hook. f. Fl. Brit. Ind. II, 537 (p.p.) ; Triaua in Trans. Linn. Soc. XXV1II, 77 ; Cogn. in I)C. Monogr. VII, 508 (p.p.) ; Stapf in Ann. Bot. VI, 311, 312 (p.p.); and Roxb. Flor. Ind. I, 178 ?

Penana; Wallich Cat. 4089! Grifith 2298! Maingay 780 (Kew Distrib.) in shady, damp places, 1500-3000 ft., Stoliczka, Hullet 196 ! King's Coll. 1284 ! Pulloh Bahang, Otrtis 411! Singapore (P) ; Lobb 325 !

Abstract

Roxburgh says of his 8. moluccana, "Habitat in insulis Moluccanis." His deecription is extremely short and insufficient, and there does not seem to have been a specimen in his herbarinm nor was it figared by him. It is very improbable that the plant he described was identical with the Penang plant, if he receired it really from the Molncoas, as the distribntion of most species of the section Heaadon in very local, and no specimens, referrable to S. paradoxa, have been discovered, so far, east of the Malay Peninsula. On the other hand, it is posaible that Rombargh meant S. malaccana instead of "S. moluccana" and insulis malaccanis for " ins. moluccanis," as the editors of his Flora Indics put it. There is at least nothing in his description which woald contradict the assumption that his brief diagnosis was drawn up from the Penang plant. In view of this nucertainty we have preferred to follow Nandin and to consider Roxburgh's S. moluccana as a "species dabia" and adopt Naudin's name for the Penang plant.

34. Sombbila begoniaefolia, Blume in Flora (1831), 490. An asconding, usually unbranched herb, 2-6 in. high, moderately hairy with the exception of the often glabrous upper side of the leaves; hairs of the stem, petioles and the inflorescence rufous, flexuous, more or less spreading, of the leaves confined to the nerves and veins of the underside, often scanty, very short. Stem rather slender, rooting below. Leaves very dissimilar, the larger of each pair petioled, more or less asymmetrical, obliquely elliptic, subacuminate, unequally cordate at the base with a rounded lobe ($2-3 \mathrm{in}$. long) on the outer and a much smaller on the inner side, entire or more or less obtusely serrulate, ciliolate, membranous, dark-green above, pale brown (when dry) beneath, 3-4 in. by 1•7-2.3 in., 6. sub-7-nerved from near the base (with 3-4 nerves in the broader half), with usually very conspicuous subhorizontal transverse veins; petiole ${ }^{-4-1.2} \mathrm{in}$. long; small leaves ovate to rotundate, acute, cordate, very small, distinctly petioled. Oymes terminal and axillary, peduncled, dense, at length up to 8 in . long, deciduously bracteate; peduncle slender, up to 1.5 in . long; bracts linear-oblong, ciliolate, up to $\cdot 1 \mathrm{in}$. long, deciduous; pedicels $\cdot 07-1 \mathrm{in}$. long. Calyx campanulate-oblong, teeth broad, triangalar. Petals ovate, acute. Anthers short, oblong, obtuse. Fruit shortly turbinate, -18-22 in. long and wide, muricate-taberculate, tubercles rather conrse, acute, mostly passing into short fine bristles. Korth. in Verh. Nat. Gesch. Bot. 248, t. 54 ; Neadin in Ann. Sc. Nat. Ser. 3, XV, 322 ; Triana in Trans. Linn. Soc. XXVIII, (1873), 77. S. moluccana, Benn. Pl. Jav., Har. 215 ; Miq. Fl. Ind. Bat. I, 562 ; O. B. Clarke in Fl. Brit. Ind. I, 562 ; Cogn. in DO. Monogr. VII, 508 ; Stapf in Ann. Bot. VI, 312 (all references under 8. moluccana, p.p.).
J. II. 6

Singapore; Bukit Tunat, Ridley 2005! Chanchukang, Ridley 422! Bukit Mandu, Ridley 2005/a! Joноre; Ganong Panti, Ridley 4199! Distrib. Sumatra, Java, South Borneo.

There being no flowers with the specimens enumerated, they have been described from Korthals, l.c. The Sumatra specimens have leaves which are more or less bairy or bristly on the apper side and represent Blame's var. pilosiuscula of S. begoniaefolia (Blame, Mus. I. 11) oe S. moluccana var. pilosiuscula Stapf, la. A specimen from Sonth Borneo, collected by Motley, is almost glabrous on the apperside of the leaves.
35. Sonerila glabriflora, Stapf and King. A creeping or ascending herb, a few inches high, with a long creeping rhizome, hairy on the stem, peduncles, petioles and the nerves on the underside of the leaves, otherwise glabrous; hairs reddish, straight, adpressed. Stem rather stont, slightly swollen at the nodes, frequently rooting, lenfy part 1-4 in. long. Leaves very dissimilar, the larger of each pair petioled, asymmetric, obliquely elliptic, obtuse or subacute, unequally cordate at the base with a large, rounded lobe on the outer and small or obscure one on the inner side, entire or obscurely and remotely toothed, fleshy, soft, dark glossy-green above, pale with purple nerres beneath, $3-6 \mathrm{in}$. by $2-3.5 \mathrm{in}$., with $3-5$ lateral nerves in the outer and $2-3$ in the inner half near the base and with rather lax subhorizontal transverse veins; petiole rather stout, $1-2 \cdot 5 \mathrm{in}$. long, the small leaves sessile, reniform-cordate, $\cdot \mathbf{2 - 2 5} \mathrm{in}$. in diam. Cymes terminal and axillary, nsually 2 - or 3 -nate on a common peduncle, ebracteate, many-flowered, rather dense, glabrons, when ripe up to 1.3 in . long, common peduncle 1-2 in., special peduncles $5-1 \cdot 2 \mathrm{in}$. long, slender; pedicels very slender, $\cdot 1-12$ in. long. . Calyx campanulate-ovoid, $\cdot 12-15 \mathrm{in}$. by $\cdot 06 \mathrm{in}$.; teeth very broad and short. Petals elliptic, acate, almost 25 in . long, white or tinged with pink. Anthers linear-oblong, obtase, $\cdot 12$ in. long. Style $\cdot 15 \mathrm{in}$. long; stigma punctiform. Fruit subtrigonous, hemispherical, quite smooth, $\cdot 15-16 \mathrm{in}$. long and wide; valves in the depressed centre of the capsule 6 , delicately membranous, fragile.

Perak; Larat, in wet jungles, ap to 100 ft., Kunstler 1955 ! 2128 !
36. Sonerila elatostemoides, Stapf and King. An erect, ascending or creeping, unbranched or scantily branched herb, up to 6 in . high, softly tomentose in all parts, hairs rusty coloured, short, spreading and very dense on the stem and petioles, somewhat laxer in the inflorescence inclusive of the calyx, pale and longer on the leaves. Stem slender, subflexuous. Leaves very dissimilar, the larger of each pair petioled, asymmetrical, obliquely oblong-elliptic or obovate, acuminate, unequally cordate at the base with the outer lobe broad, rounded, up to $\cdot 2 \mathrm{in}$. long and the inner similar bat much smaller, entire, membranous, green
above, whitish green below, 2.2-2.8 in. by 1-1.2 in., 6-7-nerved from near the base (with 3-4 lateral nerves in the broad and 2 in the narrow half) with oblique transverse veins, nerves and veins not very distinct; petiole $\cdot 18-4$ in. long; small leaves reniform-cordate, subsessile, $\cdot 15 \mathrm{in}$. in diam. Oymes terminal and axillary, long peduncled, few-flowered, not very dense, ebracteate ; peduncle slender, ${ }^{6-1} \mathrm{in}$. long; pedicels slender, 02 in . long. Calyx oblong-campanulate, 08 in . long, teeth short. Petals oblong, acute, 18 in . long, with a line of hairs on the back. Anthers short, oblong, obtuse, 09 in. long. Style $\cdot 2$ in. long; stigma punctiform. Fruit semiglobose, muricate, 12 in . long and wide.

Prrak; Gunong Bubu, Wray 3825 !
37. Sonbrila bicolor, Stapf and King. An ascending or suberect, nearly always unbranched herb, 3-9 in. high, softly hairy all over, hairs pale, straight, fine, spreading except on the upper side of the leaves, very dense in the upper part of the stem, on the petioles and in the inflorescence inclusive of the calyx. Stem rather slender, subflexuous, slightly swollen at the nodes. Leaves very dissimilar, the larger of each pair more or less asymmetrical, shortly petioled, obliquely oblong to lanceolate-oblong, distinctly acuminate, unequally cordate at the base with a rounded lobe (to $\cdot 4 \mathrm{in}$. long) on the outer, and a minute or obscure lobe on the inner side, ciliate along the margin, membranous, soft, dark green or magenta-red above with a light green band along the midrib, parple beneath, 3-6 in. by $1-1.5$ in., finely 5 -nerved from near the base (uppermost nerve from 4-6 in. above the base, with faint oblique transverse veins; petiole $2-6$ in. long; small leaves ovate to rotandate, cordate, shortly petioled, very small to 4 in . long. Cymes terminal and axillary, peduncled, loosely few- to 10 -flowered, ebracteate; peduncle slender, $4-1.2 \mathrm{in}$. long; pedicels -1-2 in. long, slender, also when mature. Calyx oblong-subcampanulate, 12 in. long; teeth triangalar, short. Petals ellipticoblong, acute, 35 in. long, pink. Anthers linear-oblong, subobtuse, $\cdot 12$ in. long. Style ${ }^{\cdot} 35 \mathrm{in}$. long; stigma punctiform. Fruit semiglobose, $\cdot 12-15$ in. long and wide, muricate, opening with 6 thinly membranous teeth in the depressed centre or with 3, 2-toothed valves.

Perak; Ulu Salama, 500 ft., Wray 4159 ! Larat, in dense jungle, 500-800 ft., King's Coll. 5794! Tapa, Baldwin!
38. Sonerila Calycola, Stapf and King. An ascending or creeping herb, about 6 in . loug, rusty tomentose on the stem, petioles and pedan. cles, and pabescent on the nerves on the underside of the leaves, otherwise glabrous; hairs short, curled or flexuons, loosely adpressed. Stem rather stout, straight, rooting in the lower part, leafy part about 4 in .
long. Leaves very dissimilar, the larger of each pair petioled, symmetrical, or almost so, lanceolate, gradually tapering towards both ends, entire, somewhat fleshy, pale-brown on both sides when dry, 3.5-5.5 in. by $8-1 \cdot 25$ in., 5-nerved from the base (the outer nerves faint, submarginal) with faint oblique transverse veins; petiole $35-4$ in. long; small leaves reniform, cordate, very minate, 05 in . in diam., or suppressed. Oymes terminal and from the upper axils, peduncled, fowflowered; peduncle filiform, $4-5$ in. long; pedicels fine, not spongy when mature, 1-12 in. long. Flower unknown. Fruit semiglobose, smooth, $08-1$ in. by $\cdot 12 \mathrm{in}$., crowned by the ultimately deciduous calyx-margin the teeth of which are very broadly triangular and cuspidate.

Palana; Taban River, Ridley 2237 !

9. Phyllagathis, Blume.

Herbaceous small shrubs with very short stems. Leaves opposite (or the terminal leaf solitary), large, petioled, orbicular, or sab-orbicular, 7-9-nerved. Flowers in a peduncled dense head, purple. Calyx-tube campanulate, glabrons or with long bristles near the top, teeth 4 (rarely 3), acute, long-setose. Petals 4 (rarely 3), ovate, acate, glabrous. Stamens 8 (rarely 6), equal; anthers elongate, scarcely produced at the base, connective without appendage. Ovary adnate to the bottom of the calyx-tube, 4- (rarely 3-) celled, glabrous at the apex; style filiform; ovales very numerous, placentas large axile. Capsule broadly funnel-shaped, opening by 4 valves at the top. Seeds ellipsoid, somewhat obovoid, with glandular, hardly raised dots; raphe slightly excurrent along one side of the seed its whole length.-Distrib. Species 5 ; all Malayan.

Leares oblanoeolate ...
Leaves more or less orbicular ; peduncles of inforescence
many inches long and as long as or longer than the long
petioles :-

1. Phyllagathis toberculata, King, n. sp. Stem short, woody, erect, covered with small warts. Leaves two or three, membranous, oblanceolate, shortly acuminate, very gradually narrowed to the short hispid petiole, 7- to 9-nerved; upper surface glabrous except for a fow
1900.1. G. King-Materials for a Flora of the Malayan Peninoula. is
scattered stout bristles ; lower surface coarsely strigose on the nerves, otherwise glabrous, the reticulations fine; length 10 to 16 in., breedth 3 to 6 in., petiole 0 to 1.5 in. Pedunoles mach shorter than the leaves, solitary or several from one axil, sparsely glandular-hairy, bearing at their apiose a solitary, lax, involucrate, compound ambel; involucres oblong, obtuse, glabrons, $\cdot 5$ in. in length or shorter, those of the ambellules smaller ; pedicels shorter than the calyx-tabe. Flowers nearly 75 in. long. Oalyz-tube rather widely cylindric, bearing (eupecially towards its base) numerous flat, shortly stalked, fleshy discoid glands ; the teeth 4, short, shallow, wide, each crowned by a stalked gland. Petale longer than the calyx, oblong, much acuminate (forming a narrow cone in bud). Staniens 8; the filaments about one-fourth as long as the linear acuminate anthers. Ovary short, broad, truncate, deeply. grooved and almost winged; style long, flattened, smooth. Capsule 3 in. in diam.

Perak; Scortechini 1872. King's Oollector 7233.
At once recogaisable by the ouriously glendalar calyz.
2. Phyllagathis Gripfithin, King. A shrab with a very short stem and usually only a single pair of unequal leaves. Leaves coriaceous, sub-rotund, 7 -nerved, apex obtase, the base cordate, edges quite entire; both surfaces glabrous, the lower lepidote and slightly puberalous on the nerves; length 5 to 8 in., breadth 3.5 to 6.5 in., petiole 4 to $8 \mathrm{in} .\mathrm{Panicle} \mathrm{axillary} ,\mathrm{nearly} \mathrm{as} \mathrm{long} \mathrm{as} \mathrm{the} \mathrm{leaves}$, its upper half a fow very short few-flowered branches, the whole lepidote especially towards the apex. Flowers corymbose, on scaherulons pedicels, as long as the narrowly campanalate glandular-hairy colyx-tabe: mouth of calyx trancate, slightly expanded, and minutely 4-toothed. Petale 4, quadrate. Stamens much exserted : anthers not so long as the glabrous flaments, narrow acuminate, much sagittate it the base, inappendiculate. Allomorphia Grifithii, Hook. M8s. Fl. Br. Ind. II, 587. Triana in Trans. Linn. Soc. XXVIII, 74, t. VI, fg. 66c ; Cogn. in DC. Mon. Phan. VII, 467.

Malacca: Griffith (K.D.) 2264/1. Maingay (K.D.) 775; Hullett. Perar ; Scortechini 170; King's Collector 694. Selangore ; Curtis 2888 ! Ridley 7817. Penane; Stolickza.

I have removed this from Allomorphia to Phyllagathis of which it has the Howert and habit.
3. Pefllagathis Scortrchini, King, n. sp. Stem woody below, shortly creeping above and subterete. Leares on very long petioles, coriaceous, reniform-rotund, cordate, the apex minutely apiculate, stoutly 9 -nerved; the transverse veins bold, glabroas on the upper surface, glandular-puberulous on the lower; length 5 to 10 in ; breadth

5 to 9 in. ; petiole 4 to 9 in., stout. Peduncles solitary, longer and more slender than the petioles, bearing at the apex a single dense, ebracteate umbel. Flowers nearly 5 in. long to the apices of the stamens, their pedicels $\cdot 25 \mathrm{in}$. long. Calyx-tube narrowly campanulate, not ribbed, glabrous, very minutely lepidote ; the teeth 4, broad, rounded, shallow. Fetals rotund-ovate, blunt, short. Stamens 8; the filaments about half as long as the linear acute anthers. Ovary grooved, short, broad; style as long as the anthers, cylindric, glabrous. Capsule about $\mathbf{2}$ in. in diam., truncate, the valves broad, truncate.

Perak; Scortechini 269; King's Collector 4287. Selangore; Ridley 7317.

This species is closely allied to P. Griffithii but differs notably in its solitary terminal umbels.
4. Phyllagathis hispida, King, n. sp. Stem very short, woody, hispid. Leaves 2 or 3, sub-coriaceons, on long petioles, broadly ovate, cordate at the base, the apex abruptly and shortly acuminate, the edges with minute, sharp, sometimes unequal teeth, 7 - to 11 -nerved, the transverse nerves strong: upper surface glabrous, the lower aniformly covered with minute, scurfy pubescence, the main nerves with a few long, spreading, stout bristles; petiole densely shaggy near the base, more sparsely hispid upwards: length 5 to 10 in., breadth 3 to 7 in.; petioles varying from 4 to 12 in . Peduncle axillary, shorter than the leaves and more slender than the petioles, sparsely hispid; the umbel few-flowered, ebracteate. Flowers 75 in . long; their pedicels siender, hispid, longer than the calyx. Calyx-tube narrowly cylindric or cylindric-campanulate, nearly glabrous, or sparsely hispid; the month with 4 broad, shallow, blunt teeth. Petals broadly ovate, acute. Stamens 8; anthers not much longer than the filaments, broadly lobed and cordate at the base, and the connective with a short, narrowly cylindric basal protuberance behind. Ovary very short; style filiform. Capsule 2 in. across.

Perak; Scortechini! Wray 1021, 1602, 3519. Pabang; Ridley 2236.
5. Phyllagathis rotundifolia, Blume in Flora, 1831, 507. Stem creeping, obtusely 4 -angled. Leaves unequal in the pairs, rotund or rotund-ovate and shortly apiculate; both surfaces, bat especially the lower, minutely lepidote; main nerves 7 to 9 , curved, radiating from the base, the trausverse nerves bold, curved; petioles unequal, from .85 to 3.5 in. long, their interior surfaces covered with coarse black bristles; length 2 to 8 in.; breadth 1.5 to 6 in. Inflorescence 4- to 30 flowered; the involucres orbicular-ovate acuminate. Calyx-tube ribbed, minutely lepidote; the teeth triangular, broad at the base but with

1900.] G. King-Materials for a Flora of the Malayan Poninsula.

elongate narrow apices bearing 2 or 3 bristles; filaments from one-fourth to one-half of the length of the linear stamens. Ovary 4 -angled, the apex with a truncate cartilaginous rim. Korth. in Verh. Nat. Gesch. Bot. 252, t. 57 ; Naud. in Ann. Sc. Nat. Ser. 3, XXV, 332 ; Bot. Mag. t. 5282 ; Miq. Fl. Ind. Bat. I, 559 ; Triana Melast., tab. VI, fig. 73; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 541; Cogn. in DC. Mon. Phan. VII, 518. Melastoma rotundifolia, Jack in Trans, Linn. Soc. XIV, 11 ; DC. Prodr. III, 149.

Malacca; Griffith, Maingay. Selangore; Ridley 7327. Perak; Scortechini, King's Collector, Wray. Distrib. Burma, Sumatra, Java; common.

Rather variable as to size of leaves and as to the number of bristles on their petioles. The teeth of the calyx also vary as to the length of the acaminate apex and as to the number of bristles.

10. Marumia, Blume.

Twining shrabs; branches cylindric, thickened at the nodes. Leaves opposite, short-petioled, coriaceons, cordate at the base, 3-nerved from the base besides two submarginal nerves, entire, stellate-tomentose beneath. Cymes axillary; flowers 3-5, large, pedicelled, purple or white. Calyx-tube narrowly campanulate, tomentose (and often bristly or stellate-hairy); lobes 4, deep, persistent. Petals 4, obovate. Stamens 8, uneqnal; anthers elongate, opening by a single pore; connective of the longer anthers carrying in front two long bristles and behind often one or two spurs or several twisted bristles. Ovary at the base (or half its height) adnate to the calyx, 4-celled, densely hairy at the apex; style filiform; ovules numerous, placentas axile. Berry ellipsoid, crowned by the calyx-limb. Seeds numerous, oblongellipsoid, with glandular scarcely raised dots, raphe slightly excurrent along the whole length of one side.-Distrib. Species 10, Malaya, Borneo and the Philippines.

1. Mardmia nemorosa, Blume in Flora XIV, (1831), 505. A straggling climber; all parts except the upper surfaces of the leaves, the petals, stamens and ovaries covered with dense rufous or pale stellate
tomentum, without bristles; the branches thickened and annulate at the nodes. Leaves sub-coriacoous, elliptic or oblong-lanceolate, slightly cordate at the base, the apex shortly acuminate or acute, 5-nerved (the Interal pair of nerves faint) ; upper surface glabrous; length 3 to 6 in .; breadth 1.35 to 2.75 in .; petiole 2 to $\cdot 4 \mathrm{in}$. long. Flowers about 1.75 in. long (inoluding the stamens), solitary or in pedunculate cymes of three from the axils of the leares. Calyx-tube more or leas narrowly campanulate, somewhat constricted below the limb; limb with 4 deep, triangular teeth. Petuls broadly ovate, blunt, longer than the calyxtube, rose-coloured. Stamens 8, unequal ; the anthers of all linear, curved; the longer with two narrow, curved filaments at the base in front, and several amaller behind; the four smaller with two smaller, equal filaments at the base in front only. Fruit succulent, oblong-ovoid, constricted below the permanent calyx-teeth, sometimes sub-tuberculate and always stellate-tomentose, abont 1 in . long. Blume Mus. Bot. I, 33 ; Nnud. in Ans. Sc. Nat. Ser. 3, XV, 279 ; Miq. Fl. Ind. Bat. I, pt. I, 533 ; Triana in Trans. Linn. Soc. XXVIII, 82; C. B. Clarke in Hook. fil. FI. Br. Ind. II, 542 ; Cogn. in DC. Mon. Phan. VII, 549. M. affinis, Korth. in Verh. Nat. Gesch. Bot. 241, t. 60 ; Miq. l.c. 533. Melastoma nemorosum, Jack in Trans. Linn. Soc. XIV, 8; DC. Prodr. III, 149 ; Wall. Cat. 4043.

In all the provinces except the Nicobar and Andaman Islands. Distrib. Sumatra, Borneo.
2. Maromia bhodocarpa, Cogn. in DC. Mon. Phan. VII, 550. A powerful climber; joung branches, petioles, lower surfaces of leaves and calyx densely clothed with minate, pale, stellate tomentum intermixed with numerous stout, spreading, brown bristles, the nodes somerhat swollen and with transverse lines. Leaves sub-coriaceous, oblong, narrowed to the rounded, minutely cordate base, the apex shortly acuminate, 5 -nerved (the lateral pair slender); apper surface glabrous; length 3.5 to 5 in.; breadth 1 to 2 in ; petiole 15 to ${ }^{2} \mathbf{i n}$. Flowers (including the stamens) nearly 1.5 in . long, in axillary, pedunculate cymes of three. Calyx-tube longer than the glabrous pedicel, narrowly campanulate, constricted below the limb; limb with 4 oblong, acute teeth half as long as the tube and like the latter bearing many long, curved bristles. Petals white, obovate. Stamens 8, unequal, all linear and acuminate: the four larger with two long, filiform appendages in front and several smaller behind: the four smaller with about 4 to 6 appendages. Fruit shortly ovoid, crowned by the large calyx-teeth, bristly, 4 in . in diam. Melastoma rhodocarpum, Wall. Cat., 4045. Marumia echinata, Naud. Ann. Sc. Nat. Ser. 3, XV. 280 ; Miq. Fl. Ind. Bat. I, pt. I, 534. M. seylamica, Triana

1900.] G. King—Materials for a Flora of the Malayan Peninsula.

(not of Blame) in Linn. Trans. XXVIII, 82, tab. VII, fig. $88 b$; C. B. Clarke in Fl. Br. Ind. II, 542.

Gingapors; Wallich; Anderson 68, 69 ; Hullett 125; Ridley 258; King's Collector 278. Malacca; Maingay (K.D.) 785 ; Cuming ; Griffith (K.D.) 2270.

Var. sub-glabrata, Cogn. l.c. 550. Leares glabrous beneath except the nerves. M. zeylanica, C. B. Clarke (not of Blame), var. sub-glabrata, Hook. fil. Fl. Br. Iud. II, 542.

Singapore; Anderson 64.
3. Marumia beticolata, Blume Mas. Bot. I, 34. Scandent; young branches, petioles, under surfaces of leaves and calyx densely clothed with rusty stellate, more or less deciduous hairs, the young branches, petioles and especially the calyx with stout spreading bristles intermixed; the nodes swollen and annulate. Leaves subcoriaceons, ovatelanceolate, 5 -nerved (the lateral pair slender), minately cordate at the base, the apex shortly acuminate; upper surface deeply reticulate, glabrons; length 2 to 3.5 in., breadth 8 to 1.5 in., petiole $\cdot 1$ to 2 in . I'lowers $1-25$ in. long (including the anthers), axillary, either solitary on pedicels as long as themselves or in pedunculate cymes of three; the middle flower being nearly sessile, the lateral pair on short pedicels. Oulyx-tube densely hispid externally, the teeth 4, short, broadly triangular and bluut, tomentose on the inner surface. Petals ovate, sub-acute, glabrous. Stamens 8, the anthers somewhat unequal in length but all linear, curved and with two long appendages at the base in front. Fruit ovoid, (unripe) 5 in . in diam., orowned by the calyx-teeth. Miq. Fl. Ind. Bat. I, pt. I, p. 535 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 542 ; Cogn. in DC. Mon. Phan. VII, 551. M. stellulata, Korth. (not of Blume) Ver. Nat. Gesch. Bot. 243. M. oligantha, Naud. in Ann. Sc. Nat. Ser. 3, XV, 281 ; Miq. l.c. 534.

Malacca; Griffith (K.D.) 2269.; Maingay 784. Distrib. Sumatia, Java.

11. Dissocheta, Blume.

Shrubs, usually twiners. Leaves opposite, petioled or nearly sessile, elliptic or oblong-lanceolate, rounded at the base, 5-nerved from the base (the two submarginal nerves slender), entire. Flowers in terminal, sometimes leafy panicles, purple or white, bracts large or small. Calyx-tube campanulate-cylindric or funnel-shaped, densely. stellate-tomentose, pubescent or glabrous; limb obscurely 4-Iobed or entirely truncate, more rarely distinctly 4 -toothed, persistent. Petals 4. Stamens 8 , unequal, 4 shorter sometimes wanting, connective of the 4 longer with 2 long bristles in frout at the base. . Ovary adnate to the J. II. 7
calgx, 4-celled, apex glabrous or densely hairy; style filiform; ovales very many, placentas axile. Berry ovoid or elliptic, crowned by the calyz-limb. Seeds elipsoid, flattened on the side of the raphe.-Distrib. Species 25 ; throughout Malaya to the Philippines.

```
Stamens 8 (four of them sometimes imperfect) :-
    Young branches, under surfaces of leaves and panicles
    covered with persistent stellate-tomentum :-
        The stellate-tomentum not mixed with bristles;
        the nodes with transverse interpetioler lines:-
Flowers \(1 \cdot 75\) in. long ... ... ...
            Flowers • 75 in . long ... ... ..
        The stellate-tomentum mixed with spreadingpersistent bristles; flowers \({ }^{\circ} 75 \mathrm{in}\). longYoung branches, under surfaces of leaves and paniclescovered at first with stellate-tomentam which alti-mately more or less disappears :-
        Bracts of panicle oborate, persistent ... ... 4. D. bracteata.
        Bracts of paniole linear, deciduous ... ... 5. D. pallida.
    Young branches, under surfaces of leaves and panicles
    covered with minute simple scales not stellate ...
Stamens 4 :-
    Panicles ebracteate, or bracts, if any, caducons :-
        Flowers \(\cdot 3\) in. long; fruit 15 to \(\cdot 2 \mathrm{in}\). in diam.;
        mouth of calyx-tube 4-toothed; petals broadly
        oblong, blant; stamens blant, not appendiculate
        at the apex ... ... ... ...
        Flowers 5 in . long; fruit \(\mathbf{~} \mathbf{2}\) to \(\cdot \mathbf{2 5} \mathrm{in}\). in diam. ;
        moath of calyx-tube trancate not toothed:
        petals ovate, acute; stamens narrowed to the
        appendiculate apex ... ... ...
    Panicles with persistent, oblong bracts:-
        Young brauches at first rasty stellate-hairy,
        finally glabroas; branches of panicle divari-
        cating, lax ... ... ... ... 9. D. anomala.
        Young branches with porsistent, pale, adpressed,
        stellate hairs; branches of paniole short,
        condensed ... ... ... ... 10. D. Scortechinii.
```

1. Dissocheta annulata, Hook. fil. ex Triana in Trans. Linn. Soc. XXVIII, 83. A strong climber ; young branches, petioles, under surfaces of leaves and inflorescence covered with dense, rusty, deciduous stellate tomentum, the nodes thickened and slightly annulate. Leares coriaceous, ovate-oblong, cordate at the base, the apices shortly and rather abruptly acuminate, upper surface at first sparsely stellate-hairy, ultimately glabrous, the nerves and reticulations bold; length 2.5 to 3.5 in. ; breadth 1 to 1.8 in. ; petiole 2 to $\cdot 5$ in. Panicle solitary terminal, much longer than the leaves, lax, the branches divaricating,
cymose, 1 - to 3 -flowered; bracts small, caducous. Flowers 1.5 in . long (including the stamens), pedicels much shorter than themselves. Calyx-tube narrowly campanalnte or funnel-shaped, the month widened and with 4 blunt, triangular teeth, densely stellate-hairy outside. Petals obovate-oblong, blunt, reflexed. Stamens 8 ; curved, elongate-linear, acuminate, with two bristle-like appendages at the base in front, lacininte behind. Fruit ellipsoid, succulent, crowned by the enlarged teeth of the calyx-tabe. C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 543 ; Cogn. in DC. Mon. Phan. VII, 557. Melastoma bracteatum, Wall. Cat. 4044 (in part).

Penang; Wallich 4044; Griffith (K.D.) 2268; Maingay (K.D.) 788; Curtis 740. Malacca; Wallich. Singapore; Hullet 213; Ridley 5187. Johore ; King's Collector 224. Perak; Scortechini 235. Distrib. Borneo.
2. Dissocheta punctulata, Hook. fil. ex Triane in Linn. Trans. XXVIII, 83. Young branches thickened but not annulate, clothed like the petioles, under surfaces of the leaves and the inflorescence with minute, rusty scales. Leaves coriaceous, oblong-ovate, the base rounded and not cordate, the apex acate or very shortly acuminate; 5 -nerved, the marginal nerves very slender; npper surface glabrous; length 3 to 4.5 in. ; breadth 75 to 1.75 in.; petiole $\cdot 25$ to $\cdot 4 \mathrm{in}$. Panicles solitary, terminal, several times longer than the leaves, the branches and branchlets short and the latter cymosely few-flowered, bracts small, linear, deciduous. Flowers $\cdot 75 \mathrm{in}$. long (including the stamens), on pedicels shorter than themselves. Calyx-tube infundibuliform, the month with a broad, everted, wavy, obscurely toothed edge, deciduously scaly. Petals 4, ovate, sub-acute, glabrous. Anthers 8, equal, curved, cylindric, attenuated to the 1 -pored apex, the base with two long, geniculate, upward-curving, narrow, flattish appendages. Fruit succulent, urceolate, slightly warted, sub-glabrous, crowned by the slightly enlarged month of the calyx, $\cdot 4$ in. long. C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 543 ; Cogn. in DC. Mon. Phnn. VII, 555.

Malacca; Griffith (K.D.) 2291 ! Maingay 789. Singapore ; Ridley 3918, 4803. Selangore; Ridley 2015. Johorr; Ridley 3246, 2106. Penang; Walker, etc.
3. Dissocheta hirsuta, Hook. fil. ex Triana Trans. Linn. Soc. XXVIII, 83. A strong creeper with slender branches only slightly thickened at the nodes; all parts except the upper surfaces of the leaves and the petals densely clothed with deciduous, stellate hairs mixed with long, stiff, spreading, carved hairs. Leaves membranous, lanceolate or ovate-lanceolate, 5 -nerved (the lateral pair slender), the base rounded and slightly cordate, the apex shortly acuminate; upper surface
glabrows, length 3 to $4 \cdot 5$ in.; breadth 1 to $1 \cdot 75$ in. ; petiole 15 to 3 in. Panicle solitary, terminal, thickened at the nodes, broadly pyramidal, much branched. Flowers $\cdot 75$ in. long. Oalyx-tube longer than the pedicel, cylindric-tubular, the mouth not everted but with four linear elongate teeth. Petals 4, broadly lanccolate, blunt. Stamens 8, equal, oll perfect, elongate and narrow, the apices much prolonged into a rather thin appendage, the base with two delicate, filiform appendages. Fruit ovoid-globose, crowned by the persistent calyx-limb, densely setoselepidote, ${ }^{4}$ in. in diam. Cogn. in DC. Mon. Phan. VII, 556.

Johore; at the base of Gunong Panti; King's Collector 197; Ridley 4185. Distrib. Borneo.
4. Dissocheta bracteata, Blume in Flora, 1831, 495. Young branches with a transverse ridge at the nodes, petioles and paniclea more or less densely clothed with sub-deciduous, rusty, stellate hairs, and the under surfaces of the leaves sparsely so. Leaves membranous, 5-nerved (the marginal pair faint), ovate-lanceolate, the base rounded and often sub-cordate, the apex acute or shortly acuminate; upper surface glabrous, the lower sparsely stellate-hairy ; length 3 to 4.5 in.; breadth 1.25 in.; petiole $\cdot 2$ to $\cdot 3$ in. Panicles much bracteate, both axillary and terminal, the former shorter, the latter longer, than the leaves; the branehes few, divaricate. Flowers 1.2 in . long (including the stamens), in cymes at the ends of the branchlets, each subtended by, and while in bud enveloped in, a membranous, obovate, blunt, stellatepubescent, more or less permanent bract about 5 in. long. Calyx-tube twice as long as the pedicels, cylindric-campanulate, the mouth slightly widened and minutely 4-toothed. Petals broadly elliptic, blunt, glabrous. Stamens 8 , much curved, long, linear, the base with two long flattened, linear, upward-pointing appendages. Fruit ellipsoid, crowned by the rim of the calyx-tube, $\cdot 6$ in. long. Miq. Fl. Ind. Bat. I, pt. I, 529 ; Triana in Trans. Linn. Soc. XXVIII, 84 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 543 ; Cogn. in DC. Mon. Phan. VII, 598. D. bracteosa, Naud. in. Ann. Sc. Nat. Ser. 3, XV, 76; Miq. Fl. Ind. Bat. I, pt. I, 527. Melastoma bracteatum, Jack in Trans. Linn. Soc. XIV, 9; Wall. Cat. 4044, partly.

Penang; Wallich, Cat. 4044; Curtis 2298. Malacca; Maingay 791. Distrib. Borneo, Haviland.
5. Dissoceteta pallida, Blume in Flora, 1831, 500. A shrubby creeper, 20 to 50 feet long; young branches thickened and with interpetiolar ridges at the nodes, sparsely covered with minute stellate-hairy scales like the petioles, under surfaces of the leaves and the panicles. Leaves sub-coriaceous, 5-nerved (the lateral pair faint), elliptic-ovate to ovate, the base rounded and sub-cordate, the apex shortly acuminate
or acate; upper surface glabrous; length 2.5 to 5 in.; breadth 1.2 to 2.2 in.; petiole 8 to 5 in. Panicles both axillary and terminal, the former shorter than the leaves or slightly exceeding them, the latter longer, all rather lax, the branchlets divaricating, cymose, and with a few short, linear, deciduous bractlets. Flowers nearly 1 in. long (including the stamens). Calyx-tube oblong-campanulate or funnel-shaped, densoly lepidote-stellate ; the mouth expanded and obscurely 4-toothed. Petals obovate-oblong, blunt, glabrous. Stamens 8, usually equal (four sometimes shorter or obsolete); basal processes long, linear, sub-erect. Fruit cylindric-campanulate, sul-glabrous, crowned by the slightly entarged limb of the calyx, $\cdot 25$ in. long. Blume, Mus. Bot. I, 36 (excl. syn. Korth.) ; Naudin in Ann. Sc. Nat. Ser. 3, XV, 69, tab. 4 fig.; Miq. Fl. Ind. Bat. I, pt. I, 528 ; Triana in Trans. Linn. Soc. XXVIII, 83, tab. VII, fig. $89 b$; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 544 ; Cogn. in DC. Mon. Phon. VII, 557. Melastoma pallida, Jack in Trans. Tinn. Soc. XIV, 12 ; DC. Prodr. III, 150 ; Wall. Cat. 4049. Dissochæta ovalifolia and D. superba, Naud. l.c. 76 and 77. D. astrotricha, Miq. l.c. Suppl. 318.

In all the provinces except the Nicobar and Andaman Islands; common.

The four stamens which are usually shorter than the other are sometimes obmolete.
6. Dissocheta gracilis, Blume in Flora, 1831, 498. A straggling or scandent shrub; young branches slender, blantly 4-angled, the nodes swollen and transversely ridged, minutely scaly like the petioles, leaves and panicles. Leaves 5-nerved (the lateral pair slender), broadly lanceolate or oblong-lanceolate, rounded at the bnse and shortly acuminate at the apex; length 3 to 4.5 in.; breadth 1.5 to 1.8 in.; petiole 2 to $\cdot 4 \mathrm{in}$. Panicles axillary and terminal, the former shorter than, and the latter longer than the leaves, slender, spreading, lax, many-flowered; bracts few, narvowly oblong, caducous. Flowers : 35 in. long, on filiform pedicels longer than themselves. Calyx-tube parrowly campanulate, minutely stellate-pubescent, the mouth glabrous, sab-truncate, everted, and obscurely 4-toothed. Petals 4, broadly ovate or sub-orbicular, blunt. Stamens 8; four large, perfect, rather short, with a broad truncate 2-pored apex; the four imperfect small, narrow; all with two ereet, filiform flat basal appendages. Fruit sub-globular, crowned by the narrow limb, almost glabrons, $\cdot 1$ to $\cdot 15$ in. in diam. Korthals Verb. Nat. Gesch. Bot. 237 ; Nand. in Ann. Sc. Nat. Ser. 3, XV, 75 ; Miq. Fl. Ind. Bat. I, pt. I, 526 ; Triana in Trąns. Linn. Soc. XXVIII, 83, tab. VII, fig. 89c ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 544 ; Cogn. in DC. Mon. Phan. VII, 559. Melastoma gracile, Jack
in Trans. Linn. Soc. XIV, 14; DC. Prodr. III, 149. M. fallax, Wall. Cat. 4080. ? Mr. glauca, Griff. Ic. Pl. As. 637. M. vacillans, var. pallens, Blame, Bijdr. 1074.

In all the provinces except the Nicobar and Andaman Islands. Distrib. Jafa, Borneo.
7. Dissocheta celebica, Blume, Mus. Bot. I, 36. A slender creeper ; yonng branches, petioles and ander sarfaces of the leaves, also the panicles, densely clothed with rusty, scurfy, stellate tomentum. Leares 3 -nerved, membranous, lanceolate or oblong-lanceolate, the base rounded, the apex shortly acuminate ; apper surface glabrous except the stellate-pubescent midrib; length 2.5 to 5 in.; breadth 1 to 2 in.; petiole $\cdot 2$ to $\cdot 25$ in. Panicles lateral and terminal, the former slightly longer and the lateral several times longer than the leaves, ebracteate, the branches divaricnting, the ultimate branches cymose, 3 -flowered. Flowers ${ }^{\circ} \mathbf{i n}$. long (including the stamens). Calyx-tube oblong-cnmpanulate, slightly widened and 4 -toothed at the montl, somewhat longer than the pedicel. Petals 4, broadly oblong, blunt. Stamens 4 ; anthers equal, short, blant and with no apical appendage, opening by 2 apical pores. Fruit sub-globular, crowned by the narrow limb of the calyx, faintly 8 -ribbed, sparsely pubescent or sub-glabrons, 15 to $\cdot 2 \mathrm{in}$. in diam. C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 544; Cogn. in DC. Mon. Phan. VII, 561 ; Miq. Fl. Ind. Bnt. I, pt. I, 530 ; Triana in Trans. Linn. Soc. XXVIII, 83. D. microcarpa, Naud. in Ann. Sc. Nat. Ser. 3, XV, 72 ; Miq. l.c. 523. D. bancana, Miq. l.c. 529. Melastoma fallax, Wall. Cat. 4050; ? Jack in Trans. Linn. Soc. XIV, 13. MI. rubiginosum, Wall. Cat. 4052, partly.

In all the provinces except the Nicobar and Δ ndaman Islands; common. Distrib. Bangka, Celebes, Borneo.

Var. contracta, King. Panicle solitary, terminal, short, condensed, not longer than the leaves.

Perak; King's Collector 2911.
8. Dissocheta intermedia, Blume in Flora, 1831, 493. A somewhat slender creeper, resembling D. celebica in its other parts, but with larger flowers ($\cdot 5$ in. long), pointed in bud ; larger fruit ($\cdot 2$ to $\cdot 25 \mathrm{in}$. in diam.); calyx-tube with a truncate, toothless mouth; ovate, acute petals, and longer stamens narrowed to and appendiculate at the apex. Blume, Mus. Bot. I, 35, tab. V; Naud. in Ann. Sc. Nat. Ser. 3, XV, 72 ; Miq. Fl. Ind. Bat. I, pt. I, 524 ; Triana in Trans. Linn. Soc. XXVIII, 83, tab. VII, fig. 89 f. ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 544 ; Cogn. in DC. Mon. Phan. VII, 562. Melastoma rubiginosum, Wall. Cat. 4052 (in part).

Malacca; Grifith (K.D.) 2287; Melfer (K.D.) 2286. Penang and Singapore; Wallich. Perak; Scortechini. Distrib. Java, Borneo.
9. Dissocheta anomala, King, n. sp. A creeper 15 to 20 feet long; young branches slender, slightly thickened at the nodes, at first sparsely rusty stellate-hairy, afterwards glabrous and sub-glancous. Leaves orate-oblong, the base broadly rounded, the apex shortly, abruptly and bluntly acuminate, 5-nerved (the two lateral nerves faint) ; upper surface glabrous; the lower sparsely stellate-hairy on the midrib and nerves, otherwise glabrous; length 3.5 to 6.5 in ; breadth 1.75 to 2.75 in.; petiole sparsely hispid, 2 in. long. Panicles axillary and terminal, the former half as long and the latter twice as long as the leares, stellate-pubescent especially at the thickened nodes; the branches divaricate, trichotomous, lax, bracteate at the divisions; the bracts 3 in. long, oblong, blant, involate, stellate-tomentose, their edges ciliate. Flowers 3 in . long, in cymes of three. Calyx-tube shorter than the pedicel, narrowly campanulate, densely stellate-tomentose; the mouth without teeth, truncate, not everted. Petals glabrous, ovate, acuminate, forming a pointed bud. Stamers 4, equal and all- perfect, subsessile, broad, blunt, the lateral basal appendages filamentous. Fruit broadly campanulate, crowned by the narrow calyx-limb, glabrous, - 15 in. in diam.

Perak ; King's Collector 2258, 10468.

> This plant forms a collecting link between the genera Anplectrum and Disso. chæta as they are defined in this work. It agrees in externals with Anplectrum pallens, and has the 4 stamens of that genus, but their anthers have the elongate basal processes so well developed in Dissochieta and not at all represented in Anplec. trum.
10. Dissocheta Scortechinif, King, n. sp. Scandent; young branches slender, the nodes swollen and transversely ridged, thinly clothed with minute, pale, stellate hairs. Leaves ovate-lanceolate, slightly cordate at the broad base, the apex with a short, blunt point; 5-nerved (the lateral pair small) ; upper surface glabrous; lower rusty in colour and bearing sparse, white, stellate hairs longer than those on the stem; length 2.5 to 3.75 in .; breadth 1.5 to 2 in .; petiole densely rusty stellatetomentose, $\cdot 1$ in. long. Panicle solitary, narrow, terminal, shorter than the leaves, densely rusty stellate-tomentose, the branches short and few-flowered, bearing many oblong, blant or spathulate, pale, 3 -nerved almost glabrous bracts longer thau the flower-bud, the lower ones much larger. Flowers 3 in. long, their pedicels short. Calyx-tube narrowly campanulate, at first densely but afterwards sparsely stellate-tomentose; the mouth truncate, without teeth, waved but not everted, glabrous. $\boldsymbol{P}_{\text {etals }} 4$, glabrous, orbicular-ovate, acuminate, forming a poiuted bud. Stamens 4, all equal and perfect, short, broadly ovate, the base with two long, erect, filiform appendages, the broad apex with a small, pale,
G. King-Materials for a Flora of the Malayan Peninsula. [No. I,
sub)ณute appendage. Fruit unknown. D. intermedia, Scort. MSS. (not of Blume), in Herb. prop.

Perak; Scortechini 23, 84. Penamg; Ourtis 1301.

12. Anplectrom, A. Gray.

Twining shrubs. Leaves sabcorinceons, or rarely coriaceous, opposite, short-petioled, entire; oblong, narrowed upwards, 3-5-nerved from the base. Flowers white, in terminal panicles sometimes leafy at the base. Calyx-tube funnel-shaped or ovoid, limb obscurely 4-lobed or tranoate. Petals 4. Stamens 4 perfect, rarely 8, anthers attenpated npwards, opening by one pore, connective at base skortly appendaged or subnade, never with two long bristles in front, rarely with a long appendage nnd two small erect bristles; imperfect stamens 4, 2, or 0 . Ovary 4-celled, free at the apex, with 4 vertical ridges; style simple; ovules many, placentas axile. Berry ovoid or globose, crowned with the calyx-limb. Geeds very many, small, falcate, obovoid; raphe long, lateral. Disrib. Species about 18, in Malaya and the Philippines.
$\left.\begin{array}{l}\text { Stamens } 4 \text { perfect:- } \\ \text { Nodes of the young branohea and of the lower } \\ \text { part of the panicle with conspicaous, stellately } \\ \text { lepidote, bristly annali ... } \\ \text { Nodes of the young branches and of the panicle } \\ \text { with a small smooth annulus or faint transverse }\end{array}\right]$.

1. Anplectrum lepidoto-setosom, King, n. sp. Young branches slender, conspicuously annulate at the nodes, sparsely clothed with coarse, spreading hairs with thickened points, the very youngest also' with deciduous, stellate hairs. Leaves oblong-lanceolate, 5-nerred; the base rounded and minutely cordate, the apex shortly caudate-acuminate ; both surfaces glabrous except for a few coarse hairs near tho petiole; the lower shining and pale when dry; length 4.5 to 6 in.; breadth 1.1 to 1.8 in ; petiole very short, attached to the cup-shaped, densely rufous stellate-tomentose node and like it with scattered
bristle-hairs. Panicle terminal, solitary, shorter than the leavea, everywhere densely rusty-tomentose with long bristles intermixed, annulate at the bases of the short, spreading, few-flowered branches. Oalyx-tube cylindric; the mouth undulate-truncate, obscurely toothed, its outer surface stellate-lepidote with a few long bristles near the mouth. Petals 4, ovate, glabrous. Stamens 8 (4 large and 4 small); the large broad, and with a short, grooved ridge on the back near the base, blunt; the 4 small linear, very acuminate. Capsule ovoid-globular, truncate, nearly glabrous, $\cdot 15 \mathrm{in}$. in diam.

Perak; Scortechini 2106.

2. Anplectrom glajcum, Triana in Trans. Linn. Soc. XXVIII, 84 (excluding much of the synonymy). Scandent, to 20 or 30 feet; young branches 4 -grooved, stellate-hairy like the petioles and main nerves of the leaves and the inflorescence, the nodes inconspicuously annulate or transversely ridged. Leaves oblong-lanceolate, rounded or slightly narrowed to the often slightly cordate base, the apex shortly acuminate or acute, boldly 3 -nerved; both surfaces glabrous except for some scattered, stellate hairs; length 3 to 5 in.; breadth 1 to $2 \mathrm{in}$. ; petiole 5 to $\mathbf{2 5}$ in. Panicle large, terminal, solitary, several times larger than the lenves, pyramidal, its branches divaricate, manyflowered. Flowers drooping, 4 or $\cdot 5 \mathrm{in}$. long (inclading the stamens). Oulyx-tube funnel-shaped, sub-glabrous; the mouth truncate, not toothed, everted with age. Petals orate-lanceolate with truncate bases, the apex acuminate. Stamens 4; anthers much curved, all perfect, their bases not lobed but with a corrugated membranous process in front. Ovary prominently 4 -winged. Fruit trancate, sub-globular, glabrous, 2 in. long (when dry). C. B.', Clarke in Hook. fil. Fl. Br. Ind. II, 545 ; Cogn. in DC. Mon. Phan. VII, 566. A. cyanocarpum, Kurz in Jouru., As. Soc., 1877, pt. 2, p. 78 (not of Triana). Melastoma glauca, Jack in Trans. Linn. Soc. XIV, 15 ; DC. Prodr., 151. M. cernuum, Wall. Cat. 4055 (not of Roxb.). Osbeckia tetrandra, Roxb. Fl. Ind. II, 22 b. Dissochæta glauca, Blame in Flora, 1831, p. 501. D. spoliata, Naud. in Ann. Sc. Nat. Ser. 3, XV, 69, t. 4, fig. 1.

In all the provinces, common. Disirib. Sumatra, Java, Borneo.
3. Anplectrum pallens, Blume, Mus. Bot. I, 38. Scandent, to 30 or 40 feet; young branches terete, glabrous or minutely puberalous, especially near the slightly thickened and transversely ridged nodes, round. Leuves oblong, the base rounded, the apex abruptly, bluntly and shortly sub-caudate-acuminate, 5 -nerved (the margiual pair slender), the edges (when dry) slightly recurved; upper sturface glabrous, the lower minately and scantily stellate-puberulous; length 1.5 to 4.5 in., breadth 5 to 1.5 in .; petiole 1 to $\cdot 2 \mathrm{in}$. Panicles axillary (about as J. II. 8
long as the leaves) and terminal (much longer than the leaves), slender, spreading, lax, rather few-flowered, with a small, blunt, oblong, decidnous bract under each brauch, finely rufons stellate-pubescent. Flowers about 4 in. long (including the stamens). Calyx-tube ovoid to globular-ovoid, densely rafous-puberalous when young, glabrous when old, the mouth slightly expauded and with very small toeth. Petals ovate, acute, giabrous. Anthers; the four large much curved and subacute; the rudimentary linear, acuminate. Capsule globose-obovoid, glabrous, 15 in. in diam. Naud. in Ann. Sc. Nat. Ser. 3, XV, 303 ; Triana in Trans. Linn. Soc. XXVIII, 303 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 545 ; Cogn. in DC. Mon. Phan. VII, 564. Melastoma petiolare, Wall. Cat. 4053.

In all the provinces except the Andaman and Nicobar Islands; not ancommon. Disteib. Sumatra, Borneo.
4. Anplectrum difaricatum, T'riana in Trans. Linn. Soc. XXVIII, 84 (in part), tab. VII, fig. Y0b. Scandent, to 20 or 30 feet; joung branches obscurely quadrangular, and like the petioles, nerves of the leaves on both surfaces, and the inforescence, densely covered with tawns, stellate scales, not annulate at the nodes. Leaves lanceolate, acate or sub-acute, the base minutely cordate, 5 -nerved, the marginal pair slender; both surfaces, but especially the lower, with glandalarpanctate scales between the nerves and veins; length 2 to 3 in ; breadth $\cdot 6$ to $1 \cdot 1 \mathrm{in}$; petiole $\cdot 15$ to $\cdot 25 \mathrm{in}$. Panicle solitary, terminal, pyramidal, several times as long as the leaves, the branchlets divaricate, each with two ovate-lauceolate, ciliate, furfuraceous, deciduons bracts at its base and three flowers in a cyme at the apex. Flowers 4 in . long, on short pedicels. Petals oblong, acate. Calyx-tube narrowly obovoid, campanulate, trancate, densely furfuraceons stellate-tomentose. Anthers 8 ; the 4 large thick and much carved, obtuse; the smaller narrow. Capsule globose-obovoid, with a narrow, everted rim, length 15 to $\cdot 2$ in. C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 546 ; Cogn. in DC. Mon. Phan. VII, 567. Melastoma divaricatum, Willd. Spec. Pl. II, 596; DC. Prodr. III, 150. M. polyanthum, Benth. in Wall. Cat. 4051. Dissocheta divaricata and D. pepericarpa, Naud. Ann. Sc. Nat. Ser. 3, XV, 70 and 71. D. anceps, Naud. l.c. 70. D. palembanica, Miq. Fl. Ind. Bat. Suppl. 317.

Malacca; Griffith (K.D.) 2288/1: Maingay (K.D.) 794 : Harrey. Penang; Wallich 4051. Perak; King's Collector 369. Distrib. Java, Borneo, Sumatra.
5. Anplectrom anomaldm, King and Stapf, n. sp. A woody creepor, 20 to 100 feet long; young branches as thick as a wheat-straw, terete, covered with stellate, rusty scurf. Leaves corinceous, obovate or

1900.] G. King-Materials for a Flora of the Maldyan Peninsula.

oblong, llant, much narrowed to the base, 3-nerved, glabrous on the upper, rusty stellate-hairy on the lower surface like the petioles and inflorescences; length 1 to $1 \cdot 5$ in.; breadth 6 to 9 in . ; petiole $\cdot 2 \mathrm{in}$. Panicles terminal, sometimes leafy, 3 to 6 in. long, lax, the branches in pairs, divaricate, many-flowered, minutely bracteolate at the divisions. Flowers 35 in . long, the pedicels somewhat longer. Petals oblong, obtuse, waxy, reflexed, pale greenish-white. Stamens 8, equal ; anthers inflexed in aestivation, lanceolate-subulate, the base of the lobes produced into an elongated halbert-shaped process with two erect subulate processes at its broad upper end. Fruit (not quite ripe) ovoid-globose, greenish-yellow, ${ }^{2}$ in. in diam.

Perak; King's Collector 5779, 10357.
This plant differs from Anplectrum, as the genus has hitherto been limited, in having 8 anthers, each of which has a very much produced halbert-shaped basal process, from which two erect hair-like appendages originate at the apper or broad ond. The plant agrees better with Anplectrum than with any other Melastonaceous genus, bat it might possibly be better treated as the basis of a new one.

13. Medinilla, Gaud.

Branching shrubs, erect or scandent. Leaves opposite or whorled; rarely alternate, entire, often fleshy, mostly glabrous, usually longitudinally 3-9-nerved. Flowers in terminal panicles or lateral cymes, white or rose, with or without bracts, 4- or 5-, rarely 6-merous. Calyx-tube ovoid or cylindric, limb truncate or obscurely toothed. Stamens twice as many as the petals, equal or nearly equal (rarely unequal); anthers opening at the top by one pore; connective not (or very shortly) produced at the base but having two tabercles in front and a spur behind. Ovary inferior, 4-6-celled, usually glabrous at the apex ; style filiform ; ovules very many, placentas axile. Berry crowned by the limb of the calyx. Seeds very many, ovoid or subfalcate, raphe often thickoned and excurrent.-Distrib. Species about 100; mainly in Malaya, East Bengal and Ceylon; 2 few in the Fiji Archipelago and in the East African islands.

Flowers 4-merons:-

Leaves alternate 1. M. seandens.

Leaves in whorls (large) 2. M. speciosa.
Leaves opposite :-
Flowers in terminal panicles, anthers dissimilar ... 3. M_{0} heteranthera.
Flowers in lateral panicles, anthers similar:-
Anther-cells with tubercles at their bases in front, and a short spur from the connective behind :Flowers 1 in, long 4. N. venusta.

Flowers under '5 in. long :-				
Leaves petiolate	5. M. Hasseltii.
Leaves semsile	\cdots			Scor
Anther-cells with tabercles at the base in front,				

Leaves elliptic or obovate, blant, 1 to 2.75 in. long,
fruit 15 in. in diam.
Leaves oblanceolate or narrowly obovate, acaminate,
3 to 5 in . long ; fruit $\cdot 4 \mathrm{in}$. in diam.
Leaves elliptic-rotund, blunt, 2.5 to 5.5 in. long;
fruit 35 in. in diam. 10. M. perakensis.

1. Medinilla scandens, King, n. sp. A climber, 15 to $\dot{30}$ feet long, rooting and adhering to trees; the stems rough, as thick as a swan's quill. Leaves alternate, glabrous, long-petioled, subcoriaceous, elliptic or ovate-oblong, shortly acuminate, the base cuneate; nerves 5 to 7, mostly from the midrib above its base; length 4.5 to 9 in .; breadth 2.5 to 6 in ; petioles 1.5 to 7 in . Flowers $\cdot 4 \mathrm{in}$. long, in dense fascicles in the axils of fallen leaves, on rusty-puberulous, minutely bracteolate pedicels. Calyx-tube narrowly campanulate; the limb very slightly expanded, truncate, very obscurely toothed. Petals 4, ovate-oblong, acnte. Stamens 8; anthers narrowly elliptic, with a long apical l-pored beak; and at the base a short, broad, blunt process from the connective behind, the lobes of the anthers slightly produced in front and minately taberculate.

Perak ; Scortechini 86 and 150 ; King's Oollector 1814.
. This resembles M. alternifolia, Blame, but has a much shorter spar from the coneective at the base of the anthers. It has also larger leaves and more namerous flowers in the fascicles.
2. Mrdinilla speciosa, Blume in Flora, 1831, p. 515. A glabrous shrub or small tree, not epiphytal ; young branches as thick as the little finger, 3 - or 4 -angled; the bark shining, pale when dry, bearing at the nodes numerons stout, subulate bristles $\cdot 5 \mathrm{in}$. lang. Leaves large, subcoriaceons, in whorls of 3 (rarely of 4) or in pairs, sessile, or very shortly petiolate, oblanceolate or obovate-oblong, sometimes elliptic, acute, the base cuneate, nerves 7 to 9 mostly from the midrib above its base, all except the lowest pair bold, the veins slender; length 6 to 12 in.; breadth 2.75 to 5 in . Panicles lateral and terminal, 4 to 8 or even 14 in. long, on peduncles equally long, many-flowered; the branches with a whorl of small reflexed bracts at their bases; whorled, spreading, minately bracteolate at the divisions. Calyx-tube capular, slightly constricted below the narrow, minutely 4 -toothed limb. Petals 4, ovate-

1900.] G. King—Materials for a Flura of the Malayan Peninsula. 61

acate. E'ruit ovoid, 3 in, in diam. Bot. Mag.t. 4321 ; Morren in Ann. Soc. Hort. Gand. V, 281 ; Naud. in Ann. Sc. Nat. Ser. 3, XV, 291 ; Miq. Fl. Ind. Bat. I, pt. I, p. 540; Triana in Linn. Trans. XXVIII; 87; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 549. Melastoma eximizım, Blume Bijdr. (not of Jack). Melastoma speciosum, Reinw. ex Blame, in Flora, 1831, 516.

Malacoa; Maingay (Kew Distrib.) 798. Prnang ; Hullett 203; Curtis 874; King's Colloctor 1595. Perak; Wray 3218; King's Collector 2652. Distrib. Moluccas, Java, Sumatra.
3. Medinilla heteranthera, King, n. sp. Epipytal and terrestrial; branches sleuder, smooth, reddish when fresh, drying dark purplish-brown. Leaves of the pairs somewhat unequal, ovate-lanceolate to lanceolate, acuminate, the base slightly narrowed, glabrous, 3-nerved; length 2.5 to 5.25 in.; breadth 1 to 1.8 in.; petioles 3 to 8 in . Panicles terminal on the branches, half as long as the leares, corymbosely cymose, 5- or 6-flowered, minutely bracteolate. Flowers 75 in . long, their pedicels much shorter. Oalyx-tube cylindric, the month wide and with 4 broad, shallow teeth. Petals 4, ovate-lanceolate, shortly acnminate. Stamens 8; anthers unequal, the larger four twice as long as the shorter four, all curved, much acuminate and with two tubercles at the base in front, the shorter 4 with a short spur on the connective behind, the larger with no spur. Fruit globular-ovoid, crowned by the wide calyx-limb, 35 in . in diam.

Perae; Scortechini 341 ; King's Collector, 3291, 3644, 6304, 6904; Wray 397 ; at elevations of irom 3000 to 4500 feet.

[^31]G. King-Materials for a Flora of the Malayan Peninsula. [No. 1,

Pelals 4 , broadly ovate, acnte. Stamens 8 ; anthers equal, linear-lanceolate, much acuminate, curved, the tubercles at the front of the base as long as the posterior basal spar from the connective. Fruit unknown.

Perak; King's Collector 2390.
5. Medinilla Hasseltif, Blume in Flora, 1831, p. 513. Epipliytal on trees, 3 or 4 feet high; branches slender, terete, pale, more or less prominently warted (the warts black). Leaves opposite, coriaceous, oblong-lanceolate, acuminate, narrowed to the rounded base, 3-nerved, with sometimes a faint, additional lateral pair; length 4.5 to 5.5 in ; breadth 1.25 to 1.75 in ; petioles $\cdot 15$ to $\cdot 35 \mathrm{in}$. Cymes axillary or from the axils of fallen leaves, less than half as long as the leaves, (more than lialf as long in var. Griffithii), broader than long; the branches divaricate, 8-12-flowered, minately bracteolate. Flowers 35 in . long. Calyrtube campanulate-cylindric, somewhat constricted below the minately 4-toothed mouth. Petals 4, obovate-oblong. Stamens 8, equal; the anthers linear-oblong, somewhat curved, the base with two short, blnck, couical protuberances in front and a similar one behind. Fruit globular, truncate, ${ }^{-2}$ to ${ }^{-25}$ in. in diam. Miq. Fl. Ind. I, pt. I, 542 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 547; Cogn. in DC. Mon. Phan. VII, 586. Melastoma laurifolium in Wall. Cat. 4084 (not of Blnme). Medinilla crassifolia, Triana in Trans. Linn. Soc. XXVIII, 86 (in part).

Malacca; Griffith (Kew Distrib.) 2282 ; Maingay (Kew Distrib.) 797, Wallich 4084. Perak; very common. Singapore; Anderson. Sungei Ujong; Ridley 2205, Selangore; Curtis 2334; Ridley 286. Pangeore; Curtis 1642.

Distrib. Java, Sumatra.
Var. Griffithii, C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 547. Cymes much branched, more than half as long as the leaves, manyflowered.

Malacca; Grifith (Kew Distrib.) 2282.
6. Medinilla Scortrchinit, King, n. sp. Epiphytal, 3 or 4 feet high; stems as thick as a goose-quill, the bark brown (when dry), sparsely verrucellate. Leaves opposite, coriaceous, glabrous, sessile, stem-clasping, oblong-ovate to oblong, shortly acuminate, the base sub-cordate, 3-nerved, with occasionally a faint pair at the margin; length 4.5 to 6.5 in .; breadth 1.5 to 2.75 in . Panicles cymose, axillary, rather shorter than the leaves, very lax, spreading; the branches slender, minutely bracteolate at the divarications; the branchlets compressed, sometimes 2 -winged. Flowers nearly $\mathbf{4} \mathbf{i n}$. long, on pedicels as long as themselves. Calyx-tube campanulate, the mouth not mach

1900.] G. King-Materials for a Flora of the Malayan Peninsula.

expanded, obscarely 4 -toothed. Petals 4, oblong, acute, reflexed. Stamens 8; anthers carved, linear-lanceolate, with a short 1-pored apical process; the base with a short, sharp, downward-pointing spur from the connective; the bases of the anther-cells each with a linear, curved, small tubercle as loug as the spur, aud like it dark in colour wheu dry. Fruit ovoid-globular, ${ }^{2}$ in. in diam.

Perak; Scortechini 307, 478, 622; Curtis 1297; Wray 391, 1739 ; King's Collector 4188.

The ngarest ally of this is M. javanensis, Bl.
7. Medinilla Maingayi, C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 549. A small epiphyte with slender, terete, pale, smooth branches. Leaves opposite, thinly coriaceous, obnvate, with rounded apices and cuneate bases, obscarely 3 -nerved, the lover surface rather paler than the upper when dry ; length 65 to 1.25 in . ; breadth $\cdot 5$ to $\cdot 75 \mathrm{in}$. ; petiole 05 to $\cdot 2 \mathrm{in}$. Oymes much shorter than the leaves, with short, divaricate, broadly bracteolate branches, few-flowered. Flowers 25 in . long, their pedicels shorter. Calyx-tube narrowly campanulate, with a slightly expanded, minately 4-toothed limb. Petals 4, lanceolate, sparsely strigose outside. Stamens 8; anthers lanceolate, without protaberences at the base in front, but with a short spur behind. Fruit anknown. Cogn. in. DC. Mon. Phan. VII, 586.

Malacca ; Maingay (Kew Distrib.) 806, 807. Perak; Wray 3781. Singapore; Ridley 1652, 2018. Pahang; Ridley 2663.
8. Medinilla Clariet, King, n. sp. A small epiphyte; young branchos with dark, rough, tabercled bark. Leaves in whorls of three or four, broadly elliptic to obovate, blunt or snbacute, the base cuneate; the upper surface rugulose and green when dry, the lower pale-brown; length 1 to $2 \cdot 75 \mathrm{in}$., breadth 75 to 1.8 in .; petiole $\cdot 4$ to ${ }^{\circ} 8 \mathrm{in}$., puberulons. Cymes about as long as the leaves or slightly longer, from the axils of fallen leares, on slender pedicels from $\cdot 5$ to $\cdot 75 \mathrm{in}$. long, the branches whorled, spreading, minutely bracteolate at the divisions; pedicels slender. Flowers 20 to $30,3 \mathrm{in}$. in length. Calyx-tube cupular, the mouth truncate and asually obscurely toothed, sometimes distinctly 5 -toothed. Petals 5, broadly ovate to rotund, blunt. Stamens 10 ; anthers linear-lanceolate; the base with two small tubercles in front, and a small spur behind. Fruit globular-trancate, 15 in. in diam. M. rosea, C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 547 (not of Gaudichaud). Malacca; Griffith (Kew Distrib.) 2282 ; Maingay (Kew Distrib.) 796 ; Stoliczka in Herb. Calc. Perak ; Scortechini 243 ; Wray 206, 412, 3831, 4084; King's Collector 7333 ; at elevations of from 3000 to 5000 feet.
M. rosea, Gaud., to which this plant has been referred in the Flora of British India, is a tetramerous apecios from the Marianne Islands. It has, morever, larger flowers than this and larger, more acnte leaves. This plant varies in the sise of its leaves : specimens collected at the highest elevations having the largest leaves. The structure of the flowers is, however, aniform.
9. Medinilla crassinervia, Blume in Flora, 1831, 510. Branches wilh pale bark, the older terete, the youngest striate when dry. Leaves in whorls of 3, coriaceous, broadly oblanceolate, or narrowly obovate, shortly and abruptly acuminate, much narrowed to the base, 3-nerred from a little above the base, occasionally with two short lateral fnint nerves from the very base; length 3 to 5 in.; breadth 1.5 to 2 in ; petiole $\mathbf{3 5}$ to $\cdot 75 \mathrm{in}$. Flowers in short fascicles on the stem below the leaves, in few-flowered pedunculate cymes, mixed with a few solitary, on pedicels 5 in . long. Calyx-tube ovoid-campanulate, the mouth truncate and almost eutire. Stamens 10, sulequal; the basal auterior processes brond and about as long as the filiform posterior spur. Fruit globose with a cylindric truncate mouth, 4 in. across. Blume Ramphia I, 15 ; Miq. Fl. Ind. Bat. I, pt. I, 545 ; Cogn. in DO. Mon. Phan. VII, 574. M. nacrocarpa, Clarke (not of Blume) in Hook. fil. Fl. Br. Ind. II, 547.

Singapore; Ridley 1637. Penang; Curtis 2225. Perak; Wray 1821. Malacca; Maingay (Kew Distrib.) 799. Distrib. Borneo.

True M. macrocarpa, Bl., is represented in the Kew Herbarium by a single specimen collected by Blame in the Moluccas. The flowers on it have, as described by the anthor of the species, an irregalarly toothed onlyx-limb. The plant now described differs in having an almost entire tranoate limb, nnd I follow Cogniaux in referring it to M. crassinervia, BI. In the Flora of British India it is, however, referred to M. macrocarpa, Bl .
10. Mrpinilla peraeensis, King, n. sp. Epiphytal; branches terete, glabrous, tubercled. Leaves in whorls of 3 or 4, coriaceous, elliptic-rotund, blunt, the bnse rounded and narrowly cordate, glabrous; 5-nerred, the lateral pair of nerves faint; length 2.5 to 5.5 in .; breadth 1.75 to 3.75 in . ; petioles 6 to 1.2 in . Panicles cymose, on rather long peduncles from the axils of fallen leaves, shorter than the leaves, lax, 12- to 20 -flowered ; branches spreading, whorled, 2-3-chotomous. Flowers 5 in. long, their pedicels 35 in. Calyx-tube cupular; the limb but little expanded, cut into 5 shallow, broad teeth. Petals 5, oblong. Authers 10, curved, with 2 yellow tubercles at the base in front and a short spur behind from the connective. F'ruit 35 in . in diam.; the seeds oblong, obtuse, with an excurrent tail, the testa pitted.

Perak; Scortechini 410; Wray.

Collected only by the late Father Scortechini and Mr. Wrny. According to the field-note of the former, the petals and anthers are white and the fruit blaeish.
carnation. The nearest ally of this is M. montana, Cogn.-a New Guinea specieswhich has however, longer flowers, a wider calyx-tube, more slender branches which are moreover smooth, and narrower leaves narrowed at the base.

14. Pogonanthera, Blame.

Shrribs; branches roand, minutely scaly. Leaves opposite, petioled, oblong or ovate, entire, glabrous, 3-nerved. Flowers small, pulverulent, in small, terminal panicles having opposite, cymose branches. Oalyxtube narrowly campanulate, subquadrangular ; limb 4-toothed. Petals 4, oblong-lanceolate. Stamens 8, equal ; anthers oblong, acute, opening by a terminal pore, not produced at the base: connective at the base bearded behind with a tuft of hairs, not spurred. Ovary half-inferior, 4-celled, with a tuft of hairs at the apex; style filiform; ovules very many, placentas axile. Berry small, globose, 4-celled, crowned with the calyx-limb. Seeds very many, obovoid-oblong, smooth. Distrib. Species 2 ; Malayan.

Pogonanthera pulverulenta, Blume in Flora, 1831, 521. An epiphytic shrub, all parts (but especially the calyx-tube) bearing pale yellow scales; the stems sparsely lenticellate. Leaves rather fleshy, ovate-oblong to oblong-lanceolate, acute or shortly acuminate, the base more or less narrowed and bituberculate, 3 -5-nerved; the margins obscurely crenate and slightly reflexed ; upper surface glabrous, the lower paler and minately pulverulent; length 3 to 6.5 in.; breadth 1.75 to 3 in.; petiole 25 to 6 in., stout. Panicles terminal, 2 to 3 in. long and equally broad, cymose, the branches spreading. Calyx-tube sub-cylindric, constricted below the expanded 4 -toothed mouth, very scaly. Petals 4 , oblong, densely scaly externally. Stamens 8 ; anthers lanceolate, the connective with a tuft of hairs at the base behind. Eruit pisiform, ${ }^{15}$ in. in diam. Korth. Verh. Nat. Gesch. Bot. t. 65; Griff. Notul. IV. 678; Miq. Fl. Ind. Bat. I, pt. I, 553 ; Triana in Trans. Linn. Soc. XXVIII, 89 ; C. B. Clarke in Hook. fil. FI. Br. Ind. II, 550; Cogn. in DC. Mon. Phan. VII, 610. P. reflexa, Blume in Flora, 1831, 521 ; Mus. Bot. Lugd. Bat. I, 24 ; Naud. Ann. Sc. Nat. Ser. 3, XV, 303, tab. 15, fig. 1 ; Triana l.c. 89 ; Beccari Malesia, II, 241, tab. LIX, 4-5. P. squamulata, Korth. (ex Blume) Mas. Bot. I, 24. Melastoma reflexa, Reinw. ined. (ex Blume in Flora, 1831, 521). M. rubicunda, Jack in Trans. Linn. Soc. XIV, 19 ; Wall. Cat. 4086. M. pulverulenta, Jack in Trans. Linn. Soc. XIV, 19; DC. Prodr. III, 149; Blame in Bijdr., 1072.

Singapore; Perak; Malacca; Penang; common. Distrib. Java, Sumatra, Borneo.

$$
\text { J. II. } 9
$$

66 G. King-Materials for a Flora of the Malayan Peninsula. [No. 1,
I have followed Mr. Clarke in reducing P. refleaza, Bl. here, as I can find no tangible character to separate it. P. reflewa is said to have white tamid petals not toothed on the margin, while typical P. pulverulenta is described as having red petals with a single tooth on each margin. The union of the two species was suggested by Naudin.

15. Paohycestria, Blume.

Glabrous, often scandent shrubs, with cylindric or obscurely angled, pulverulent branches. Leaves somewhat fleshy, oblong or ovate-lanceolate, entire or obscurely crenulate. Flowers small, rose-coloured, corymbose, the pedicels 2-bracteolate, 4-merous. Calyx-tube ovoid or turbinate, the part beyond the ovary angular, constricted below the obscurely 4 -toothed mouth. Petals ovate or oblong, subacute or acuminate. Stamens 8, equal ; anthers linear-oblong or subulate, rostrate at the apex and minutely l-pored ; the connective not produced at the base, inappendiculate in front but minutely spurred at the back. Ovary adherent beyond its middle, 4-celled, its apex free, conic, angled; style filiform, the stigmn obtuse or capitate. Berry globose, crowned by the limb of the calyx. Seeds dimidiately obovoid, the raphe lateral. Distrib. About 12 species, all Malayan.

Pachycentria tubercolata, Korth. Ver. Nat. Gesch. Bot. 246, t. 63. Epiphytic; branches as thick as a swan's quill, glabrous below but with rusty scurf near the apices, the bark pale; the roots bearing woody tubercles. Leaves somewhat fleshy, narrowly elliptic-oblong, subacate, narrowed at the base, the edges entire, 3-nerved; length $2 \cdot 5-4.5$ in. ; breadth $9-1.25$ in.; petioles $\cdot 15-2$ in. ${ }^{\cdot}$ Panicles terminal or axillary, pedunculate; the branches spreading, cymose, 2-2.5 in. long and as wide. Flowers 25 in . long, the pedicels shorter. Calyxtube campanulate, the mouth truncate, obscurely 4-lobed. Petals 4, lanceolate. Stamens 8, equal, shortly spurred at the base behind. Fruit globular, glabrous, 15 in. in diam. Blume, Mns. Bot. Lagd. Bat. I, 23 ; Miq. Fl. Ind. Bat. I, pt. I, 552; Triana in Linn. Trans. XXVII, 89, tab. VII, fig. 95a.

Pbrak ; King's Collector 1707, 10569 ; Wray 3422 ; Scortechini 260, 550, 1961. Singapore; Anderson j5. Penang; Ourtis 347 ; Hullett 158. Distrib. Borneo, Burma (Tenasserim, Griffith).

16. Astronia, Blume.

Shrubs with opposite, petioled, ovate or oblong, entire, 3-neryed leaves. Flowers in terminal panicles, small, white or purple. Calyxtube campanulate; limb irregularly truncate or 3-8-lobed. Petals 4-5. Stamens 8-10-12, equal ; filaments short, broad ; anthers short, obtuse,
opening by slits down the front, connective spurred at the base or unappendaged. Ovary inferior, 2-5-celled, glabrous at the apex; style short, stigma capitellate; ovules numerons, placentas axile, nearly basal. Capsule finally breaking up irregularly. Seeds very many, linear, raphe excurrent.-Distrib. Species 24; in Malaya and the Pacific Islands.

Astronia smilacifolia, Triana in Trans. Linn. Soc. XXVIII, 152. Young shoots, petioles, under surfaces of the young leaves and inflorescence rufous-lepidote. Leaves oblong, tapering to each end, the transverse nerves stout and distant; length $3.5-5 \cdot 5$ in., breadth $1 \cdot 5-2 \cdot 5$ in.; petiole ${ }^{75-1} \mathrm{in}$. Panicle usually terminal, condensed, 1-2 in. in diam.; branches numerous, short, the pedicels shorter than the globular, minately 5-toothed calyx-tube. Petals reflexed, obovate. Fruit subglobular, truncate at the apex, $\mathbf{- 2 5}$ in. in diam. C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 550 ; Cogn. in DC. Mon. Phan. VII, 1094. Melastoma smilacifolia, Wall. Cat. 4057.

Penana; Wallich, Ourtis. Malacca; Maingay (K.D.) 808. Perak; Scortechini 683; Wray 2813.

Var. lepidophylla, Scort. MSS. Arboreous; inflorescence, leaves on the under surface and petioles (when young) densely covered with deciduous scales.

Perak; Scortechini 1875; Ring's Collector 7270, 2027.
This variety is described by Scortechini and Kunstler as a tree 50-80 feet high, the typical form never being more than a large bush.

17. Pternandra, Jack.

Large shrubs or trees, glabrous or minutely pubescent. Leaves sub-coriaceous or coriaceous, opposite, short-petioled or sub-sessile, entire, 3-5-nerved. Flowers solitary and axillary on long peduncles, or in axillary or teminal, often very short, and clustered cymes; the pedicels often 2-bracteolate. Oalyx-tube campanulate or hemispheric, tesselate, verrucose, or covered with more or less adpressed, often puberulous scales; the mouth truncate, often 4-toothed. Petals 4, ovate or oblong, blueish or white. Stamens 8, equal in length, but the anthers of some of them often imperfect, perfect anthers broad, blant, shortly sparred behind but never in front, dehiscing by slits, the filaments stout, often geniculate. Ovary inferior, 4-celled : the apex glabrous, depressed or flat; style filiform; sigma clavate; ovules numerous, placentas sub-basal. Berry subglobose or ovoid, truncate or surmounted by the calyx-teeth, sealy or smooth. Seeds cuneate-ovoid, or obovoid, angular.-Distrib. Species about 12 ; in Malaya and the Philippines.

1. Ptrrnandra cerdlescens, Jack in Mal. Misc. II, 61. A tree; young branches cylindric with deciduous, dark-brown, glabrous bark and slightly thickened nodes with obscure transverse ridges. Leaves chartaceons or sub-coriaceous, broadly ovate, ovate-lanceolate, ovateoblong or elliptic, much narrowed at the base, the apex shortly acuminate, $3-5$-nerved; both surfaces glabrous; length $2 \cdot 5-5 \mathrm{in}$. (10 in. in var. 2) ; breadth 1.25-2.5 in., (to 5 in . in var. 2) petiole $1-2 \mathrm{in}$. Flowers in short, axillary, pedunculate cymes (often several from one axil), or in terminal oymes, shorter than the leaves. Calyx-tube cyliudric-campanulate, $\cdot 15 \mathrm{in}$. long, tesselate; the mouth trancate but with 4 small, erect, triangular teeth. Petals thick, ovate, reflexed after expansion. Stamens 8, equal in length; the filaments short, genicalate; perfect anthers 4 or 5 , broadly ovate, blunt, shortly sparred behind, the remaining 3 or 4 imperfect, as long as but much narrower than the perfect. Fruit turbinate or sub-hemispheric, truncate, nearly smooth, $\cdot 15-3 \mathrm{in}$. in diam. Wall. Cat. 4077; Triana in Trans. Linn. Soc. XXVIII, 153 ; Kurz, For. FI. I, 509 and in Journ. As. Soc. 1877, pt. II, 79 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 551 ; Cogn. in DC. Mon. Phan. VII, 1103. Ewyckia cyanea, Blume Rumph. I. 24, t. 8; Miq. Fl. Iud. Bat. I, pt. I, 568; Triana l.c. E. Jackiana, Walp. Rep. V. 721. Apteuxis trinervis, Griff, Notul. IV, 672.-Nov. Gen. Roxb. Fl. Ind. II, 225.

In all the provinces except the Andaman Islands.
A common and variable plant of which four forms seem worthy of separation ns varieties. These, however, pass into each other by numerous connecting specimens. One variety (Jackiana) differs from tho typical-plant in having few-flowered almost sessile cymes; a second (capitellata) has sub-sessile cymes and much larger leaves and the third (paniculata) is probably only an example of fasciation.

Var. 1. Jackiana, Clarke in Fl. Br. Ind. II, 551. Flowers in very short, few-flowered, almost sessile, axillary cymes. Leaves as in the typical form but with slightly longer petioles.

In all the provinces except the Andaman and Nicobar Islands, equally abundant with the typical form.

1900.] G. King-Materials for a Flora of the Malayan Peninsula.

Var. 2. capitellata, King. Leaves thicker in texture than in the typical form (sub-coriaceous), broadly elliptic to sub-orbicular, with 3 very strong nerves and a fainter marginal pair; length 4.5-10 in.; breadth 2.75-5 in., petiole $\cdot 2-3$ in. Flowers in dense, very shortlystalked, axillary glomeruli composed of numerous 3 -flowered cymes very much shorter than the leaves. Pternandra capitata, Jack in, Mal. Misc. II, addenda prefixed to the paper p. 3; Wall. Cat. 4079 ; W. and A. Prodr. 325 ; Triana in Trans. Linn. Soc. IIJ, 153 ; Kurz, For. Fl. I, 509 and in Journ. As. Soc. 1877, pt. II, 79 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 551 ; Cogn. in DC. Mon. Phian. VII, 1103. Euryckia capitellata, Walp. Rep. V, 724; Miq. Fl. Ind. Bat. I, pt. I, 568. E. medinilliformis, Naud. in Ann. Sc. Nat. Ser. 3, XVIII, 261.

Singapore; Wallich 4079. Penang; Curtis 67; King. Perak; Scortechini 43, 1043; Wray 1971. Malacca; Maingay 802 (K D.); Helfer (K.D.) 2279.

Var. 3. paniculata, King. Flowers in large, lax, terminal, much branched, few-flowered, leafy and bracteolate panicles. Leaves of the stem 2-6 in. long and from $9-2.75 \mathrm{in}$. broad, those of the panicle from $\cdot 75-2$ in. long and $\cdot 15-8$ in. broad. P. paniculata, Benth. in Wall. Cat. 4080 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 551 ; Cogn. in DC. Mon. Phan. VII, 1104. Ewyckia latifolia, Blame Mus. Bot. I, 6. E. cyanea, var. latifolia, Korth. ex Miq. Fl. Ind. Bat. I, pt. I, 568. E. paniculata, Miq. l.c. Suppl. 321. Pternadra latifolia, Triana in Linn. Trans. XXVIII, 153.

Penana; Wallich 4080; Curtis 2768. Malacca; Grifith (K.D.) 2273. Perak; Scortechini 248, 1303; Wray 92. Distrib.; Borneo, Bangka.
2. Pternandra echinata, Jack, Mal. Mis. II, n. 9 and add. prop. 3. A small tree; young branches quadrangular, thickened and with trausverse ridges at the nodes, minutely rasty-pubescent. Leaves subcoriaceous, boldly 3-nerved, lanceolate or oblong-lanceolate, 3-nerved, narowed to the base, shortly acuminate at the apex; upper surface glabrous; the lower puberulons or sub-glabrous, minutely reticulate; length $2.5-4.5 \mathrm{in}$.; breadth $\cdot 75-1.75 \mathrm{in}$.; petiole $\cdot 05-2 \mathrm{in}$. Flowers axillary and solitary on pedicels longer than themselves, or in threes in terminal pedunculate cymes, the pedicels of both sets of flowers with one or more pairs of curved, linear-oblong bracteoles. Calyx-tube widely companulate, $\cdot 2-3$ in. long, closely covered with triangalar rustypubescent scales, those nearest the mouth longest, most acute, and most persistent; the mouth truncate aud with 4 narrow, acuminate teeth. Petals broadly ovate-quadrate, abruptly and shortly acute, the edges undulate, blue. Anthers broadly ovate, on thick short filaments.

Fruit sub-hemispheric, trancate, sub-echinate, 35 in . in diam. Wall. Cat. 4078. Kibessia echinata, Cogn. in DC. Mon. Phan. VII, 1108. Kibessia simplex, Korth. Verh. Nat. Gesch. Bot. 253; Blame, Mas. Bot. I, 0 ; Triana in Trans. Linn. Soc. XXVIII, 152 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 552. Kibessia cupularis, Dene in Deless. Ic. Sel. V, t. 5 ; Ann. Se. Nat. Ser. 3, XV, 317. K. acuminata, Dene in And. Sc. Nat. Ser. 3, V, 316; Triana in Trans. Linn. Soc. XXVIII, 159.

Malacca and Singapore; not ancommon ; many collectors.
I cannot see how K. acuminata, Done, is to be distinguished as a species and I reduce it here without any hesitation.

Var. pubescens, King. Bases of leaves somewhat rounded and sub-cordate; young branches, under surfaces of leaves and panicles with much minute rusty pubescence. P. echinata, Jack, Wall. Cat. 4078a. Kibessia pubescens, Dene in Ann. Sc. Nat. Ser. 3, V, 318 ; Triana in Linn. Trans. XXVIII, 152; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 552 ; Cogn. in DC. Mon. Phan. VII, 1108.

Pbiang, Malacca, Perak.
I cannot see what claim this has to specific rank. To me it appears to be a variety and not a very distinct one of P. echinata, Jack. Wallich did not even regard it as a variety and issued it as true P. cchinata. This form, in the three provinces where it occurs, appears to be very common.
3. Pterandra Gripfithil, King, n. sp. A small tree; young brauches cylindric, very little thickened at the nodes, glabrons. Leaves thinly coriaceous, elliptio to ovate-oblong, narrowed at the non-cordate (cordate in var.) base, the apex very shortly acuminate or acute, 3-nerved; both surfaces glabrous, shining; length 2.25-4 in.; breadth 1-2 in. ; petiole - $15-2 \mathrm{in}$. Flowers in 2-3- rarely 5-7-flowered, axillary, bracteolate cymes shorter than the leaves, rarely in crowded, terminal eymes; bracteoles ovate, acnte, minate. Calyx-tube widely campanulate; - 15 in . long, corered with adpressed, triangular, puberulous scales; the mouth with 4 large, blunt, triangular teeth. Petals orbicular-ovate, tindulate, abruptly and shortly apiculate-spreading, not calyptrate. Stamens 8, equal; the anthers short, thick, aboat as long as the filaments, gibbous at the base behind, inserted at an obtase angle ond the flaments. Fruit globular-ovoid, truncate at the moath, covered by the persistent scales, under $\cdot 2$ in. in diam.

Malacca; Griffith (K.D.) 2272/1; Penana; Curtis 958.
Griffith's specimens of this (2272/1) have been referred by M. Cogniauz (DC. Mon. Phan. VII, 1110) to Rectomitra tuberculata Bl., bat comparison in the Kew Herbarium with two anthentic specimens of that plant collected in Sumatra and
issued from the Leiden Herbarinm shew that this differs from Blame's plant. Specimens of this were originally colleoted by Griffith in 1845, and ns none had been gathered until Curtis's in 1886, the apecies is presumably a rare one.

Var. cordata, King. Leaves with cordate buses.
Penang; Curtis 453. Perak; Wray 1994.

18. Membctlon, Linn.

Shrubs or trees, glabrous. Leaves opposite, short-petioled of sessile, corinceons or sub-coriaceous, orbicular, ovate or lanceolate, entire, pinnate-nerved or rarely 3-nerved. Flowers usually in amall, axillary, rarely terminal, simple or panicled cymes or umbels. Calyx-tube campannlate, glabrous; limb dilated, truncate or shortly 4-lobed. Petals 4, blue or white, rarely reddish. Stamens 8, equal, filaments long; anthers short, opening by slits in front, connective ending in a horn behind. Ovary inferior, l-celled; apex glabrous, surmounted by a convex or depressed dise with 8 radiating grooves; style filiform, simple; ovules 6-12, whorled on a free-central placenta. Berry globose or ellipsoid, crowned with the calyx-margin, 1 -sceded. Seed large, cotyledons convolate.-Distrib. Species about 130; numerous in South-East Asia and its islands; a few extending into Polynesia and Australia, several in tropical Africa.

Leaves boldly 8-nerved from base to aper	on.
Leaves with pinnate nervation, sessile or subsessile :-	
Main nerves of leaves distinctly visible when dry, interarching but not forming (except in No. 8) a bold intramarginal nerve; leaves thinly coriaceons or membranons, small, not exceeding 4 in . in length :-	
Young branches boidly 4-angled or winged; inflorescence very shortly stalked (the stalk not manifest) :-	
Young branohes 4-winged:-	
Cymes solitary, 8- or 4-flowered; leaves narrowly	
lanceolate, 6 to 1 in . broad	2. M. epiphyticum.
Cymes solitary, 8- to 10 -flowered ; leaves ovate- or oblong-lanceolate, 1.35 to $1 \cdot 85 \mathrm{in}$. broad	
Cymes several from the same axil, compoandly umbellate, 1.5 to 2.5 in . long, many-flowered, pubescent; leaves elliptic much narrowed to each end ...	
Young branches 4 -angled, never winged and sometimes sub-terete :-	
Cymes 3- to 5 -flowered: leaves lanceolate, 1 to 2 in. broad	5. M. dichotomum.
Young branches terete ; inflorescence with a manifest	
peduncle	6. M. Kunstleri.

Main nerves of leaves distinct when dry, prominent on the lower sarface and anastomosing with a bold intramarginal line, coriaceous, more than 4 in . long:-

Inflorescence manifestly pedunculate :-
Peduncles several in each axil, many-branched ; fruit
ellipsoid
Pedancles solitary, few-branched; frait globular ...
Inflorescence sessile or on a very short pedancle :-
Flowers large, the month of the calyx 2 in . in diam.:Arboreous; leaves sub-acnte; flowers in fascicles of 12 to 20 , their pedicels $\cdot 15 \mathrm{in}$. long, stout; calyx trancate, not toothed
...
9. M. Maingayi.

Shrubby; leaves acuminate; cymes 3. or 4 -flowered; pedicels 4 in . long, slender; calyx-limb 4 -toothed
10. M. Kurzii.

Flowers small ; mouth of the calyx ander 2 in. in diam.:-
Leaves slightly narrowed or rounded at the base, rarely minately sub-cordate :-
Young branches not winged below the nodes; main nerves of leaves 18 to 20 pairs; fruit 7 in .
in diam.
Young branches with 4 short wings below each node (sometimes obscure); main nerves 12 to 14 pairs; frait 35 in. in diam. Leaves distinctly cordate at the base and quite sessile, amplexicaul Main nerves of leaves indistinct on both sarfaces when dry; leares corinceons or thinly so:-
Leaves with broad cordate bases, sessile, amplexicaul:Branches terete, froit large, globular
Branches 4-angled; frnit ellipsoid
Leaves much narrowed at the base, never cordate, petiolate :-

Inflorescence in axillary glomeruli or in very shortlypeduncled (not manifest) cymes:-
Month of calyx entire in the expanded flower :-
Flowers in fascicles, their pedicels slender; leaves often 4 in . long; leaves brown anderneath when dry Flowers in short umbellate sub-sessile cymes; young branches bi-sulcate : fruit globalar; leaves pale yellowish underneath when dry
Mouth of calyx 4-toothed:-
Teeth of calyx long, sharp, its fandus narrowed;
flower buds narrowly conical; oymes manyflowered; fruit globular, $2 \mathbf{i n .}$ in diam.; leaves shortly acuminate, 1.5 to 2.5 in . long
Teeth of calyx sbort, acute, its fundns narrow; cymes few-flowered, frait globular, ${ }^{-} 3 \mathrm{in}$. in diam. ; leaves very acuminate, 2 to $2 \cdot 5 \mathrm{in}$. long...
14. M. microstomum.
15. M. coeruleum.
16. M. campanulatum.
17. M. minutiforum.
18. M. myrsinoides.
19. M. laevigatum.
1900.] G. King-Materials for a Flora of the Malayan Peninsula.

Teeth of calyx short, aoute, its fundus rounded; fruit globalar, $\mathbf{- 2 5} \mathrm{in}$. in diam.; flower pedicelg with aoioular bracteoles ; leaves much aouminate, 2.8 to 5.5 in . long Inflorescence manifestly pedunoulate :-
Frait ellipsoid:-
Young branches terete; calyx-limb truncate; leaves elliptic-oblong or elliptic, $2 \cdot 5$ to 4.75 in . long Fruit globular :-
Branches 4-angled:-
Leaves rhomboid or elliptic-rhomboid; inflorescence ander 5 in . long; calyx sancer-shaped with wide, minately 4 -toothed moath; fruit $\mathbf{2}$ in. in diam.
...
...
Leaves oblong to elliptic, mach tapered to each end; inflorescences 1 in . or more in length, several in each axil; calyx with narrow fundas, the moath wide ($\cdot 1 \mathrm{in}$.) and obscurely 4-toothed ; fruit 5 in . in diam, Branches terete:-

Mouth of calyx with 4 broad, shallow teeth; flowers 4 to 6 in a compond ambel; frait ${ }^{25}$ in. in diam. ; leaves caudate-aonminate ... Moath of calyx trancate or with 4 obscure teeth:-

Cymes many-flowered, on peduncles not longer than the leaf-petioles; calyx with wide, obsourely toothed mouth and narrow, cap-shaped tube; young brauches not bi-sulcate $\quad . . \quad$... Cymes or peduncles very sligbtly if at all longer than the petioles; calyx not toothed; young branches deeply bi-sulcate ander the nodes Cymes or peduncles several times longer than the leaf-petioles :-

Pedancles solitary; leaves thinly ooria-
ceous ... \quad... \quad... \quad... leaves coriaceons 28. M. edule.

1. Memectlon oligonsuron, Blame, Mus, Bot. I, 354. A small tree or shrub; young branches slender, terete, their bark pale-brown. Leaves thinly coriaceous, brown below, greenish brown above when dry, oblong to ovate- or elliptic-oblong, shortly and obtusely acuminate, boldly 8-nerved from the cuneate base, transverse nerves invisible; length 2-4 in.; breadth 1.3-1.65; petiole 05-15 in. Flowers small J. II. 10
(05 in . long), on pedicels about $\cdot \mathrm{l} \mathrm{in}$. long, densely crowded in clusters on small tubercles in the axils of leaves or of fallen leaves. Calyx-tube cupular, but little contracted at the base, the moath wide with foar broad shallow teeth. Fruit unknown. Miq. Fl. Ind. Bat. I, pt. 1, 574 ; Cogn. in DC. Mon. Plann. VII, 1132. M. trinerve, Hassk. Cat. Hort. Bog. 259 (not of DC.). Myrtus oligoneur:, Korth. ex Blame l.c. 354.

Perak; Scortechini 1309; King's Oollector 2513, 10280. Penana; Curtis 1065, 1446, 2220, 10920. . Distrib. Java, Borneo.

A species ensily recognised by its 3 -nerved leaves.
2. Memectlon epiphyticus, King, n. sp. An epiphytic shrab; branches rather stout, strongly angled and with short ear-like projections just below the nodes. Leaves thinly coriaceous, narrowly oblonglanceolate, acute or acuminate, somewhat narrowed to the rounded sub-cordate base; main nerves 9 or 10 pairs, indistinct on the lower surface, invisible on the upper; length 1.75-3 in ; breadth 6-1 in.; petiole 05 in. Cymes in pairs, axillary, 3-4-flowered, on slender pedicels $\cdot 1-15$ in. long, bracteate at the apex; pedicels half as long as the peduncle. Calyx-tube capular, rounded at the base; the mouth deep and wide ($\cdot 05$ in. across), undulate, truncate. Fruit globular, smooth, $\cdot 25$ in. in diam.

Perak; on trees, King's Collector 5184; Wray 2727.

Abstract

A species allied to M. dichotomum, Clarke, bat with smaller leaves, more boldly angled branches, smaller, less numerous flowers, and oymes on more slender

 pedancles.3. Memectlon fruticosom, King, n. sp. A shrab, $6-8$ feet high; yonug branches boldly 4 -winged especially near the slightly thickened nodes, the bark pale-brown. Leaves ovate-lanceolate or oblong-lanceolate, chartaceous, shortly acuminate, slightly narrowed to the rounded base; main nerves 7-9 pairs, interarching 15 in . from the margin, somewhat conspicuous on the lower but indistinct on the upper surface; length $3-4 \mathrm{in}$.; breadth $1.35-1.85 \mathrm{in}$.; petiole 05 in . Cymes usually in pairs, axillary, on short peduncles, 8-10-flowered. Flowers on pedicels with acute bracteoles at their bases. Oalyx-tube shortly campanułate, tapering much to the base (obconic), the mouth 075 in . wide, with 4 slallow obscure teeth, or trancate; tho buds not very conical. Fruit globose-ovoid, constricted below the thick persistent calyx-limb, .35 in. long and 25 in. in diam. (nnripe).

Perak; King's Collector 2971, 3265, 3425.
Approaching M. dichotomum and M. sub-dichotomum but with differently shaped frait.
4. Memecylon pobescens, King. A tree, $\mathbf{3 0 - 7 0}$ feet high; young branches somewhat slender, pale-brown, 4-angled. Leaves coriaceous,
1900.] G. King - Materials for a Flora of the Malayan Peninsula. $\quad \mathbf{5}$
elliptic, shortly and abraptly acuminate, the base mach narrowed; sellowish green on the lower surface and olivaceous on the apper when dry; main nerves 7-10 pairs, quite distinct on the lower surface, less so on the apper, curved and interarching $\cdot 1 \mathrm{in}$. from the margin. Cymes 1-3 from the axils of leaves, often anequal, proliferously umbellate, from $1 \cdot 5-2 \cdot 5 \mathrm{in}$. long, always pedunculate, the peduncle and all its branches 4 -angled, bracteolate at the divisions, sparsely and deciduously rusty-pubescent. Flowers densely clastered at the apices of the thickened secondary peduncles, pedicellate; the pedicels with numerous sharply acuminate bracteoles at their bases. Calyx-tube campanalate, much narrowed at the base, the moath rather more than 05 in . wide, trancate but with 4 minate, acicular teeth. Fruit globular, $\cdot 15 \mathrm{in}$. in diam. (unripe). M. grande, Retz., var. pubescens, Clarke in Hook. fil. Fl. Br. Ind. II, 558; Cogn. in DC. Mon. Phan. VII, 1153.

Malacca; Griffith (Kew Distrib.) 2336. Perak; King's Collector 6089, 10760. Singapore ; Ridley 10390.

Ripe frait of this is anknown.
5. Membcylon dichotomom, C. B. Clarke in Herb. Kew. A slender shrab, 6-8 feet high ; young branches slender, acately 4 -angled (even 4-winged) below the slightly thickened nodes; the bark palebrown. Leaves thinly coriaceous, almost sessile, lanceolate to ovatelanceolate, mach acuminate, often caudate; the base rounded or slightly narrowed; main nerves 6-8 pairs, curved, interarching rather far from the margin, often indistinct; length $2.5-4 \mathrm{in}$. ; breadth 1-2 in.; petiole very short (under 05 in.). Cymes 2 - 5 -flowered, solitary, axillary and terminal; peduncles very short, 4 -angled; pedicels with two orate, acate bracteoles at their npices embracing the calyx. Calyxtube campanulate, tapering to the base (obconical); minutely glandalar outside when dry, the month with 4 broad, shallow lobes when young, trancate and almost entire when old; buds rather large, conical. Fruit globular, crowned by the narrow calyx-limb, smooth when ripe, about 5 in . in diam. M. elegans, var. dichotoma, C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 554; Cogn. in DC. Mon. Phan. VII, 1138.

Malacca; Griffth (Kew Distrib.) 2324; Maingay (K.D.) 818, 820. Preak; Wray 2989; King's Oollector 3239, 5036, 5297, 10783. Paiana; Ridley 2609.

I restore for this species the MS. name originally given to it by Mr. C. B. Clarke in the Kew Herbarium. Mr. Clarke sabsequently redaced it, as a variety, to M. elegans, Karz, of which there were, at the time he made the reduction, no good specimens. Now that there are excellent examples of M. elegans, it is clear that M. dichotomum is not near that species.

There are specimens in the Calcutta Herbariom of what appear to be other species allied to this. Bat the material of all is imperfect and I describe none of them.
6. Mempcylon Kunstleri, King, n. sp. A tree, 40-60 feet high; young branches slender, terete, very pale-grey. Leaves chartaceons, drying brown (palest on the lower surface), elliptic-oblong, blantly acuminate, the base rounded and often minately cordate; main nerves 7 or 8 pairs, ascending, faint on the lower and almost invisible on the upper surface when dry; length $2.75-4.5 \mathrm{in}$; breadth $1-2 \mathrm{in}$. ; petiole $05-1 \mathrm{in}$. Peduncles from the axils of fallen leaves or axillary, bracteolate, $35-6 \mathrm{in}$. long, umbellately panicled, bracteolate at the divisions, 4 -angled like the pedicels; ultimate ambels 4 - 6 -flowered, on the thickened ends of the secondary peduncles, pedicels bracteolate at the base. Calyx-tube cup-shaped, shallow, the mouth obscurely 4-toothed. Young fruit ellipsoid, crowned by the thick, shallow, obscurely 4 -toothed limb of the calyx, $\cdot 3 \mathrm{in}$. long, and $\cdot 15 \mathrm{in}$. in diam.

Perak; King's Collector (Kunstler) 8195, 10419.
This is known only by Mr. Kunstler's two suites of specimens. One of these sets bears no fruit; the other no flowers. The leaves on the former are rather smaller than those on the second bat the venation is the same and I assume that they belong to one species. The terete branchlets, associated as they are with an inflorescence which is 4 -angled in all its branches, even down to the pedicels and the ellipsoid frait, distingaish the plant.
7. Memecylon calonedron, Miq. Fl. Ind. Bat. Suppl. 321. A tree; branchlets and leaves as in M. costatum, Miq., but the latter with fewer nerves. Flowers in axillary, pedunculate, many-branched cymes, 1-2 in. long, the flowers in dense glomeruli on the thickened apices of the ultimate branchlets; all the peduncles boldly 4 -angled or winged; fruit ellipsoid, $\cdot 35 \mathrm{in}$. long (including the small persistent calyx-limb). M. costatum, Miq., var. ellipsoidea, Blumo Mus. Bot. I, 361; Cogn. in DC. Mon. Phan. VII, 1136.

Malacca; Maingay (Kew Distrib.) 813. Perak; Wray 3235; King's Collector 6945, 8505. Distrib. Java; Sumatra, Forbes 2696; Borneo.

The inflorescence and fruit are so different from those of M. costatum, Miq., that I have followed Miquel in treating this as a species. Miquel did not however, recognise that his M. caloneuron really covers Blame's variety ellipsoidea of his own species M. costatum.
8. Meyecylon Hcleettif, King, n. sp. Young branches slightly ridged near the nodes, otherwise terete, the bark pale-brown. Leaves chartaceous, ovate-oblong, gradually narrowed to the acuminate apex; the base broad, abruptly rounded, slightly cordate; main nerves about 15 pairs, thin but distinot on the lower surface, horizontal ; length 6-8 in. ; breadth 2.25-3 in. ; petiole under $\cdot 1 \mathrm{in}$. Peduncle solitary, axillary, $1 \cdot 5-2 \cdot 5 \mathrm{in}$. long, slender, bearing at its apex a single or compound
few-flowered umbel ; the flower-pedicels longer than the calyx and, like the peduncles of the secondary umbels, rugulose. Calyx-tube campanulate, narrowed to the base; the mouth truncate, with 4 very obscure shallow teeth. Fruit globular, crowned by the rather large calyx-limb, 25 in . in diam. (not quite ripe).

Johore ; on Ganong Pulai, Hullett and King 253; Laks and Kelsull 4073.

A very well-marked species near M. amplexicaule, Roxb., at once distingaished by its elongately acuminate, brond-based leaves and long-peduncled umbels.
9. Memecylon Maingayi, Clarke in Hook. fil. Fl. Br. Ind. II, 557. A tree, 20-40 feet high ; branches stout, terete, somewhat thickened at the nodes, the bark pale-brown when dry. Leaves coriaceous, nearly sessile, elliptic-oblong, sub-acute, slightly narrowed to the rounded, sometimes slightly cordate base; in length 6.5-9 in. ; breadth 3-4.25 in.; main nerves 12-15 pairs, not very prominent, interarching inside the margin. Flowers large for the genas, in few-flowered (12-20) fascicles from the axils of the leaves or of fallen leaves; peduncles and pedicels about 15 in . long, bracteolate. Calyx-tübe widely cupalar, truncate, toothless, 2 in . in diam. when dry. Petals obtuse in bud. Fruit unknown. Cogn. in DC. Mon. Phan. VII, 1139.

Malacca; Maingay (Herb. prop.) 1422. Perak; King's Oollector 4726.

An arboreal apecies with large flowers and thick branches, allied to M. amplexicaule bat well distinct.
10. Mamecylon Kurzit, King. A glabrous shrub; young branches terete, swollen under the nodes, the bark pale when dry. Leaves thinly coriaceous, sub-sessile, ovate-oblong, shortly acuminate, slightly narrowed to the rounded base; main nerves 15-20 pairs, rather straight, interarching 25 in. from the margin, faint; length 8.5-10 in.; breadth $325-4.5 \mathrm{in}$.; petiole about $\cdot 1 \mathrm{in}$. long, stout. Flowers large, on slender bi-bracteolate pedicels 4 in . long; the cymes 3 - or 4 -flowered, from the axils of fallen leaves, solitary or several together; peduncle short (only $\cdot 15 \mathrm{in}$. long). Calyx-tube campanulate, $\cdot 2$ in. long; the mouth $\cdot 2 \mathrm{in}$. wide, wavy and with 4 broad teeth. Fruit ellipsoid, somewhat curved, $\cdot 75 \mathrm{in}$. in length (including the persistent limb of the calgx) and $\cdot 4 \mathrm{in}$. in diam. M. subtrinervium, Miq., var. grandiflora, Kurz in Journ. As. Soc. Beng. 1876, pt. II, 131 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 565 ; Cogn. in DC. Mon. Phan. V1I, 1143.

Nicobar Islands; Kurz, King's Collector 509.
The leaves of this when dry are pale-brown on the upper and pale-olivaceons nn the lower surface. They are different in shape from those of M. subtrinervium, Miq., of which Kurz makes this a variety. The flowers of the latter are moreorer small and in slender pedunculate cymes.
11. Memecylon heteroplrurom, Blume, Mus. Bot. Lugd. Bat. I, 362. A tree, 30 and 40 feet high; young branches rather slender, terete, the bark pale-brown or cinercons when dry. Leaves thinly coriaceous, broadly oblong-lanceolate or elliptic-oblong, shortly and rather bluntly acuminate, the base rounded or narrowed, not cordate, shortly petiolate, pale-brown with sometimes a touch of green on both surfaces when dry ; mnin nerves $18-20$ pairs, straight, interaching close to the margin, thin buit very distinct on the lower surface when dry; length 5-7 in. rarely 10 in . ; breadth $2-3.5 \mathrm{in}$. ; petiole only 1 in . Flowers pointed in bud, in dense cymes from the axils of the leaves or from those of the old leaves; the peduncle $\mathbf{2 5}$ in. long; pedicels shorter, bi-bracteolate. Calyx-tube widely cupular, narrowed to the base, trancate, $\cdot 1-15 \mathrm{in}$. in diam. when dry. Fruit globular, 5 in. in diam. Miq. Fl. Ind. Bat. I, pt. I, 579 ; C. B. Clarke in Hook. fil. Fl. Br. lnd. II, 557 ; Cogn. in DC. Mon. Phan. VII, 1140.

Malacca; Grifith 2337 (Kew Distrib.); Maingay (K.D.) 816. Penang; Curtis 814. Singapore and Selangore ; Ridley. Pbrak; King's Oollector, Wray, Scortechini : many Nos.; common. Distrib. Sumatra and Borneo.

Var. olivacea, King. Leaves rounded at the base, large, 10-14 in. long and $3 \cdot 5-4 \cdot 25$ in. broad, with a strong olivaceous tint when dry: fruit not seen.

Perak; King's Collector 500, 2778, 10872 ; Wray 1310.
This variety differs (as far as it is represented by dried specimens) from typical M. heteropleurum, Bl., only in the size of its leaves and their coloar when dried; frait of it is unknown, the flowers and shape of leaves are exactly those of the type.
12. Mamecylon costatum, Miq. in Verh. Ned. Inst. 1850, p. 29. A tree, 30-60 feet high ; young branches terete, but with 4 short wings below the nodes. Leaves thinly coriaceous (drying pale-brown with a tinge of yellowish-green), oblong- or oblong-lanceolate, sometimes oblong-ovate, shortly acuminate, the base rounded or slightly narrowed, not cordate, penni-nerved ; the main nerves 12-14 pairs, stout, curved, anastomosing at 25 in. from the margin with a bold lateral nerve; length $4 \cdot 5-7 \cdot 5$ in.; breadth $1 \cdot 75-3$ in.; petiole very short, stout. Flowers crowded in axillary glomerali, 1 in . or less in diameter; their pedicels short ($\cdot 1-05 \mathrm{in}$.), the bracteoles minute, triangular. Calyx cup-shaped, truncate, slightly narrowed at the base. Petals 2 in. in diam. Fruit globose, 35 in. in diam. Miq. Fl. Ind. Bat. I, pt. I, 573 ; Triana in Linn. Trans. XXVIII, 157 ; Blume, Mus. Bot. I, 360 ; C. B. Clarke in Hook fil. Fl. Br. Ind. II, 558; Cogn. in DC. Mon. Phan. VIII, 1136. M. grande, Bl. Bijdr. 1095 (not of Retz.).

Perak; King's Collector 10785. Distrib. ; Java, Sumatra (Forbes J442).
13. Memectlon amplexidaule, Roxb. Fl. Ind. II, 260. A shrub, 8-12 feet high ; branches rather slender, terete between, bnt 4-angled and sometimes 4 -winged below the nodes. Leaves (tinged with greenishyellow when dry) sessile or nearly so, often semi-amplexicaule, ovateoblong or ovate-lanceolate, sub-acute or shortly and bluntly acuminate, broadest a little above the cordate base, penni-nerved; the main nerves 9-12 pairs, not prominent, interaching inside the margin; length 3.5-6 in. ; breadth 1-2.5 in. Flowers 2 in . long, crowded in dense, axillary glomeruli 1 in. or less in diameter; their pedicels very short (lengthened to 25 in . in fruit) and with minute bracteoles. Oalyx campanalate, truncate, much narrowed to the base. Petals sub-rotund, $\cdot 2 \mathrm{in}$. in diam. Fruit globose, 3 in. in diam. Wight Ic. 279. Nand. in Ann. Sc. Nat. Ser. 3, XVIII, 277 ; Miq. Fl. Ind. Bat. I, pt. J, 580 ; C. J3. Clarke in Hook. fil. Fl. Br. Ind. 1I, 559 (in part); Cogn. in DC. Mon. Phan. VII, 1139 (in part). M. depressum, Benth. in Wall. Cat. 4101 (in part); Triana in Linn. Trans. XXVIII, 158 (in part). M. cordatum, Wall. Cat. 4100 (in part). DI. coerulum, Triana in Linn. Trans. XXVIII, 158 (in part).

In all the Provinces except the Andaman and Nicobar Islands; common.

The petals of this are white tinged with pink. The plant desoribed by Roxburgh under the name M. amplexicaule is a Malayan one, as he distintly states. The species from the South of India which has, in most of the synonyms above quoted, been treated as identical with this is, in my opinion, quite distinct. It bas smaller and proportionately broeder leaves, and the flowers, which are smaller and more numerons, are in fascicles from the axils of fallen leaves. This is allied to 1 . costatum, and like it, this has the stems often 4 -winged below the nodes; the leaves are also sessile or nearly so, bat they differ from those of M. costatum in invariably being cordate at the base.
14. Memecylon microstomum, Clarke in Hook. fil. Fl. Br. Ind. II, 557. A tree, 40-70 feet high; branches terete, rather slender, dark greyish-brown when dry. Leaves very coriaceous, sessile and almost amplexicaul, oblong or narrowly elliptic, sab-acate or obtuse, the base ronnded and slightly cordate, very opaque, the nerves very indistinct; length $3 \cdot 25-4 \cdot 5 \mathrm{in}$. ; breadth 1•3-2 in. Flowers numerous, small, less than $\cdot 1$ in long (excluding the exserted stamens), crowded in dense axillary glomeruli, pedicels filiform. Calyx-tube infundibaliform, constricted in its lower third, the mouth wide truncate. Petals pnle jellowish-green. Fruit large (6 in. in diam.), globular, the persistent calgx-limb small. Cogn. in DC. Mon. Phan. VII, 1147.

Malacca ; Maingay (Kew Distrib.) 821 ; Perak; Wray 1137 ; King's Collector 10588. Singapore; Ridley 2033. Penang; Curtis 766.

80 G. King-Materials for a Flora of the Malayan Peninsula. [No. 1,
The leaves of this, when dry, are olivaceous on the upper and pale-brown on the lower surface. The species resembles M. ampleaicaule but differs notably in its large globular fruit.
15. Memecylon corruleum, Jack. in Mal. Misc. I, 26. A shrab, 5-15 feet high; branchlets often 4 -angled near the apices, otherwise terete, slender, the bark pale-brown when dry. Leaves sessile, coriaceous, opaque, oblong or ovate-oblong, obtuse or sub-acute, broadest a little above the rounded, cordate base, the midrib distinct but the main nerves faint and the reticulations obsolete ; length $2 \cdot 5-4.75$ in. ; breadth 1-2.5 in. Flowers rather numerons, in dense, axillary, condensed glomerulate cymes, the peduncle -25 in . long, the pedicels shorter than the flowers, each with two broad, acnte bracteoles. Calyx-tube short, widgly campanulate, narrowed to the base, the mouth wide truncate. Pstals conical in bud. Fruit narrowly ellipsoid, 4 in. long and 25 in. in diam. (including the deep, persistent calyx-limb). Miq. Fl. Ind. Bat. I, pt. I, 580; Triana in Linn. Trans. XXVIII, 158 (excl. syn. M. amplexicaule, Roxb.) ; Kurz, For. Flora B. Burma I, 511 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. I, 559 ; Cogn. in DC. Mon. Phan. VII, 1163. M. grande, Smith in Rees' Cyc. XXIII (not of Retz). M. cordatum, Wall. Cat. 4100 (partly) ; Griff. Not. 1V, 673 . Mr. manillanum, Naud. in Ann. Sc. Nat., Ser. 3, XVIII, 276; Miq. l.c. 576. M. lutescens, Presl. Epim. Bot. 208 (not of Naud.).

In all the provinces; not ancommon. Distrib. Philippines.
16. Memecylon campandlatom, Clarke in Hook. fil. Fl. Br. Ind. II, 563. Young branches rather slender, terete, their bark pale-brown. Leaves coriaceous, elliptic, sometimes with a short blunt apical point, the base always much and abruptly narrowed, nerves invisible; length $3-4 \cdot 5 \mathrm{in}$. ; breadth 1.25-2.2 in.; petiole $\cdot 1-15 \mathrm{in}$. Flowers on slender pedicels, $\cdot 1-15 \mathrm{in}$. long, bracteolate at the base and crowded in dense fascicles in the axils of the leaves or of the fallen leaves, the buds of the petals shortly conical. Calyx-tube campanulate, blunt at the base and somewhat contracted below the wide truncate limb. Fruit unknown. Cogn. in DC. Mon. Phan. VII, 1162.

Malacca; Griffith (Kew Distrib. 2325).
In its leaves this mach resembles M. oleafolium, Bl., bat the flowers of that species are in lax, few-flowered, pedunculate umbels, whereas the flowers of this are in dense, epedanculate fascioles.
17. Memectlon minutiflordm, Miq. Fl. Ind. Bat. Suppl., 323. A tree, 30-70 feet high ; young branches slender, with a broad, angularly margined groove on each side; the bark pale, smooth. Leaves thinly coriaceons, drying jellowish-green beneath, narrowly elliptic, cordateacuminate, the base much narrowed; main nerves very indistinct.

1900.] G. King-Materials for a Flora of the Malayan Peninoula.

Inforescence twice as long as the petioles, many-flowered; the pedancles often two or three from the same axil, each bearing several 2-4-flowered umbels ; pedicels stout, bracteolate at the base. Calyx-tube cap-shaped, not tapered to the base, the month expanded, truncate and 05 in . wide, glendular-hairy when young like the blantly conical petal-bud and the pedicels. Fruit crowned by the minute calyx-limb, depressed globular, smooth, 35 in. in diam. and $\cdot 3 \mathrm{in}$. deep. Cogn. in DC. Mon. Phan. VII, 1169. M. acuminatum, Sm., var. favescens, Clarke in Hook. fil. FI. Br. Ind. II, 562 ; Cogn. in DO. Mon. Phan. VII, 1152.

Malacca; Griffth (Kew Distrib.) 2325/2. Penana; Ourtis 815. Perax ; King's Collector 5027, 6105, 6265, 8724. Distrib. Sumatra.

Triana considers this a distinct species and I think he is right. Fruit however is wanting to complete our knowledge of the form. The Perak specimens agree perfectly with the type sheet named M. minutiforum, Miq., in Herb. Calcuttan The species is not, as was suggested by Kurz, identical with M. lilacinum, Zoll, and Moritzi.
18. Memectlon mprsinotdes, Blume, Mas. Bot. I, 356. A tree, 30-40 feet high (rarely a slirub); soung branches terete, slender, with pale-grey bark. Leaves thinly coriaceons, drying brown (palest on the lower surface), narrowly elliptic or ovate-lanceolate, the apex very acuminate, much narrowed to the cuneate base; main nerves invisible on both surfaces; length $1 \cdot 5-2.5 \mathrm{in}$; ; breadth $9-1 \cdot 25 \mathrm{in}$.; petiole $\cdot 15-25 \mathrm{in}$. Flovers numerous, in very short-pedancled cymes, densely clastered together in the same axil; pedicels about the length of the calyx, bracteolate at the base. Oalyx-tube campanulate, much narrowed to the base, the mouth less than 05 in . wide, with 4 long (for the genus) acate teeth ; petals in bud forming a long narrow cone, acaminate. Fruit globalar, the size of a grain of black pepper. Miq. Fl. Ind. Bat. I, pt. I, 577; Trinna in Linn. Trans. XXVIII, 158 (excl. syn.) ; Cogn. in DC. Mon. Phan. VII, 1160 ; excl. syn. M. lilacinum. M. capitellatum, Blume, Bijdr. 1091 (not of Linn.).

Penaxg ; Curtis 2219. Jobore; Ridley 2026. Perak; Wray 22j8; King's Collector 1851, 3517, 5923, 8828. Distrib.; Sumatra; Forbes 2953; Java; Bangka.

Var. lilacina, King. Young branches with two deep, sharplymargined grooves; leaves broadly elliptic, yellowish on the under surface when dry, cymes not crowded (only two in an axil). M. lilacinum, Zoll. \& Mor. Syst. Verzeich., 9 ; Naud. in Ann. Sc. Nat. Ser. 3, XVIII, 281; Miq. Fl. Ind. Bat. I, pt. I, 575.

Prnana; King's Oollector 1457; Curtis 100. Singapore; Ridley 6218. Praak; King's Collector 10442. Distrib.; Java, Zollinger 178.
J. II. II
19. Memectlon laevigatum, Blame, Mus. Bot. Lugd. Bat. I, 358. A small tree; young branches very slender, terete, the bark pale. Leaves thinly coriaceons, broadly ovate or elliptic, more or less rostratencuminate, the base cuneate; main nerves obscure; length $2-2.5 \mathrm{in}$.; breadth 1-1.75 in., petiole $\cdot 1-15$ in., opaque, when dry dull darkbrown, the lower surface slightly paler than the upper. Cymes mostly from the nodes of fallen leares, small, few-flowered, the peduncle very short ($\cdot 1$ in. long), pedicels also very short. Flowers small (less than 1 in. long), their buds pointed; calyx-tube campanulate, much tapered to the base, the mouth with 4 acute, small teeth. Fruit globalar, ${ }^{3} \mathrm{in}$. in diam., smooth. Miq. Fl. Ind. Bat. I, pt. I, 576 ; Triana in Linn. Trans. XXVIII, 157 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 561 (excl. vars.) ; Kurz, For. Flora. I, 513 ; Cogn. in DC. Mon. Phan. VII, 1159. M. Myrilli, Blume, Mus. Bot., 357 ; Miq. l.c. 578. M. pachyderma, Wall. Cat. 4104. M. Vosmaerianum, Scheff. in Flora, 1870, 249.

Malacca; Ridley 17ij7. Singapore; Ridley 1815, 1906, 2026, 4805. Perak ; Scortechini 81 ; Wray 2091 ; King's Collector 3768. Selangore; Ridley 2024. Distrib. ; Burma, Helfer 2328; Wallich 4104; Bangka, Java, Borneo.
20. Memecylon cineredn, King, n. sp. A shrub; young branches rather slender, terete, sulcate on two sides, the bark dark-cinereous when dry. Leaves coriaceous, drying very dark cinereons-brown on the upper surface, somewhat paler on the lower, lanceolate or ovatelanceolate, much acuminate, the base rounded but more often cuneate; main nerves $8-10$ pairs, invisible on both sarfaces or nearly so, length $28-5 \cdot 5 \mathrm{in}$.; breadth 1-2.2 in.; petiole $\cdot 15-3$ in. Peduncles axillary or from the leafless nodes, not much longer than the petioles, glomerulate, many-flowered; pedicels short, stont, with small acicular bracteoles at the base. Calyx-tube cupular, with a rounded base; the mouth expanded, $\cdot 1$ in. wide, undulate and with 4 acute, triangular teeth. Fruit globular, the persistent calyx-limb small, $\cdot 25 \mathrm{in}$. in diam., smooth.

Perak ; Scortechini 394, 2035 ; King's Collector 3143, 10758.
21. Memectlon oleaefolium, Blame, Mus. Bot. I, 359. A tree, 30-60 feet high; young branches rather sleuder, terete, smooth, the bark very pale. Leaves coriaceous, elliptic-oblong or elliptic, the apex obtasely acuminate, the base much narrowed, when dry of a pale oliva-ceous-brown colour on both surfaces, the upper the darker; main nerves $8-10$ pairs, obscure ; length $2 \cdot 5-4 \cdot 75$ in. ; breadth 1-2.25 in.; petioles $\cdot 15$ to $\cdot 3$ in. Peduncles $1-3$ in one leaf-axil, several times longer than the petiole (elongating in fruit), bearing at the apex

1900.] G. King-Materials for a Flova of the Malayan Peninsula.

numerous, crowded, 2-3-flowered umbellules with a semi-circular bract at the bases of their short, stout, 4 -nngled pedancles. Flowers with conical buds, less than $\cdot 1 \mathrm{in}$. in diam., on slender pedicels longer than themselves, bracteolate at their bases. Oalyx hemispheric; the mouth truncate, entire. Fruit ovoid-elliptic, crowned by the short calyx-limb, $\cdot 4$ long and $\cdot 25$ in. in diam. Miq. Fl. Ind. Bat. I, pt. I, 579 (excl. syn.) ; Cogn. in DC. Mon. Phan. VII, 1150. M. Horsfieldii, Miq. Fl. Ind. Bat. I, pt. I, 572. M. grande, Retz, var. Horsfieldii, Clarke in Hook. fil. Fl. Br. Ind. II, 558; Cogn. in DC. Mon. Phan. VII, 1153 (excl. syn. M. celastrinum, Karz from both). M. lampongum, Miq. Fl. Ind. Bat. Suppl. 321.

Malacca; Maingay (Kew Distrib.) 811. Singapore; Ridley 6414. Perak; Scortechini 2069; King's Collector 426, 5187, 4420, 4139, 8571. Distrib. Bangka; Horsfield; Sumatra; Forbes 3213.

This has been treated by Messrs. Clarke and Cogniaux as a variety of M. grande of Retz, a species originally described by its anthor from specimens sent to him by Koenig, who collected in Southern India. Retz's description is very short and, as Mr. Clarke points ont, would suit several species. The species of Memecylon have not, as a rale, a wide distribution, and very few indeed of them are common to 8. India or Ceylon and to the Malay Peninsula. I think it, therefore, in the absence of his type specimen, advisable to consider Retz's name as properly belonging to the Ceylon plant represented by Thwaites's C.P. 8442. Both Messrs. Clarke and Cogniaux treat as belonging to typical M. grande, Retz, the Singapore plant issued by Wallich as No. 4472 of his Catalogue under the name M. laxiforum. This plant is now represented only by fruiting specimens which do not, in my opinion agree with any other Memecylon in Herb. Kew. The inflorescence in Wallich's specimens is 2.5 in . long, pedunculate, and laxly compound-umbellate. When flowers shall be forthcoming it will probably be found necessary to let the species M. laxiforums stand good.

Thwaites's C.P. which I assume, in the absence of a type specimen, to be equal to the type of M. grande, Retz, does not in my opinion resemble the foar forms which the two distinguished botanists just mentioned agree in treating as varieties of it , sufficiently closely to warrant such treatment of the latter. I would venture to dispose of them as follows:-

Vab. Horsfieldii = M. oleaefoliam, Bl. Var. khasiana=M. celastrinum, Kurz.
Var. pabescens $=$ M. pnbescens, King. Var. mergaica=M. merguica, King.
M. Cogniaux has inadvertently described the frait of M. oleaefolium as globose, whereas in his original description of it Blame writes "fructibus ellipsoideis."
22. Memectlon pauciflordm, Blume, Mus. Bot. I, 356. A small tree ; young branches 4 -angled, slender, pale-brown. Leaves coriaceous, rhomboid or elliptic-rhomboid, drying brown, the lower surface paler, the apex blunt and often retuse, the base acute or subacate; nerves 6 or 7 pairs, invisible or very faint; length $1-1 \cdot 5 \mathrm{in}$.; breadth $\cdot 35-1 \mathrm{in}$.; petiole under $\cdot 1$ in. Cymes umbellate, axillary, on slender peduncles $\cdot 1-2$ in. long; flowers 7-10, small, on slender pedicels bracteolate at the base
and about $\cdot 15 \mathrm{in}$. long. Calyx-tube shortly campanalate, or saueer-shaped, with a large, wide, sharply and minately 4 -toothed month. Petals. acuminate. Stamens and style much exserted. Fruit depressedglobular, smooth, crowned by the toothed calyx, $\cdot 2$ in. in diam. Miq. Fl. Ind. Bat. I, pt. I, 578; Kurz, For. Flora Burma I, 514; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 555 ; Cogn. in DC. Mon. Phan. VII, 1169. M. capitellatum, Spanoghe in Linnaer, XV, 203 (not of Linn.). M. umbellatum, Benth. Fl. Austral III, 293 (non Burm.). 1f. australe, Muell. ex Triana in Linn. Trans. XXVIII, 159.

Andaman Islands; very common. Dietcib. Burma (Helfer 2332); Chittagong; Australia; Timor.

The Penang specimens have narrower, less rhomboid leaves than those from

 the Andamans.23. Memectlon elegans, Kurz in Journ. As. Soc. Beng. 1872, pt. II, 307. A glabrous shrub ; young branches slender, boldly 4 -angled, sometimes winged, the bark pale. Leaves coriaceons, pale yellowish, the upper surface tinged with green when dry, oblong to elliptic, much acuminate, the base very cunente; main nerves invisible or very indistinct; length $3 \cdot 5-5 \cdot \mathrm{~s} \mathrm{in}$.; breadth $1 \cdot 4-2 \mathrm{in}$.; petiole $\cdot 15-3$. Flowers $\cdot 15 \mathrm{in}$. long, their pedicels longer, (2 in .), slender, angled. Cymes axillary, several together, pedunculate, simply or trichotomously umbellulate ; peduncles $\cdot 3-75 \mathrm{in}$. long, 4 -angled. Calyx-tube somewhat large for the genus, cap-shaped, narrowed to the base, $\cdot 1 \mathrm{in}$. wide at the andalate, obscarely 4 -labed moath. Petals blue, broadly ovate, acaminate. Fruit globalar, smooth, 5 in. in diam. Kurz, For. Flor. Burma I, 514 ; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 554; Cogn. in DC. Mor. Phan. VII, 1138.
andaman Islands; very common.
Var. minor, King. Cymes usually solitary, the pedicel slouder, short; fruit only $\mathbf{2} \mathbf{i n}$. in diam. (? ripe) ; leaves 2-3 in. long.

Andamans; King's Collectors.
Smaller than the typical form in all its parts. The flower buds also differ somewhat from those of the typical form.
24. Memecylon $\operatorname{ccominatum,~Smith~in~Rees~Cyclop.~XXIIL,~4.~}$ A tree, 30-50 feet high; young branches slender, terete, the bark brown, smooth. Leaves thinly cariaceous, drying pale olivaceous-brown, the surfaces concolourous, ovate to ovate-lanceolate, caudate-acuminate, the base ouneate; main nerves invisible; length $1 \cdot 5-2 \cdot 25 \mathrm{in}_{0}$; breadth $8-1 \cdot 4 \mathrm{in}$.; petiole $\cdot 1-15 \mathrm{in}$. Cymes solitary or in pairs, axillary, umbellate, on peduncles several times longer than the petioles. Flovers $6-8$ in a compound ambel; pedicels bracteolate at the base, slender,
twice as long as the flowers. Oadyon-tube oup-shaped, the fandas broud, slightly constricted below the thick, short, undulate, broadly 4 -toothed limb. Petals conical in bud. Fruit globular, somewhat depressed, smooth, crowned by the narrow enfyx-limb, 25 in. in diam. Triana in Trans. Linn. Soc. XXVIII, 158; DC. Prodr. III, 6; Clarke in Hook. fil. FI. Br. Ind. II, 562 ; Cogr. in DC. Mon. Phan. VII, 1152 (excl. var. flavescens).

Malacca; Griffth (Kew Distrib.) 2325; Maingay 810; Derry 1041; ERidley 3297, 3298, 4574. Johore; Ridley 4656. Perax ; King's Collector 3458, 6754.
25. Memectloar garcintordes, Blame, Mas. Bot. I, 358 (excl. var. B). A tree, 20-40 feet high; young branches terete, stender, pale-brown. Leaves thinly coriaceous, oblong-ovate or elliptic, abruptly and rather obtusely acuminate, the base caneate, drying pale-brown tinged with olive, the under surface the palest; main nerves invisible; length 3-5.5 in., breadth $\mathbf{1 2 - 2} \mathrm{in}$. ; petiole $05-1 \mathrm{in}$. Cymes axillary and in the axits of old leaves, umbellate, many-flowered, on short peduncles (2 in . Yong ${ }_{2}$ longer in fruit); pedicels slender, bracteolate at the base, $\cdot \mathbf{1 - 1 5}$ in. long. Flower-buds acute. Oalyx-tube small and cup-shaped, the moath very wide (nearly $\cdot 1 \mathrm{in}$.), truncate, bat with foar minute, acute teeth. Fruit głobalar, smooth, pale when dry, $\mathbf{2}$ in. in diam. Cogn. in DC. Mook. Phan. VII, 1152.

Malacca; Derry 1240. Láingay (Kew Distrib.) 817. Perarif 8sortechini 2033; Wray 2961, 3203; King's Collector 1984, 2938, 7123, 10034; Slagaporx; Ridlay 8118. Sblangore; Ridloy 7333. Dtraprib. Samatra, Bhune, Ferbes 2970, 3108; Bornea, Beccari 536.
26. Mmbarlos andamanicou, King, n. sp. A shrub; young branches slendar with faint grooves balow the nodes, the barls pale brown. Leaves chartacoang, brown on the upper and greanisb-yellow an the lower sarface whon dry, oblong-lancealate, gradushiy gad blandy scaminate; the base euneata; main nerves $10-12$ paiker interarahing neem the edge, aubhavisontal; length $2.25-3$ in. ; breadth $75-1$ in.; petiale $25-3 \mathrm{in}$. Peduncles unequal, $2-4 \mathrm{in}$. long, in pairs in the axila of leaves er of fallen leaver, bearing at their apices sevaral 3-5-flawered umbels, bracteodate at the divisions, flower-pedicals as long as the calyx, minately bracteolate at the base Calyx-tuba campanalate, tapered below, the mouth truncate, nearly 2 in . wide. Bud of petals conical. Fruit depressed-globular, crowned by the small calyx-limb, yellowish, $\cdot 2$ in. in diam.
andaman Islasds; King's Collectors 3 357, 452. Nicobar Islands.
A species with beavea somewhat like those of $\mathbf{L C}$ gercimiaides, BL, beth narmomer.

than in that species. The inflorescence also resembles that of M. intermedium, Bl., but when young it is covered with a yellow waxy coat; the pedicels and peduncles are moreover mach shorter than in M. intermedium. The leaves resemble those of the latter species in shape bat are of a thinner texture so that the nerves are visible though faint.
27. Memecylon intermedium, Blume, Mus. Bot. I, 358. A tree, 20-40 feet high ; young branches slender, terete, pale cinereous. Leaves thinly coriaceous, broadly ovate, shortly and blantly acuminate, the base cuneate, greenish above and brown beneath when dry; main nerves invisible or nearly so ; length $2.75-3.5 \mathrm{in}$; breadth 1.25-2 in.; petiole $25-35 \mathrm{in}$. Cymes large, crowded, in the axils of leaves or of fallen leaves, usually in. pairs, on peduncles several times longer than the petioles, compoundly umbellate; pedicels slender, bracteolate at the base, 1 in. long. Calyx-tube cup-shaped, with a wide, trancate, edentate or miuntely toothed limb. Fruit not seen (globose fide Cogniaux). Triana in Linn. Trans. XXVIII, 157; C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 561 ; Cogn. in DC. Mon. Phan. VII, 1158. M. umbellatum, Blume, Bijdr. 1094 (not of Burm.) Naud. in Ann. Sc. Nat. Ser. 3, XVIII, 273 ; Miq. Fl. Ind. Bat. I, pt. I, 575. M. garcinioides, Bl., var. elongatum, Blume, Mus. Bot. I, 358.

Perak; Scortechini 1036. Distrib. Sumatra; Java.
This resembles M. garcinioides, Bl., very closely, but differs in inflorescence, the oymes of this being larger, on longer pedancles.
28. Memecyion edcle, Roxb., Corom. Plants I, t. 82. A shrub or small tree; young branches terete, pale when dry. Leaves coriaceons, drying brown, the lower surface paler, both often with an olivaceous tinge, elliptic or ovate, the apex sub-acute or shortly and bluntly acuminate, the base usually cuneate but sometimes rounded; main nerves 5-8 pairs, very inconspicuous, ascending; length 2-4 in.; breadth -85-2.25 in.; petiole •1-.35 in. Peduncles several together, unequal in length, longer than the petioles, axillary, umbellately cymose, many-flowered; pedicels longer than the calyx. Oalyx-tube cupular, narrowed to the base, the limb truncate, sometimes obscurely 4-toothed. Fruit globular, crowned by the small calyx-limb, -25 in . in diam.

Only two of the numerous varieties of this species occur in our region. These are as follows:-

Var. 1. typica. Leaves usually under 3 in. long, dull, tinged with yellow when dry, acute or obtuse. M. edule, Roxb. Fl. Ind. II, 260; DC. Prodr. III, 6; Wall. Cat. 4107 ; Dalz. \& Gibs. Bomb. Fl. 93 ; Kurz, For. Fl. I, 512. M. edule, var. a, Thwaites Enum. 111. M. unbellatum, Barm. Fl. Zeyl. t. 31. M. tinctorium, Kœn. ex W. \& A. Prodr. 319 ; Wight Ill. t. 31. M. globiferum, Wall. Cat. 4108. M. pyrifolium, Naud. in Ann. Sc. Nat. Ser. 3, XVIII, 277.

Singapore; Ridley 4084, 6054. Malacca; Griffith (Kew Distrib.) 2327; Maingay (K.D.) 812; Derry 1028. Kedah; Ridley 2627, Curtis 2627. Distrib. India, Ceylon.

Var. 2. ovata, C. B. Clarke in Hook. fil. Fl. Br. Ind. II, 563. Leaves large, often 4-4.5 in. long, acate or acuminate at the apex, the base rounded or caneate, shining when dry; fruit black when ripe and somewhat succulent. MY. ovatum, Sm. ex Kurz, For. Fl. I, 512. M. edule, var. γ, Thwaites Enum. 110. M. umbellatum, Hb. Heyne in Wall. Cat. 4109. M. tinctorizm, var. β, W. \& A. Prodr. 319. M. prasinutm, Nand. in Ann. Sc. Nat. Ser. 3, XVIII, 275. M. grande, Wall. Cat. 4103, partly. M. lucidum and M. pyrifolium, Presl. Epim. Bot. 209, 210.
andaman Islands; not common. Narcondam and Great Coco Islands; Prain. Perak; King's Collector 4175; Scortechini 917. Penang; Curtis 723. Singapore; Ridley 6532. Distrib. India, Malajan Archipelago.

DOUbTfOL species.

M. amabile, Bedd. rar, malaccensis, Clarke in Fl. Br. Ind. II, 555. This is founded by its anthor on the very imperfect material afforded by Maingas's specimens (Kew Distrib. 819).
M. laxiforum, Wall. Cat. ; see note ander M. oleaefolium, Blame.

King, Sir George.-Materials for a Flora of the Malayan Peninsula. No. 11. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. l-18 and 44-87.
Melastomaceæ, new, from Malayan Peninsula:-
Melastoma malabathricum var. perakensis (nov.) (p. 7), Oryspora stellulata (p.9), O. acutangula (p.9), O. Curtisii (p. 9), Allomorphia exigua var. minor (nov.) (p. 11), A. Wrayi (p. 11), A. alata (p. 12), Ochthocharis decumbens (p. 15), Anerincleistus macranthus (p. 15), A. Scortechinii (p. 16), A. floribundus (p. 17), A. sublepidotus (p. 17), A. glomeratus (p. 18), Phyllagathis tuberculata (р. 44), P. Scortechinii (p. 45), P. hispida (p. 46), Dissochæta anomala (p. 55), D. Scortechinii (p. 55), Anplectrum lepidotosetosum (p. 56), A. anomalum (p. 58), Medinilla scanders (p. 60), M. heteranthera (p. 61) and var. nov. latifolia (p.61), M. venusta (p. 61), M. Scontechinii (p. 62), M. Clarkei (p. 63), M. pernkensis (p. 64), Pterandra Griffithii (p. 70), Memecylon epiphylicum (р. 74), M. fruticosum (р.74), M. Kunstleri (p. 76), M. Hullettii (p. 76), M. heteropleurum var. olivacea (nov.) (p. 78), M. cinereum (p. 82), M. andamanicum (p. 85), n. spp.
[See also Stapf and King, on separate slip.]
Malayan Peninsula, new species of Melastomaceæ.

BOTANY.
M.

Stapf, O. and King, Sir Grorge.-Materials for a Flora of the Malayan Peninsula. No. 11. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 18-4 4.
Melastomaceæ, new, from Malayan Peninsula :-
Sonerila epilobioides (p. 22), S. calaminthifolia (p. 23), S. hyssopifolic (p .23), S. erecta, var. flexuosa (nov.) p. 24 and var. discolor (nov.) p. 24, S. tennifolia, var. hirsuta (nov.) (p. 25), S. flaccida (p. 25), S. andamanensis (p. 26), S. populifulia (p .26), S. pallida (p .27), S. rudis (p. 27), S. mollis (p .28), S. albiflora (p. 28), S. lasiantha (p. 29), S. suffruticosn (p.29), S. elliptica (p. 30), S. succulenta (p. 30), S. repens (p. 30), S. muscicola (p. 31), S. saxosa (p. 31), S. congesta (p. 32), S. Cyclaminella (p. 33) and var. canescens (nov.) p. 33,S integrifolia, var. acuminatissima (nov.) p. 35, S. bracteata (p. 35), S. capitata (p. 35), S. caesin (p. 36), S. Nidularia (p. 37), S. brachyantha (p. 37), S. microcarpa (p.38), S. costulata (p. 39), S. macrophylla (p. 39) and var. laxipilosa (nov.) (p. 40), S. glabriftora (p. 42), S. elatostemoides (p. 42), S. birolor (p. 43), S. Calycula (p. 43), n. spp.
[See also King, separate slip.]
Malayan Peninsula, new species of Melastomaceæ.

JOURNAL

OF THE

ASIATIC SOCIETY OF BENGAL.
 -n000m

Vol. LXIX, Part II. - NATURAL SCIENCE.

No. II. -1900.
II.-Note on four Mammals from the neighbourhood of Darjeeling.-By W. P. Masson. Commanicated by the Natural History Secretary. [Received 14th Jannary; Read 4th April, 1900.]

Mr. G. C. Dadgeon, F.E.S., having recently published in the Proceedings of the Asiatic Suciety of Bengal, p. 111 (1899), \& paper entitled "Mammalia not hitherto recorded from the Darjeeling District and Sikhim," I venture to lay my experience gnined by having collected largely during a period of nearly twenty years in that region before the members of the Society, as regards the animals referred to by Mr. Dudgeon.

Ursus malayanus, Raffles. With regard to this nnimal in the year 1883 I wrote to "The Field" under the nom-de-plume of "Palteney" a note entitled "Bear Shooting in Darjeeling":-"Jerdon, in his 'Mammalia of India'-and I see Mr. Sterndale follows him-has only one species of black bear found on the Himalayas (Ursus tibetanus)." Now I know two distinct kinds, U. tibetanus and a smaller species. U : tibetanus seldom climbs trees, but the smaller species always does.

* Mr. W. T. Blanford in 'The Fanna of British India-Mammalia, p. 197, n. 93, uses the name D. torquatus, Wagner, for this species in preference to U. thibetanus, Cavier, the older name, for the reason that this bear is not found in Tibet itself, and is therefore misleading. [Ed.]
J. II. 12

It is entirely a very glossy black, with the exception of a very narrow white mark on the chest, sending up a branch on each side in front of the shoulder ; the nose is buff-coloured or white. I have shot many of both species, and have now in my possession skins of hoth. Most of the villagers about the hills could hare told Mr. Sterndale that there were two kinds of bears, one called 'bhooe bhaloo,' or ground benr, and nnother 'rook bhaloo,' or tree bear. I hnve always found the bhooe bhaloo or ground bear (Ursus tibetanus) very much more numerous than the rook bhaloo or tree bear." In the same note I mentioned that on the 23rd of October, 1883, a friend, my brother and myself went to Birch Hill Park nbout 9 p.m. one monnlight uight, and we saw three bears in a small oak eating the acorus; anl on the fullowing niglit counted no less than five in a single tree, all of them were rook bhaloos. These numbers are anusual, as a rule not more than a conple of bears are seen in one tree. I may remark that I have since found that U. ibetanus in the Darjeeling District does climb trees, as I have shot them in onks when the ncorns are ripe in October. Also that the smaller species, U. malayantus, principally affects oaks and chestnuts, in which they form rude nests by breaking off the smaller branches and piling them into a heap amongst the larger branches; and that the examples of U. malayanus I have shot were of the normnl form described by Mr. Blanford in which the crescentic white patch on the chest does not have the apex prolonged into a white streak on the nbdomen. The claws are short. 'Ihe hillmen dread the rook bhaloo very much more than the larger species, and they all ayree that if disturbed it attacks at once.

Atherura macrura, Linnæus. I have liad the Asiatic Brush-tailed Porcupine from below Ging, from near the Rumam river, and from the Rohtak Valles-all in Sikhin. One of my collectors brought me Ω fine specimen of the species from beyond Sundukpho on the Nepalese frontier, over 11,000 feet elevation.

Nemorhe:lus bubalina, Hodgson. I have sloot the Himalayan Goat-antelope or Serow on some rocky steep lills close to Sundakpho at aboui 11,000 feet eleration, have seen them shot at Senchal nt nbout 8,000 feet, have again got them on some rocky stsep ground below Soom and Singtom at about 4,000 fect, and ngain on some very rocky ground on the Sikhim side of the Rumam river at about the same elevation.

Cemas goral, Hardivioke. I have shot the Goral near Philot and near Tongloo, at about 12,000 feet elevation, again on the landslip between Soom and Singtom, and numbers nre to be found on some very rocky and precipitous ground on the banks of the Ramam River.
III.-On a new method of treating the properties of the circle and analogous matters.-By Pronothonath Dutt, M.A., B.L. Commitnioaled by the Natural History Secretary.
[Received 12th March; Read 4th April, 1900.]
According to Euclid the circle is defined as a plane figure, which is such that the length of any straight line drawn from a certnin point within the circle to the boundary is constant.

A circle may also be defined as the locus of a point which moves so that the ratio of its distances from two fixed points is constant. This proposition has been proved as prop. 4 of the Theorems and Examples on Bk. VI in Hall and Stevens's edition of Eaclid, page 361. There the proposition has been given in the following words: "Given the base of a triangle and the ratio of the other two sides, to find the locus of the vertex." The proof shows that the locus is a circle. I propose to take this property of the circle as my starting point, and to deduce other properties from it. I shall first of all proceed to show how the centre of the circle can be found from the definition adopted.
Let A, B be two given points, and $P D E$ be the circle, so that whatever the position of P, the ratio of $A P$ to $B P$ is constant.
Then $\frac{A P}{B P}=\frac{A D}{B D}$
$\therefore \angle A P D=\angle B P D$ (prop. 3, Enc. Bk. VI).

Also $\frac{A P}{B P}=\frac{A E}{B E}$

Fig. 1.

$\therefore \angle B P E=\angle Q P E$ (prop. A. Euc. Bk. VJ).
$\therefore \angle E P D$ is a right angle.
Take O as the middle point of $D E$.
By a well-known rider (Ex. 2, on prop. 32, Bk. I, Hall and Stevens page 100).
We have $O P=C D=C E$.
$\therefore O$ is the centre of the circle.
According to the definition adopted, it will be found that $A B$ is divided harmonically at D and E (Hall and Stevens's Geometry, Example I, Bk. VI, page 360). It will appear from Example III; that the straight line throngh B drawn at right-angles to the diameter $D E$ is the polar of A with respect to the cirele. Example II shows that if O be the middle point of $A B, O D . O E=O B^{2}$. Example I at page 233 (Hall and Stevens) shews that the rectangle $A C, B C$ is equal to the square on the radius.

Let us write the property in the form $r_{1}=n r^{\circ}$, where $r_{1}=A P$, $r_{8}=B P$. Describe two circles with the fixed points as centres, and radii equal to a, b so that $a=m b$, then the equation of the circle can be reduced to the form $r_{1}-a=m\left(r_{2}-b\right)$, which means geometrically that the distance of any point on the circle $r_{1}=m r_{2}$ from the circumferences of the circles described with the fixed points as centres are in the fixed ratio m. (1).

The form $r_{1}-a=m\left(r_{2}-b\right)$ shows that the circle passes through the intersections of $r_{1}=a$, and $r_{8}=b$, and it is evident, therefore, that the three circles $r_{1}=a, r_{8}=b$, and $r_{1}=m r_{2}$ will co-intersect if $a=m b$.

The proposition may be enunciated geometrically as follows :-
Let circles be described with the fixed points as centres, so that their radii are in the ratio m. The circle which represents the locus $r_{1}=m r_{2}$ passes through the intersections of these circles. (2).

If $P T$ be the tangent at P we
Fig. 2.
have $\begin{aligned} \frac{\cos A P T}{\cos B P I} & =\frac{\frac{d r_{1}}{d s}}{\frac{d r_{8}}{d s}} \\ & =\frac{d r_{1}}{d r_{8}} \\ & =m .\end{aligned}$
This property can also be deduced without the use of the differential calculus. $\quad C P$ is the normal at P.
\therefore we have $\frac{\sin C P A}{\sin C P B}=\frac{\cos A P T}{\cos B P T}$.
But $\frac{\sin C P A}{\sin C P B}=\frac{\frac{\sin O P A}{\sin P C A}}{\frac{\frac{C A}{\sin C P B}}{\sin P C B}}=\frac{\frac{C B}{B P}}{\frac{B P}{A}}$.
But from similar triangles we can prove that $\frac{C A}{C B}=m^{2}$ (vide the figure of prop. 3, Hall and Stevens, page 361).

$$
\begin{align*}
\quad \text { Also } \frac{A P}{B P} & =m \\
\therefore & \frac{\cos A P T}{\cos B P T}=m . \tag{3}
\end{align*}
$$

Let N, N^{\prime} be the feet of the perpendiculars from T on $A P$ and $B P$, Then $P N=P T \cos A P T, \quad P N^{\prime}=P T \cos B P T$.
$\therefore P N=m . P N^{\prime}$.
Also $A P=m$. $B P$.

$$
\therefore \quad A N=m . B N^{\prime} .
$$

1900.] P. Dutt-Properties of the circle and analogous malters.

But the circle described on $A T$ as dinmeter culs $A P$ at N and that on BT cuts BP at N^{\prime}.

The proposition may be enunciated geometrically thas:-
If the tangent at any point P to a circle meets the line joining the fixed points A, B in T and on $A T, B T$ are described circles cutting $A P, B P$ in N, N^{\prime} respectively, then the ratio of $A N$ to $B N^{\prime}$ is the same as that of $A P$ to $B P$. (4).

As an alternative and purely geometrical proof of prop. (4) tho following is given.*

Join $N N^{\prime}$ and $P D$.
We liave $\angle C P B=\angle C P D-\angle B P D=\angle C D P-\angle A P D=\angle P A D$.
$\therefore \angle A T N$ being the complement of $\angle P A D$ is equal to $\angle B P T$, the complement of $\angle C P B$.

But P, N, T, N^{\prime} lie on a circle.
$\therefore \angle N^{\prime} P T=\angle T N N^{\prime}$.
$\therefore \angle A T N=\angle T N N^{\prime}$.
$\therefore A B$ is parallel to $N N^{\prime}$.
$\therefore \frac{A N}{B N^{\prime}}=\frac{A P}{B P}$.
Let the circle described on $A B$ as diameter cut the given circle in P. Then if O be the middle point of $A B$, we have $O D . O E=O B^{2}=O P^{8}$.

But $O D . O E=C O^{\mathbb{2}}-C D^{2}$

$$
=C O^{2}-C P^{2}
$$

$\therefore C O^{2}=C P^{2}+O P^{2}$.
By Euclid I, 48, $\angle O P C$ is a rightangle.

Fig. 3.

Therefore, $O P$ is the tangent at P to the given circle, and it is the normal to the circle described on $A B$ as diameter. Therefore, tho circle described on the line joining the fixed points as diameter cuts the given circle at right angles. (5).

Also as proved before, $P N=m . P N^{\prime}$.
$\therefore O N^{\prime}=m$. $O N$ as $P N O N^{\prime}$ is a rectangle.
Therefore, if the circle described on the line joining the fixed points cuts the given circle at P, and O be the point, where the tangent at P meets $A B$, then the distances of $A P, B P$ from O are in their inverse ratio. (6).

[^32]The property follows also from the consideration of the equality of the areas of the triangles $A P O$ and $B P O$.

Let $A P$ cut the circle again in P^{\prime}, then

$$
\begin{aligned}
& \frac{A P}{B P}=\frac{A P^{\prime}}{B L^{\prime \prime}} \\
& \therefore \frac{A P}{A P^{\prime}}=\frac{B P}{B P^{\prime}} \\
& \text { or } \frac{A P}{P P^{\prime}}=\frac{B P}{B P^{\prime}-B P}=\frac{B P}{P^{\prime} Q} \text { where } B Q= \\
& B P .
\end{aligned}
$$

$\therefore P Q$ is $\| A B$. (7).

Fig. 4.

Let $P B$ produced meet the circle in R

$$
\begin{array}{r}
\text { then } \frac{A P}{P B}=\frac{A R}{B R} \\
\therefore \frac{A P}{A R}=\frac{B P}{B R}
\end{array}
$$

$$
\begin{equation*}
\therefore \angle P A B=\angle B A R . \tag{8}
\end{equation*}
$$

Similarly it can be shewn that if $P^{\prime} B$ meet the circle again in R^{\prime} then

$$
\angle P^{\prime} A B=\angle B A R^{\prime} .
$$

$\therefore A, R^{\prime}, R$ lie on the same straight line. (9).
Again, in the two triangles $A P B, A R^{\prime} B$ we have $\angle P A B=\angle R^{\prime} A B$ also $\angle A P B=\pi-\angle P^{\prime} P R=\pi-\angle P^{\prime} R^{\prime} R=\angle A R^{\prime} B$, and the side $A B$ is common
\therefore we have $B P=B R^{\prime}, A P=A R^{\prime}$.
Similarly we can show that $B P^{\prime}=B R$ and $A P^{\prime}=A R$. (10).
Also $B Q=B P$.
$\therefore B P^{\prime 8}-B R^{\prime 8}=P^{\prime} R^{\prime} . P^{\prime} Q$. (11).
Since $B P=B Q=B R^{\prime}$ we can show that the angle $Q P R^{\prime}$ is a rightangle. (12).

If $R^{\prime} Q^{\prime}$ be drawn parallel to $A B$, similnrly $\angle Q Q^{\prime} R^{\prime}$ is a right-angle, and as $P Q, R^{\prime} Q^{\prime}$ are each parallel to $A B, Q P R^{\prime} Q^{\prime}$ is a rectangle. (13).

And it is evident that $P, Q, Q^{\prime}, R^{\prime}$ lie on a circle, the centre of which is B. (14).

The results of propositions (7) to (14) may be summed ap as follows:-

If a straight line be drawn through the fixed point A, catting the circle in P and P^{\prime} and $P R, P^{\prime} B$ meet the circle again in R and R^{\prime}, and $P Q$ and $R^{\prime} Q^{\prime}$ are drawn parallel to $A B$, then A, R^{\prime}, R lie on ono straight line. A circle with centre B passes through $P, Q, Q^{\prime}, R^{\prime}$. Al bisects the angle $P^{\prime} A R^{\prime}$ and P, R^{\prime} and P^{\prime}, R are respectively symmetrical with respect to $A B$.

Now, let us consider the properties of the system of circles, obtained with the same fixed points A, B, by varying the ratio of $A P$ to $B P$. We have $\frac{C A}{C B}=m^{2}$.
$\therefore \frac{A B}{C B}=m^{2}-1$ or $C B=\frac{A B}{m^{2}-1}$.
Now, $A B$ is constant $\therefore C B \propto \frac{1}{m^{2}-1}$. (15).
If $n=1, O B=\infty$, and this must be so $n s$ in this case, the locus reduces itself to a straight line, which may be taken as the case of a circle with an infinite radius.

It will appear from (5) that all the circles of the system are intersected orthogonally by the circle described on $A B$ as dinmetcr.

If r be the radius of the circle, $r^{2}=C A \times C B=m^{2} \times\left(\frac{A B}{m^{2}-1}\right)^{2}$.
$\therefore r=A B \times \frac{m}{m^{2}-1}$.
or $A B=r\left(n_{2}-\frac{1}{m}\right)$.
This shows that the radias remains the same if m be changed into $-\frac{1}{n}$.

Geometrically this menns that if we describe a circle making $B P=m . A P$, the radius will be the same, but the centre will be on the other side, and this also appears from the consideration of symmetry.

The relation $r_{1}=m r_{i}$ reduces to $r=m a$ where a is fixed, and r and m vary. Writing the relation in the form $\frac{r}{m}=a$, we arrive at another result, which may be enuncinted as follows:-

If two circles be described, one on the line joining the fixed points as diameter, and the other with centre B and radius equal to a; then if any of the system of circles drawn with the same fixed points A, B and having the relation $r_{1}=m r_{2}$ cut the circle described round B as centre in P, and the straight line $A B$ in D, and $D E$ be drawn perpendicular to $A B$, meeting the circle described on $A B$ as diameter in E, then the length of $A P$ varies as the square of the co-tangent of the nangle $D A E$.

$$
\text { We hare } \begin{aligned}
A P & =B P \times \frac{A D}{B D} \\
& =B P \times \frac{A D}{D E} \times \frac{D E}{B D} \\
& =B P \cot ^{2} D A E \\
& =a \cot ^{2} D A E .
\end{aligned}
$$

Therefore, the position of the point P is known if the magnitude of the

Fig. 5.
 angle $B A E$ is given.

Also for any point on the circle duscribed round B with a fixed radius $A P \tan ^{2} B A E$ is constant and equal to the radius. (17).

Now, if $A P, B P$ rary bat the ratio $\frac{A P}{B P}$ remains constant, the ratio $\frac{A D}{B D}$ will remain constant, aud also the angle $B A E$.

Therefore, if A be fixed and any point B is taken in $A B$, and D taken such that $\frac{A D}{B D}$ is constant, the locus of the point where the perpendicular at D meets the circle described on $A B$ as diameter is a fixed straight line through A. (18).

The preceding propositions will, I hope, show the utility of the method. Many other properties may be similarly deduced, and this paper is put forward in the hope that it will lead to the deduction of other important and useful results by others.

I beg to add that the properties alluded to before, may, I think, be atilised in some physical experiments in which two motions are produced simultaneously at two different places, but as I hare not the opportunity or ability to carry them out msself, I ouly beg to give a brief outline of the method in the hope that others will be able to work it out.

Experimental measurement of the velocity of sound from observations in a railway train.-If a railway train travels at a constant speed, and r sound be produced at Ω distance at the same moment, when the train leaves the station, the sound will be heard in the train at only two points in the line of motion, formed by its intersection with the circle with the source of sound and the station as the fixed points. From the observations the ratio of the relocity of sound to that of the railway train can be calculated, as shewn below. The following proof applies to the case in which the line of motion is at right-angles to the line joining the railway station to the source of sound.

Let B be the station and A the source of sound in the figure in Ex. 3, Hall and Stevens page 361, and let H and K be the points where
the sound from A is heard. Then, from the observation of the time since leaving the station, an observer can find the distance $B H$, if the speed of the railway train be known. $A B$ can be found by direct measurement, and thence $A H$. The ratio of $A H$ to $B H$ gives that of the velocity of the sound to that of the train.
IV.-Note on a method of detecting free Phosphorus.-By P. Mokerji, B.Sc., Professor of Chemistry, Presidency Oollege, Calcutta. Communicated by the Natural History Secretary.
[Received 12th March ; Read 4th April, 1900.]
The following statement is made in Roscoe's Treatise on Chemistry and in Watts' Dictionary of Chemistry : Phosphorus does not directly combine with Hydrogen.

The principle employed for the detection of free Phosphorus in the present note is the phosphorescence of the vapour of Phosphorus diluted with Hydrogen gas.

The following is the apparatus employed : A three-necked Woulffe's bottle; to the middle neck of which there is attached by a cork a tube about eleven inches long and of half an inch diameter, the upper end of the tabe being closed with a cork. To another neck a safety funnel with a long tabe is attached, and in the third neck a short jet is inserted. The tube of the safety funnel dips into the liquid in the bottle; the middle tube and the jet enter the bottle only for a short distance. The tabe attached to the middle neck is somewhat loosely fitted so that traces of air may enter the bottle. The jet and the funnel are fitted tightly. The capacity of the bottle may be a litre or less.

For the above-mentioned apparatus a simpler one las been substituted in several experiments; namely, a small flask of about 184 c.c. capacity, and fitted with a funnel with a stopcock and also with a jet.

The method of carrying out the test, and the appearance:-Zinc and dilate Sulphuric acid are introduced into the bottle, and the gas issuing from the jet is observed. If in a dark room, there is no glow perceived, then the materials employed are free from uncombined Phosphoras. When the bottle is so hot through the chemical action between the zinc and acid that it can scarcely be touched, i.e., when the temperature of the liquid is about 60° to $70^{\circ} \mathrm{C}$., and that of the gas in the upper part of the bottle is 45° to $50^{\circ} \mathrm{C}$., the cork is removed from the top of the tube attached to the middle neck and the substance suspected to be J. II. 13

Phosphorus or to contain this in a free state is introduced through the tube into the bottle, and then the cork is quickly inserted. If an organic mixture suspected to contain free Phosphorus has to be introduced, it may be poured in through the thistle funnel, or better still through the neck to which the jet is attached ; the jet is quickly put back into the neck after introduction of the mixture. Soon after the introduction of Phosphorus (free) the gas issuing from the jet is found to glow in a dark room, a sheaf of light emanating from the jet. The liquid inside the bottle glows, aud luminous flashes are also seen now and then. If now the cork at the top of the middle tube be removed, the light will sink down through the jet, and the gas escaping at the top of the middle tube will glow. On replacing the cork the glow will reappear at the jet. By alternately removing and replacing this cork, the glow may be made to move downwards and upwards through the jet at the option of the operator. [If the second form of apparatus is used, it is only necessary to take off and replace the stopcock below the funnel, and the glow will appear alternately.in the funnel and at the jet.]

Fresh quantities of dilute Sulphuric acid and Platinic chloride may be introduced if the glow shews sign of ceasing.

Delicacy of the test:-In one experiment, 7 mgrs . of Phosphorus were cut into two larger and two smaller pieces; and one of the smaller pieces (about 1.5 mgr .) was introduced into the second form of apparatus ; the appearance noted above was observed. After about half an hour the zinc was washed two or three times and kept in the flask under water. About tiventy-four hours later this zinc without any further addition of Phosphorus again shewed the glow at the jet and in the funnel.

In another experiment the first form of apparatus was employed, the capacity of the bottle being a little over a litre. 112 grammes of zinc, 250 c.c. of acid and water, and 30 c.c. of milk were introduced into the bottle; next 2 mgr . of Phosphorus were introduced. The jet, the middle tube, and the bottle all glowed in the way described above. It may be here stated that Fresenius's limit for Mitscherlich's test is 1.5 mgr . of Phosphorus in 150 grammes of mixture; the second experiment shews that the present method is at least as delicate as Mitscherlich's.

Remarks on the process :-The use of nascent Hydrogen as a reagent for the detection of Phosphorus is not new. Valentine mentions it in his Qualitative Analysis; but his method is not the same as the present method. He observes the green core of the hydrogen jet after ignition, and he does not use a dark room. Moreover, his apparatus is Marsh's Apparatus. His test is not a test of free Phosphorus only but indicates
indifferently either Phosphorns, phosphide, phosphite or hypophosphite, since any one of these substances will give a flame with a green core on treatment with nascent hydrogen, i.e., with zinc and dilate Sulpharic acid. It need hardly be stated that the method desoribed in this paper is not the Blondlot-Dussard Method, since the Hydrogen jet is not ignited, and the appearance observed is not the green core of the flame of burning Hydrogen. The phenomenn observed iu the present method are very similar to those described by Crookes in page 489 of his Select Methods, 'I'hird Edition. Crookes, however, uses a somewhat complicated distilling and condensing apparatus, and employs a lamp for distilling the Phosphorus: the lamp again necessitates the use of materisls for preventing its light from hindering the observation of the glow. Moreover, in his method, the glow is not under control. The apparatus described above is simple; no lamp is required for heating, and consequently no precaution is necessary, as to the reflected light of the lamp being mistaken for the glow of Phosphorus. Again, the operator can by using the present method make the glow move up and down as often as he likes and with great ease. Finally, there is no risk of explosion, since hydrogen continues to be evolved even when air is sucked in through the jet (by opening the top of the middle tabe); air cannot rush in to any large extent. Lastly, Phosphorus can not only be detected by this method, but it can also be estimated quantitively by passing the vapour thus evolved into silver nitrate solution.

After determining the exact method in which the present test is to be carried out, the influence of a good many substances upon the glow described above was tried; and by comparing the results obtained with those stated in connection with Mitscherlich's method by Crookes and others it appears that the present method is superior to Mitscherlich's. This will be seen from what will be stated presently. It may be first of all noted that common bazarr zinc was used; the zinc contained some Phosphorus in the combined state (and also some Arsenic). Hence in contact with dilute Sulpharic acid the zinc evolved a jet of hydrogen, which barnt with a green core on ignition, but which gave no glow without introduction of free Phosphorus. It follows that for the detection of Phosphorus, it is not necessary to use pure zinc. It may be suggested that steam could be substituted for nascent Hydrogen in the second form of apparatus described above. The objection to steam is that the glow is not as controlable as it is with nascent Hydrogen; moreover there is the risk of explosion after suction of air through the jet by removing the lamp from below the flask and then re-heating. The risk of explosion will be distinctly greater in presence of mustard oil, phosphoretted hydrogen, \&c., and in presence of Iodine, Sulphuretted

Hydrogen, Ether, \&c. ; nascent Hydrogen has also Ω decisive superiority as will appear later on. Theu again on boiling Phosphorus in a complex aqueous mixture (when the temperature must be ligher than $100^{\circ} \mathrm{C}$.) some portion of the element may get oxidised by water if by nothing else and cannot then be vaporised.

As already stated some of the substances in presence of which Phosphorus was detected by this method were such as are known to interfere with the glow in the older methods. Milk, boiled rice, flour, silica, though not included in this category were thus tried; the glow was well observed both at the jet and at the top of the middle tube after addition of Phosphorus. Sodium or potassinm hypophosphite solution freshly prepared and filtered from particles of Phosphorus gave no glow, though phosphoretted hydrogen was apparently evolved as the gas at the jet barnt with a green core upon ignition : the glow appeared soon after introduction of a minute piece of Phosphorus. Phosphoretted hydrogen therefore does not interfere with the glow in this method. Sodinm phosphite also gave no glow though it evolved phosphoretted hydrogen. Nitrous fumes are said to stop the glow of phosphorus, but it was found that in this method nitrate or nitrate mixed with chloride did not prevent the glow. Mustard oil was tried: it did not interfere with the glow; the jet became blocked by a whitish oily deposit after some time, but there was the usual glow in the funnel (of the second form of apparatus). The gas did not take fire and there was no explosion. Sulphuretted hydrogen and also Iodine are stated to interfere with or stop the glow of Phosphorus. In the present method the result obtained in presence of either of these substances may be regarded as satisfactory. In one experiment 10 c.c. of a saturated solution of Iodine in potassium Iodide were introduced in three portions; the glow was seen as usual, and the issaing gas did not colour starch paper to any appreciable degree. In another experiment about four-and-a-half grammes of powdered ferrous sulphide were introduced in two portions, and about 3 mgr . of Phosphorus were used. The glow was observed at the jet and in the funnel : next the jet was changed and the new jet also gave the glow. Ether, alcohol, and oil of turpentine were also tricd. Oil of turpentine stopped the glow altogether; but it was found that so far as the present method is concerned, the failure may be easily remedied. A piece of Phosphorus, about 2 mgr ., was introduced into boiled rice; oil of turpentine, 2.5 c.c., was next added and then a little water, and the mixture shaken. Now the turpentine was removed by decantation after adding some water; the mixture was next quickly washed (by decantation) with Alcohol and finally with water. The mixture probably still contained traces of turpentine oil ; bat on intro.
duction into the hydrogen-evolving bottle, the glow was seen as asual. Next 5 c.c. of alcohol were introduced into the bottle, the glow continued at the jet, and was also observed at the middle tube, though it was a little less bright. As regards either it is as prejudicial to the glow as oil of turpentine: but there is this difference that the glow appears after a time on introduction of a fresh piece of Phosphoras.

It may be stated here that after the experiment is over, the bottle or flask used for the experiment should be filled with water before opening it in air.

It will be seen from what has been stated above that the present method will greatly facilitate the detection of Phosphoras in food and in cases of poisoning. The apparatus described is simple; and Zinc and Sulphuric acid can be procured in any town. The glow is seen on a magnified scale; and there is no possibility of its being mistaken, especially as no lamp is required. Moreover, many substances that hinder the glow of Phosphorus in the older methods do not affect the glow as observed by the present method.

I have lastly to state that my assistant, Haridas Saha, M.A., has helped me considerably in carrying ont these experiments.
V.-Note on the occurrence of Rhodospiza obsoleta (Licht.) in the Tochi Valley.-By Capt. H. J. Walton, I.M.S:
[Received 18th May; Read 6th Jane, 1900.]
Lieut. S. R. Douglas, I.M.S., has very kindly been collecting birds for me in the Tochi Valley for some months. Amongst some that I recently received from him, from Datta Khel, are two specimens of Rhodospiza obsoleta (Licht.).

Mr. Oates, in vol. ii, "Fanna of British India, Birds," p. 223, mentions this Desert Rose-Finch as a species likely to be found in India, but I can find no previons record of it having been procared within the limits of the empire.

There is no doubt about the identification; I have compared the hirds with those in the Indian Museum, collected by Stoliczka in Turkestan, and Mr. Finn also agrees that they are R. obsoleta. Asmy two specimens are carbolised, I am not sure of the sexes: the one that I take to be the male is a larger bird than the other, and lias the lores and a very narrow frontal line black, the upper tail-coverts contrast with the sandy-brown back in being rather bright rufous, the inner secondaries are rather broadly edged with pale buff.

The other bird, which I take to be the hen, has the lores buff, and the upper tail-coverts and inner secondaries concolorous with the sandybrown back.

The first specimen was shot on April 14th, 1900. Its measurements, taken in the flesh, are :-

Long: tot: 6.4 .5 inches.
al: 3.3 "
caud: $2 \cdot 37$ "
culm : 0.4 "
tars: 0.625 ,,
The smaller bird was shot on April 18th, 1900, and measures
Long: tot: 6.1 inches.
al: 3.25 "
caud : 2.25 "
culm : 0.43 ",
tars: 0.625 "
The colours of the soft parts were not noted.
VI.-On the Birds collected and observed in the Southern Shan States of Upper Burma.-By Col. C. 'I. Bingeam, F.Z.S., and H. N. Thompson, F.Z.S. Oommunicated by the Natural History Secretary.
[Received 16th May ; Read 6th June, 1900.]
The Southern Shan States may roughly be said to be bounded on the north by the Northern Shan States which are separated from them by the Nam Tu or Myitgnè river; on the east by Chinese territory and the French possessions on the Mèkong river; on the south-east and south by the Siamese Shan States, and the semi-independant state of Karreni; and on the west by the settled districts of Pyinmana, Kyauksè, and Meiktila.

A large portion of this territory consists of stretches of plateau land at elevations from 2500 to 5000 ft . above the level of the sea, but lowlying hot valleys and high ranges of hills with peaks rising to 8000 ft . and upward also occur. The flora and fauna of the States is consequently very diversified and well-worth thorough exploration and working out.

During last cold weather (1899-1900) accompanied by Mr. H. N. Thompson, Depaty Conservator in charge of the forests, Southern Shan

States, I made a short tour in some of the most western of the States. It was on this tour that the greater part of the material on which this paper is founded was collected, but many additions have been made by Mr. Thompson of birds collected or observed and identified by him previons to and after our joint tour. We were fortunate in being able to spend a few days at various camps ou Loi-San-Pa, a mountain about 8000 ft . in elevation* situated in the Möng Köng State. Here the birds procured were most interesting and I think fairly representative of the Avi-fauna of the country.

Altogether something over 350 specimens representing 239 species were obtained daring the tour or subsequently by Mr. Thompson, while 62 species, specimens of which were not procured, were seen, noted and identified beyond a doubt.

In the list which follows, one or two of the birds entered ander already described species, vary more or less in size and colouring from their types. 'These might possibly be separated as distinct. I hare however while noting the points of difference preferred to consider them merely local races of well-known species found in the Himalayas, Assam, other parts of Burma, \&c. Two species however, one procared at Kalaw 4:300 ft., the other on Loi-San-Pa at 6000 ft . are in my opinion distinctly new. One of these is a pretty little Fly-catcher belonging to the genus Cyoruis, the other a remarkable Bulbul allied in habits to Hypsipetes, but differing structurally and in colour from all species of that genus, and from all known Bulbuls. I have ventured to propose (vide Annals and Magazine of Natural History, London, series vii, vol. v, No. 28 (April, 1900), pp. 357-359), a new genus Cerasophila for the aberrant Bulbul, and to name it C. thompsoni after Mr. Thompson, who was the first to shoot a specimen of the bird, recognizing it at the time as probably an undescribed species.

The arrangement followed in the sabjoined list is that adopted in the volumes on the Birds, Fauna of India series, by Messrs. Ontes and Blanford. An asterisk prefixed to the current number in the list shows that the species was seen and identified but not procured.

I have to express my thanks to Major A. Alcock, I.M.S., Superintendent of the Indian Museum, Calcutta, who was good enough to send a trained taxidermist to accompany my camp; and to Mr. Frank Finn, the Deputy Superintendent of the Maseum, who kindly assisted me in comparing and identifying the birds obtained by me with the series of birds in the collection of the Indian Museum.

[^33]
Family Corvide.

*1 (4). Corvos macrorhynchus, Wagler.
Faun. Brit. Ind., Birds, I, p. 17.
Very common throughout the more wooded portions of these States. Destroys and eats a large number of wild birds' eggs during the breeding season.
*2 (8). Corvus insolens, Hume.
Faun. Brit. Ind., Birds, I, p. 21.
Common, but only in the villages and towns, not in the forest.
*3 (10). Pica rostica, Linn.
Faun. Brit. Ind., Birds, I, p. 24.
Only once met with at Möng Löng (3000 ft .) in the Möng Köng State (C.T.B.). Common in the Eastern States of Hopong, Möng Pöng, Möngnai, \&c. I have met it close to the banks of the Mekong river, as low down as 1600 ft . Breeds in March and April. (H.N.T.).

4 (12). Urocissa occipitalis, Blyth.
Faun. Brit. Ind., Birds, I, p. 26.
Common in the drier parts of the States. One or two of the specimens procured had the lower plumage strongly tinged with a wash of ochreous-red.

5 (14). Cissa chinensis, Bodd.
Faun. Brit. Ind., Birds, I, p. 28.
Decidedly rare. One specimen procured at Kalaw (4400 ft .).
6 (18). Dendrocitta himalayensis, Blyth.
Faun. Brit. Ind., Birds, I, p. 32.
Common on the platean in the north-west corner of the Yatsank State, elevation 3600 ft . Has a pleasant metallic call. (H.N.T.).

7 (25). Garrdlds leocotis, Hume.
Faun. Brit. Ind., Birds, I, p. 39.
Very common in the States of Yatsank and Möng Köng. Prefers dry oak forest and Indaing, and goes about in large parties. (H.N.T.).

Near Yatsauk I procured two out of a counted flock of over thirty. (C.T.B.).

Seems most plentiful at elevations of between 2500 and 3500 ft . One specimen was procured on Loi-San-Pa at 6000 ft .

* 8 (31). Pares atriceps, Horsf.

Fatn. Brit. Ind., Birds, J, p. 46.
Found along the western border of the States. (H.N.T.).
9 (32). Paros minor, Temm.
Faun. Brit. Ind., Birds, I, p. 48.
Procured wherever there were pine trees. Common at Kalaw 4400 ft , and on Loi-San-Pa up to 6000 ft . The green colour of the nape extends further down the back than in any Tenasserim specimens.

10 (41). Machlolophus spilonotes, Blyth.
Fautr. Brit. Ind., Birds, J, p. 54.
Loi-San-Pa 6000 ft . and upwards. Confined to dense evergreen forests.

11 (52). Paradoxornis guttaticollis, A. David.
Fatn. Brit. Ind., Birds, I, p. 62.
I put ap several individuals of this species when beating the forests for barking deer on the platean in the north-west corner of the Yatsank Stafe at an elevation of 3800 ft . I procured two specimens last April on the Salween-Mekong watershed at 6000 ft . (H.N.T.).

Family Crateropodide.

12 (64). Drtonastes chinensis, Scop.
Faun. Brit. Ind., Birds, I, p. 74.
One specimen on Loi-San-Pa 5000 ft . (C.T.B.). Common on the Mènetanng range on the west border of the Yatsauk State. Is a very noisy bird. (H.N.T.).

13 (67). Dryonastes sannio, Swinh.
Faun. Brit. Ind., Birds, I, p. 76.
Common abore 4000 ft .

14 (70). Garrolax belangert, Less.
Faun. Brit. Ind., Birds, I, p. 79.
Procured along the road at rarious places. Does not seem to go higher than the edge of the Myèlat plateau at $3(0) \mathrm{ft}$.

15 (72). Garrulax pectoralis, Gould.
Faun. Brit. Ind., Birds, J, p. 80.
Procared two specimens near Yatsank at 2800 ft . Noticed several J. II. 14
times in the low-lying hot valleys in the States. One of the specimens procured has the whole lower plumage washed with ochreous-sellow.
*16 (73). Garrelax moniliger, Hodgs.
Faun. Brit. Ind., Bivds, I, p. 81.
Noticed on one occasion mixed up in a flock of G. pectoralis.
17 (86). Trochaloptercm melanostigma, Blyth.
Faun. Brit. Ind., Birds, I, p. 92.
Loi-San-Fa between 5000 and 6000 ft . A great skulker.
18 (87). Trochalopterom pheniceum, Gould.
Faın. Brit. Ind., Birds, I, p. 93.
I procured specimens of this species on the Salween-Mekong watershed at 7000 ft . elevation. I observed it on one occasion on the slopes of Loi-San-Pa. (H.N.T.).

Specimens from Taunggyi differ, as noted below, from Mr. Blanford's description of this bird in Fann. Brit. Ind., Birds :-

No black supercilium ; the head above and nape dark slatog-brown shading into olive-brown on the back, and paling to olive-green on the rump. The tail above is dark brown with conspicuous cross-barrings of dusky black; the outer three tail fenthers on the underside suffused with crimson-brown and tipped broadly with pale orange; ander tail coverts also tipped with orange. (C.T.B.).

19 (106). Argya golaris, Blyth.
Faun. Brit. Ind., Birds, I, p. 107.
Confined to the hot low portions of the States.
20 (116). Pomatoriinos schisticeps, Hodgs.
Faun. Brit. Ind., Birde, I, p. 116.
Common from 3010 ft . and upwards. Its loud "hoot-hoot-hoot" was one of the first sounds to greet one in the morning.

21 (129a). Pomatorhinus imberbis, Salvadori.
Faun. Brit. Ind., Birds, IV, App., p. 479.
At 4400 ft . Taunggyi, April and May. (H.N.T.) I linve procured this species in the Ruby Mines District at 6000 ft . in April. (C.T.B.). Iris blood red. (H.N.T.):

22 (139). Pictorhis sinensis, Gm.
Fuun. Brit. Ind., Birds, I, p. 187.
Not uncommon, but a grent skulker. One specimen procured near Taunggyi at 5000 ft .

23 (145). Pbllornedm subochractid, Swinh.
Faun. Brit. Ind., Birds, I, p. 142.
Common. Breeds in April (H.N.'T.). I came across it only twice during the tour, and I entirely missed its incessant call of "pretty dear"-"pretty dear" so commonly heard in the Tenasserim forests. (C.T.B.).

24 (153). Corythocichla brevicacdata, Blyth.
Faun. Brit. Ind., Birds, I, p. 148.
Taunggyi, a single specimen. Hitherto I believe only procured on Moolayit monntain in Tenasserim.

25 (163). Alcippe nepalensis, Hodgs.
Faun. Brit. Ind., Birds, I, p. 157.
Confined to well-wooded parts. Procured near Taunggyi at 4000 ft .
26 (176). Mixornis rubricapillus, Tick.
Faun. Brit. Ind., Birds, I, p. 167.
Near Taunggyi 4000 ft . Found occasionally in well-wooded parts, especially in bamboo jangle. Has a most monotonous call, which it keeps up throughout the day in the hot weather. (H.N.T.).

27 (182). Sittiparus castaneiceps, Hodgs.
Faun. Brit. Ind., Birds, I, p. 172.
One specimen procured on Loi-Snu-Pa at over 7000 ft . elevation. I have only seen this bird in dense evergreen forest at 7000 ft . and above. It sometimes clings to the stem of a tree like a Tree-Creeper (Cerlhia). (H.N.T.).

28 (188). Myiophoneds edgeni, Hume.
Faun. Brit. Ind, Birds, I, p. 179.
This species is in my opinion barely separable from M. temminckii. The points of difference noted by Oates are the absence of the white tippings to the upper wing coverts, and the larger bill in M. eugenii. Two specimens were procured on the same stream on Loi-San-Pa at about 6000 ft ., one has conspicuous white tips to the apper wing coverts, the other has not. Both however have large and massive bills. I have therefore considered them both as belonging to Hume's species

29 (203). Sibia picaoides, Hodgs.
Faun. Brit. Ind., Birds, I, p. 195.
Loi-San. Pa about 6000 ft . I have only found this bird at high
elevations. It goes about in small flocks, and has a lond clear whistling call, which however is not kept up so long or so monotononsly as that of Lioptila melanolenca. It extends to the east to the Mekong-Salween watershed, a few miles west of the town of Kengtung. (H.N.T.).

30 (206). Liol'tha melanoleuca, (Tick.), Blgth.
Funn. Brit. Ind., Birds, I, p. 198.
31 (207). Lioptra castanoptera, Salvadori.
l'aun. Brit. Ind., Birds, I, p. 199.
The distribution of these two species is rather remarkable. After leaving the station at Thazi on the Burma Railway and proceeding by road to Taunggyi and Fort Stedman, the large civil and military stations in the Southern Shan Stales, the first Lioptila met with is L. castanoptera, which is common and the only species of the genus I found at Kalaw 4400 ft . It no doubt extends along the range of hills bordering the western side of the Myealat plateau to Karenni, from whence it was first sent by Signor Fea. This species so far as my observations go does not extend to the east of Kalaw, as on the range of hills inclading Taunggsi and extending to the south to Fort Stedman and northwards towards the hills in the Möng Köng State including Loi-San-Pa I only found L. melanoleuca. At the same time it has to be noted that Oates (loc. cit.) records having examined a specimen of L. castanoptera which was obtained at Fort Stedman,* where during several days collecting I only saw and procured L. melanoleuca, and Mr. Thompson informs me that both species occur to the east on the Salween-Mekong watershed.

32 (208). Lioptila annectens, Blyth.
Faun. Brit. Ind., Birds, I, p. 199.
Common on Loi-San-Pa at 6000 ft . and upwards. A restless bird, always on the move, whistling as it twines in and out among the twigs and leaves.

33 (212). actinodura ramsayi, Wald.
Faun. Brit. Ind., Birds, I, p. 202.
Loi-San-Pa 4000 to 7000 ft . A decidedly rare bird in these States. It has a weird cry, which it monotonously repeated for two or three hoars at a time from the topmost branch of a tree. (H.N.T.).

[^34]1900.] observed in the Southern Shan States of Upper Burma.

34 (222). Siva sordida, Hume.
Faun. Brit. Ind., Birds, I, p. 210.
Loi-San- Pa 6000 ft . and npwards. Hunts about the tivigs, leaves, and flowers like a tit.

35 (228). Zosterops simplex, Swinh.
Faun. Brit. Ind., Birds, I, p. 215.
Met with at Kalaw and throughout the States at elevations of 3000 .ft. and above. It is somewhat remarkable that none of the allied species of Zosterops wero seen.

36 (236). Cutia nepalensis, Hodgs.
Faun. Brit. Ind., Birds, I, p. 222.
I observed this species once or twice on the slopes of Loi-San-Pn, but was unable to procure a specimen. I have shot it further to the east on the Salween-Mekong watershed at 6000 ft . iu dense evergreen forest. (H.N.T.).

37 (238). Pterothiod eralatus, Tick.
Fatn. Brit. Ind., Birds, I, p. 225.
Loi-San-Pa 7000 ft . Found in heavily-wooded localities at elevations of 5000 ft . and upwards. Not common. Keeps to the tops of the high trees senrching the leaves and moss-covered stems for insects. (H.N.T.).

38 (240). Preruthius internedius, Hume.
F'aun. Brit. Ind., Birds, J, p. 227.
One $\&$ procured on Loi-San-Pa at about 6000 ft .
39 (243). شgithina tiphia, Linn.
Faun. Brit. Ind., Birds, I, p. 230.
Common in the low hot ralleys up to an altitude of 3000 ft . (H.N.T.). Particularly plentiful at Sinhè, foot of Taunggyi 2900 ft .

40 (247). Chloropsis aurifrons, Temm.
Faun. Brit. Ind., Birds, I, p. 234.
Fairly common everywhere in the States. One specimen was procured at 5000 ft . on Loi-San.Pa.

41 (249). Celoropsis haruwickif, Jard. and Selby.
Faun. Brit. Ind., Birds, I, p. 236.
Found above 4000 ft ., and very common on Loi-San-Pa, where numbers crowded the wild cherry trees which were in full bloom.

42 (255). Melanochlora sultanea, Hodgs.
Faun. Brit. Ind., Birds, I, p. 241.
Seems to be rare in the States. One δ shot ont of a small party in thick forest on a stream in the Möng Pöng State, elevation about 2500 ft .

43 (257). Mesia argentauris, Hodgs.
Faun. Brit. Ind., Birds, J, p. 244.
Loi-San- Pa at 6000 ft . and above in dense evergreen bushes.
44 (261). Psaroglossa spil.optera, Vigors.
Faun. Brit. Ind., Birds, I, p. 249.
Met with once, at Sinhè 2900 ft ., where a small flock were busy searching the flowers on a group of trees of the Butea frondosa.

45 (270). Hypsipetes concolor, Blyth.
Faun. Brit. Ind., Birds, I, p. 261.
Very common in all the well-wooded localities at an elevation of 4000 ft . and upwards.

46 (270 bis). Cerasophila thompsoni, Bingh.
Ann. \&. Mag. Nat. Hist., Lond., seventh series, vol. v (1900), p. 358.
Loi-San-Pa 6000 ft . Mr. Thompson was the first to procure a specimen of this remarkble Bulbul, close to our camp on some wild cherry trees which were at the time of our visit in full bloom. Subsequently watching by the same groaps of trees we were able to secure more specimens. The trees were crowded with birds, Lioptila melanoleuca, Chloropsis hardwickii, Arachnotheras, and Sun-birds. Every now and then parties of Hypsipetes concolor, and with them parties of this species would alight, busily work over the cherry blossoms, sending them in a shower to the ground, and then fly off. Cerasophila was most conspicuous with its snow-white head, and in flight, voice, and habits closely resembled Hypsipetes.

A very dark-coloured race or species was seen by me in 1897 on the high range dividing the Trans-Salween State of Möng-Tun from that of Mong. Hsat. (H.N.T.).

It is very likely this dark-coloured bird will tarn out to be Hypsipeles leucocephalus, Gmelin, a Chinese species. (C.T.B.).

47 (272). Hemixus flavala, Hodgs.
Faun. Brit. Ind., Birds, I, p. 263.
Loi-San-Pa up to 7000 ft . Not common.

48 (275). Hemixus macclellandi, Horsf.
F'aun. Brit. Iıd., Birds, I, p. 265.
Loi-San-Pa 5000 to 6000 ft . Fairly common, a very silent bird.
49 (277). Alcurus striatus, Blyth.
Faun. Brit. Ind., Birds, I, p. 266.
Loi-San-Pa above 7000 ft ., rare. The two specimens procured are remarkably large fine individuals with richer colouring and more yellow about them than Himalayan specimens.

50 (279). Molpastes burmanicus, Sharpe.
F'aun. Brit. Ind., Birds, I, p. 269.
51 (280). Molpastes nigripilets, Blyth.
Faun. Brit. Ind., Birds, I, p. 270.
Both these species are fairly common in the States, the former affecting the low hot valleys and rarely ascending above 400) ft ; the latter common round Taunggyi, at 4800 ft . and above. My belief is that the two species interbreed at Moulmein. I once found a nest in April, starting the femnle, an undoubted M. nigripilens, from it. She flew on to a tree close by and was joined by another Bulbul, which so far ns I could make out had the breast much darker, like that of \boldsymbol{M}. burmanicus. Both birds jerked about the tree in an excited manner, abusing me the while. On examining the nest I found the eggs were hard set, and marking the spot I withdrew. My intention was to let the eggs.hatch out and then to take and rear the young birds, and see what species they turned out to be. Unfortunately I found two days later that the nest had been destroyed, probably by a cat, or squirrel.

In the Southern Shan States, specimens which seem intermediate between the two species were procured. In these the colour of the neck and throat is much darker than in true MI. nigripileus, though not by any means so dark as in true M. burmanicus.

52 (287). Xanthixus flatescens, Blyth.
Faurn. Brit. Ind., Birds, I, p. 275.
Not uncommon in the well-wooded parts of the States.
53 (288). Оtocompsa emeria, Linn.
Faun. Brit. Ind., Birds, I, p. 276.
Universally distributed.
54 (290). Otocompsa flaviventris, Tick.
Faun. Brit. Ind., Birds, I, p. 278.
A very common bird in all the States. Mach more of a jungle bird than the preceding species.

55 (292). Spizixus canifrons, Blyth.
Faun. Brit. Ind., Birds, I, p. 280.
Loi-San-Pa 6000 ft . and upwards. Notwithstanding the peculiar shape of its head and bill, in habits and voice it is a true Bulbul. Procured also by Mr. Thompson on the Salween-Mekong watershed at 7000 ft ., and on the Mènètaiung borders of Upper Burma at 6000 ft .

I also got specimens at Bernardinyo 7000 ft . (C.T.B.).
56 (296). Iole virescens, Blyth?
F'uun. Brit. Ind., Birds, I, p. 284.
Möng Köng and Yatsauk States at about 3000 ft . eleration. Two specimens procured answer, so far as plumage goes, fairly well to Oates' description (luc. cit.) and to Tenasserim specimens in the Indian Museum, but the Southern Shan States' bird seems conspicaonsly larger, and may herealter be separated. Measurements taken in the flesh. Length $78^{\prime \prime}$, Wing $3 \cdot 7^{\prime \prime}$, 'lail $3 \cdot 4^{\prime \prime}$, Tarsus $0 \cdot 7^{\prime \prime}$, Bill from gape $0 \cdot 6^{\prime \prime}$. Bill hornsbrown, lighter at the base of the lower mandible; legs and fect fleshybiown; iris dark grey.

57 (297 bis). Pycnonotus xanthorrhous, Anderson.
Futn. Brit. Ind., Birds, I, p. 286 (foot note).
Loi-San-Pa 6000 ft . I procured it also on the Salween-Mèkong watershed. (H.N.T.) It was not uncommou at Kyatpyin 4500 ft . in the Ruby Mines District, in April. (C.T.B.)

53 (306). Pycnonotus blanfordi, Jerdon.
F'aun. Brit. Ind., Birds, I, p. 291.
Very rare in the States. One specimen procured just on the border below Wetpyuse 2800 ft . Lower it is common. All the specimens pro. cured had remarkably white ear-corerts.

Family Sittida.

59 (317). Sitta neglecta, Wald.
F'aun. Brit. Ind., Birds, I, p. 301.
The common Burmese Nuthatch was procured at elevations from 1000 to 3000 ft . Breeds in April in holes in the large banyan trees that are so common near the Shan villages.

60 (318). Sitta nagaensis, Godiw.-Aust. Faun. Brit. Ind., Birds, I, p. 302.
Met with on several occasions above 3000 ft .
*61 (319). Sitta maga, Wardlaw Ramsay. Fantn. Brit. Ind., Birds, I, p. 303.
Exceedingly rare. I noticed this species both on Loi-San-Pa and at Taunggyi. From its size it cannot be confounded with any other Nathatch. (H.N.T.) Two specimens, a δ and a ρ, sent me from Taunggyi by Mr . Thompson. The δ is similar in plamage to the $\&$, but of a darker slatey-blue above, and conspicuously larger. Both ơ and q differ from the description in the Fauna volume in having the feathers of the head from the forehead to the nape lying between the two black bands that run from the nostril backwards, tipped with white. This speckled band is very conspicuous. (C.T.B.).

62 (325). Sitta frontalis, Horsf. Faun. Brit. Ind., Birds, I, p. 307.
Common in low hot valleys.

Family Digruride.

63 (327). Dicrurus ater, Hermann.
Faun. Brit. Ind., Birds, I, p. 312.
Occurs throughout the States. It was often observed, but only one specimen was shot at Thammakan 4300 ft .

64 (333). Diorurus cineraorde, Horsf.
Faun. Brit. Ind., Birds, I, p. 318.
This Drongo was fairly common, and was procured up to $\mathbf{6 0 0 0} \mathbf{f t}$.
*65 (334). Chaptia aenea, Vieill.
Faun. Brit. Ind., Birds, I, p. 318.
Observed just below Kalaw at 3500 ft .
66 (335). Chibia hotrentotta, Linn.
Faun. Brit. Ind., Birds, I, p. 320.
Common. (H.N.T.) One specimen procured on Loi-San.Pa at 6000 ft .

67 (339). Bhringa bemifer, Temm.
Faun. Brit. Ind., Birds, I, p. 324.
Rather uncommon. (H.N.T.). Several individuals were observed in heary forest uear Möng Löng at about 2000 ft . elevation. One was procured at Sinhè at about 3000 ft .
*68 (340). Dissemurus paradiseus, Linn.
F'aun. Brit. Ind., Birds, I, p. 325.
Common in the well-wooded valleys at medium elevations. (H.N.T.) J. II. 15

Family Certhidas.

69 (344). Certhia discolor, Blyth
Faun. Brit. Ind., Birds, I, p. 331.
Loi. San-Pa 7000 ft . This appears to be rather rare in these States. I observed altogether about four individuals on the higher slopes of Loi-San-Pa, and have noticed it nowhere else. (H.N.T.)

Family Sxlfidde.
70 (389). Megalurde palustris, Horsf.
Faun. Brit. Ind., Birds, I, p. 383.
Procured at several places from 2000 ft . to 5000 ft . Common in the elephant-grass jungles near the larger streams. (H.N.T.)

71 (404). Herbivocola schwarzi, Radde.
Faun. Brit. Ind., Birds, I, p. 399.
Loi-San-Pa 6000 ft . Taunggyi 5500 ft .
72 (405). Phylloscopus affinis, Tick.
Faun. Brit. Ind., Birde, I, p. 401.
Möng Lơng at about 2000 ft . Not common.
73 (414). Phylloscopus polcher, Hodgs.
Faun. Brit. Ind., Birils, I, p. 407.
Loi-San-Pa 6000 to 7000 ft . Two specimens.
74 (417). Peylloscopos suprrciliosus, Gmelin.
Faun. Brit. Ind., Birde, I, p. 409.
Very common during the cold weather. This bird was a perfect nuisance by its abundance, always getting shot in mistake for something else. It was procured up to 7000 ft . ou Loi-San-Pa.

75 (423). Acanthopnedete plombeitarsed, Swinh.
Faun. Brit. Ind., Birds, I, p. 414.
Loi-San-Pa 3000 ft . Rare. Specimons with and without the doable bar on the wing (A. viridiamus ?) were shot.

76 (468). Prinia blandpordi, Wald.
Faun. Brit. Ind., Birds, I, p. 454.
Seen only once at Sinhe at about 3000 ft ., when several specimens were procured. All have an exceedingly rufons tinge with very little green aboat them. The sub-terminal black patches ou the tail feathers are very large and well-marked.
1900.] observed in the Southern Shan States of Opper Burma.

Family Lanides.
77 (474). Lanios colluiroides, Lesson.
Faun. Brit. Ind., Birds, I, p. 462.
Universally distributed.

78 (475). Lanios nigriceps, Franklin.
Faun. Brit. Ind., Birds, I, p. 463.
Fairly common up to 6000 ft . Frequents localities well-provided with grass jungle. (H.N.T.)

79 (484). Hemipos pidatus, Sykes.
Faun. Brit. Ind., Birds, I, p. 471.
Common in wooded localities. Particularly plentiful at Kalaw 4500 ft .

80 (488). Tephrovornis pondiceriands, Gmelin.
Faun. Brit. Ind., Birds, I, p. 475.
Confined to rather dry forest up to 4000 ft . (H.N.T.)
81 (490). Pericrocotos speciosus, Lath.
Faun. Brit. Ind., Birds, I, p. 479.
One of the commonest birds in the States.
82 (500). Pericrocotus peregrinus, Linn.
Faun. Brit. Ind., Birds, I, p. 487.
Common in dry forests at low and medium elevations.
83 -(505). Campophaga melanoschista, Hodgs.
Faun. Brit. Ind., Birds, I, p. 491.
Fairly common in dry forest up to 4500 ft . (H.N.T.).
*84 (510). Graucalus macir, Lese.
Faun. Brit. Ind., Birds, I, p. 496.
Confined to the dry oak and Dipterocarpus forests up to 4000 ft . (H.N.T.).

85 (512). Artamos foscus, Vieill.
Faun. Brit. Ind., Birds, I, p. 498.
Very common in some places. Probably migrates locally from State to State. Wherever it is met with it is found in large flocks. Very partial to old clearings (taungyas) where it perches on the dead tree tops, sallying forth every now and then catching insects on the wing. (H.N.T.).

Family Oriondes.

86 (515). Oriolus tendirostris, Blyth. Faun. Brit. Ind., Birds, I, p. 503.
I procured one specimen of this species at Payingon in the northwestern corner of the Yatsank State. (H.N.T.).
*87 (521). Oriolus melanocephalus, Linn.
Faun. Brit. Ind., Birds, I, p. 506.
Both heard and seen on several occasions during the tour in the low hot valleys.

88 (522). Oriolds traillif, Vigors.
Faun. Brit. Ind., Birds, I, p. 508.
Kalaw 4400 ft . One specimen procured. Rare ; seems to go about in parties of three and four.

Family Eolabetide.
89 (524). Eulabes intermbdia, A. Hay.
Faun. Brit. Ind., Birds, I, p. 511.
Common in the large forests at the foot of the hill ranges in the States. (H.N.'I.).

Family Sturnide.

90 (538). Sturnia malabarica, Gmelin.
Faun. Brit. Ind., Birds, I, p. 527.
Two specimens procured below Kalaw at about 3000 ft .
91 (539). Sturnia nemoricola, Jerd.
Faun. Brit. Ind., Birds, I, p. 528.
Common in the more wooded portions of the States where it replaces S. malabarica. (H.N.T). Not observed on Loi-San.Pa.

92 (546). Gracolipica nigricollis, Payk.
Faun. Brit. Ind., Birds, I, p. 534.
Found occasionally in small parties in the plateaus bordering some of the rivers ap to an altitude of 3000 ft . Seen also in April building a large conspicuous nest of grass, rage and feathers. I have lately found a nest on the top of a cactus bush near Yatsauk. (H.N.T.).

Procured in the paddy fields round Möng Pöng and Möng Löng at 2000 to 3500 ft .
*93 (549). Acridotheres tristis, Linn.
Fanır. Brit. Ind., Birds, I, p. 537.
*94 (552). Athiopsar fuscus, Wagler.
Faun. Brit. Ind., Birds, I, p. 539.
Both these species were seen and identified near the lake at Fort Stedman.

95 (553). Rthiopsar grandis, Moore.
Faun. Brit. Ind., Birds, I, p. 541.
96 (554). Athiopsar albicinctus, Godw.-Aust, and Wald.
Faun. Brit. Ind., Birds, I, p. 541.
Both these Mynas are common throughout the States, especially ronnd cultivation and villages. We procured them from Thamakhan to Möng Löng 3000 ft . and above.
*97 (556). Stornopastor superciliabis, Blyth.
Faun. Brit. Ind., Birds, I, p. 543.
Fairly common. (H.N.T.).

Family Muscicapide.
98 (560). Siphia strophiata, Hodgs.
F'aun. Brit. Ind., Birds, II, p. 8.
Loi-San-Pa 6000 ft.
99 (562). Siphia albicilla, Pall.
Faun. Brit. Ind., Birds, II, p. 10.
Bow-ya-that 3000 ft . One specimen.
100 (569). Cyornis melanoleucos, Tick.
Faun. Brit. Ind., Birds, II, p. 18.
I procured two specimens of this bird in the Yatsank State at 4000 ft ., and other specimens on Loi-San-Pa 6000 ft . (H.N.T.).

101 (570). Cyurnis astigma, Hodge.
Faun. Brit. Ind., Birds, II, p. 19.
One specimen procured at Yebok in the Yatsank State at about 3000 ft .

102 (571). Cyornis sapphira, Tick.
F'aun. Brit. Ind., Birds, II, p. 20.
Loi-San-Pa at 4500 ft .

103 (572). Cyornis oatest, Salvadori.
Faun. Brit. Ind., Birds, II, p. 20.
Fairly common in the evergreen forests on the slopes of Loi-SanPa from 4000 ft . upwards.

104 (575). Cyornis robecoloides, Vigors.
Faun. Brit. Ind., Birds, II, p. 23.
Met with on several occasions at 2000 ft . and above. Common at Kalaw 4400. Two specimens procured.

105 (577). Cyornis magnirostris, Blyth.
Faun. Brit. Ind., Birds, II, p. 26.
Lower slopes of Loi-San-Pa at between 3000 and 4000 ft . One specimen.

106 (578 bis). Cyornis brevirostris, Bingh.
Ann. \& Mag. Nat. Hist., Lond., seventh series, vol. v, p. 359.
Kalaw 4000 ft . A true Oyornis in habits and coloration, but with a remarkable bill approaching in shape that of Ohelidorhynx.

107 (579). Stoparola melanops, Vigors.
Fatı. Brit. Ind., Birds, II, p. 28.
Not uncommon at elevations of 3500 ft . and upwards. (H.N.T.). I found this species nesting in holes on the side of the cart road from Bernardmyo (6000 ft .) to Mogôk, Raby Mines District, in April.

108 (592). Colicicapa cetronensis, Swains.
Faun. Brit. Ind., Birds, II, p. 38.
Very common.
109 (593). Niltapa Grandis, Blyth.
Faun. Brit. Ind., Birds, II, p. 40.
This beautiful species was fairly common on Loi-San-Pa. It seems entirely confined to dense overgreen forests at high altitudes.

110 (594). Niltava sondara, Hodgs.
Faun. Brit. Ind., Birds, II, p. 41.
Not so often met with on Loi-San-Pa as the preceding species. Confined like it to altitudes above 6000 ft .

111 (599). Terpsiphone afpinis, Hay.
Faun. Brit. Ind., Birds, II, p. 47.
One specimen was procured in the Yatsauk State at 3500 ft . (H.N.T.).

112 (601). Hypothymis azurea, Bodd.
Faun. Brit. Ind., Birds, II, p. 49.
Met with on the western borders of the States below 3000 ft .

113 (603). Chelidorhynx hypoxanthum, Blyth.
Faun. Brit. Ind., Birds, II, p. 51.
Rare. One specimen, too much damaged for preservation, was procured on Loi-San-Pa at 6000 ft .

114 (605). Rhipidura albicollis, Vieill.
Faun. Brit. Ind., Birds, II, p. 53.
Common. The only Fantail met with.

Family Turdids.

115 (608). Pratincola caprata, Linn.
Faun. Brit. Ind., Birds, II, p. 59.
We met with this bird everywhere, apparently occurs all over the States.

116 (610). Pratincola maura, Pall.
Faun. Brit. Ind., Birds, II, p. 61.
Generally found near grass jungle sparsely provided with trees.

* 117 (611). Pratincola leucura, Blyth.

Faun. Brit. Ind., Birds, II, p. 63.
Common on the shores of the Inlè lake near Fort Stedman, and from thence to Bow-ya-that along the road, frequenting the high grass skirting the lake and swampy depressions by the side of the road. (H.N.T.). Near Bow-ya-that I saw several, but failed to secure a specimen. (C.T.B.).

118 (615). Oreicola ferrea, Hodgs.
Faun. Brit. Ind., Birds, II, p. 66.
Very common.
119 (633). Henicords immaculatos, Hodge.
Faun. Brit. Ind., Birds, II, p. 85.
Rather rare; confined to the beds of rocky streams. It does not ascend to any great lieight. (H.N.T.). Two specimens were procured at elevations between 3000 and 4000 ft . I sav it once on Loi-San-Pa at about 6000 ft . (C.T.B.).

120 (638). Chimarrhornis i.bococephalus, Vigors.
Faun. Brit. Ind., Birds, II, p. 89.
This species, so common in the valley of the Chindwin, seems rare in the States. Two specimens were procured near streams in dense evergreen forest.

121 (641). Roticilla aurorea, Pall.
Faun. Brit. Ind., Birds, II, p. 93.
The common Redstart of the central plateau. (H.N.T.).
122 (646). Rhyacornis foliginosos, Vigors.
Faun. Brit. Ind., Birds, II, p. 98.
Met with only on one occasion, when a specimen was secured at the foot of Loi-San-Pa at about 2500 ft . Confined to streams with heavilywooded banks. (H.N.T.).
*123 (663). Copsychus saularis, Linn.
Faun. Brit. Ind., Birde, II, p. 116.
Extremely common at all altitudes, except in very dense jungle.
*124 (664). Cittocincla macrura, Gmelin.
Faun. Brit. Ind., Birds, II, p. 118.
Not uncommon in the well-wooded portions of the States. (H.N.T.).
125 (676). Mercla boulboul, Lath.
Faun. Brit. Ind., Birds, II, p. 130.
One ρ was procured by me on the plateau in the north-west corner of the Yatsank State at 3600 ft . Several others were seen, but I was not fortunate enough to bag any of them. The males were very rare, I saw only two against six or seven females met with. At that time of the year they seem confined to the evergreen strips of jungle bordering the streams. (H.N.T.).
*126 (677). Merula atrigularis, Temm.
Faun. Brit. Ind., Birds, II, p. 131.
One was observed by us both quite close to our camp on Loi-SanPa 6000 ft .
*127 (679). Merula protomomelena, Cab.
Faun. Brit. Ind., Birds, II, p. 133.
This thrush is common at Taunggyi 4700 ft . Daring the raing season it has a most delightful song that it keeps up for hoars. The
song oan be heard at a distance of very nearly a mile. They breed in the strip of jungle bordering the vegetable garden at Taunggyi. It also occurs on the Loi-Lem range.

128 (690). Petrophila erythrogastra, Vigors.
Faun. Brit. Ind., Birds, II, p. 143.
One specimen, Kalaw 4400 ft.
129 (693). Petrophila cyands, Linn.
Faun. Brit. Ind., Birds, II, p. 146.
Common. Every rest-house on the road from Thazi to Taunggyi seemed to be frequented by one or more of these birds. A most silent bird. (H.N.T.).

130 (698). Orbocincla dauma, Lath.
Faun. Brit. Ind., Birds, II, p. 152.
Seems to be rare. One specimen was procured at the foot of Loi-San- Pa 2500 ft .

I have shot it on the Salween-Mèkong watershed at 6500 ft . (H.N.T.).

131 (710). Cinclus pallasi, Temm.
Faun. Brit. Ind., Birds, II, p. 164.
Rare. I have only observed this Dipper in one other locality in these States, in strenms in the trans-Salween Sub-State of Mèsègun on the Siamese frontier. (H.N.T.).

Two specimens, a pair, were shot by Mr. Thompson at the foot of Loi-San- Pa 2500 ft . Both specimens when fresh had the distinctive mark of "the legs plumbeous in front."

These birds are difficult to shoot. Affecting steep, rocky, densely wooded streams, they keep flying on ahead as you approach and dodge round the corners rapidly, barely affording a glimpse of their dark bodies.

Family Ploceide.

132 (724). Plocerilla javanensis, Less.
Faun. Brit. Ind., Birds, II, p. 180.
Common. We met with this bird everywhere in grass jangles near water.

133 (726). Monia atricapilla, Vieill.
Faun. Brit. Ind., Birds, II, p. 183.
Fairly common in the grass plains in the lake valley. (H.N.T.). J. II. 16

134 (728). Uroloncha striata, Linn.
Faun. Brit. Ind., Birds, II, p. 185.
Met with once in the Möng Pöng Sub-State at about 2500 ft .
135 (735). Uroloncha punctolata, Linn.
Faun. Brit. Ind., Birds, II, p. 189.
One specimen was procured by me on the plateau in the north-west corner of the Yatsauk State at 3500 ft . in March, 1900. Several flocks were noticed at the time. (H.N.T.).
*136 (739). Sporfginthos flatidiventris, Wallace.
Fann. Brit. Ind., Birlls, II, p. 193.
Not uncommon round the borders of the lake at Fort Stedman 3000 ft .

Family Frinailidde.

137 (761). Carpodacos ertthrinds, Pall.
F'aun. Brit. Ind., Birds, II, p. 219.
Loi-San-Pa at about 4000 ft . Very local in its distribution. (H.N.T.).
*138 (776). Passer domesticus, Linn.
Faun. Brit. Ind., Birds, II, p. 236.
The Common Sparrow was seen occasionally only at Fort Stedman.
139 (779). Passer montandes, Linn.
Faun. Brit. Ind., Birds, II, p. 240.
The common house sparrow of these States. (H.N.T.). Was observed common round most of the towns and villages.

140 (781). Passer flateolos, Blyth.
Faun. Brit. Ind., Birds, II, p. 242.
Rather common. Both this and the preceding species build in my house at Taunggyi. (H.N.T.).

141 (791). Emberiza posilla, Pall.
Fattı. Brit. Ind., Birds, II, p. 254.
Met with on several occasions in small flocks at Taunggyi 4700 ft ., and on Loi-San-Pa at 6000 ft .

142 (797). Emberiza adreola, Pall.
Fauı. Brit. Ind., Birds, II, p. 259.
Rare. (H.N.T.). One specimen was shot out of a flock near Bow-ya-that, at about 3000 ft . elevation.
1900.] observed in the Southern Shan States of Upper Burna.

143 (801). Emberiza rutila, Pall.
Faun. Brit. Ind., Birds, II, p. 263.
Rare. I have procured this species on the Salween-Mèkong watershed at 6000 ft . close to the town of Kengtung. (H.N.T.).

144 (803). Melophus melanicterus, Gmelin.
Faun. Brit. Ind., Birds, II, p. 265.
This beautiful Bunting was met with plentifully, avoiding ouly heary forest.

Family Hirundinidas.

145 (809). Cotile sinensis, J. E. Gray.
Faun. Brit. Ind., Birds, II, p. 273.
Common in suitable localities. (H.N.T.). One specimen procured at Möng Löng at about 2500 ft . Several were observed flying in and out of barrows in a perpendicalar bank on the Nam-lan stream.

146 (818). Hirundo smithil, Leach.
Faun. Brit. Ind., Birds, II, p. 280.
Common and a permanent resident on the plateau. (H.N.T.). Numbers were seen perched on the telegraph wires along the road from Kalaw to Taunggyi.

147 (820). Hirundo striolata, Temm.
Faun. Brit. Ind., Birds, II, p. 281.
Common and a resideut species on the central plateau, being found there and at Taunggyi at all times of the year. (H.N.T.). One specimen shot near Möng Löng.

148 (823). Hirdndo rbythropygia, Sykes.
Faun. Brit. Ind., Birds, II, p. 283.
One specimen was procured in the Möng Köng State about 3000 ft . elevation out of several that were hawking about. It was seen nowhere else, and apparently was migrating, for 10 days later, returning to the same camp, not a single individual was to be seen.

Family Motacillids.

149 (827). Motacilla leocopsis, Gould.
Faun. Brit. Ind., Birds, II, p. 288.
Met with commonly along the road-sides and by the streams.
*150 (839). Limonidromus indicle, Gmelin.
Faın. Brit. Ind., Birds, II, p. 300.
Rare. Confined to the low well-wooded valleys. (H.N.I.).
151 (841). Anthus maculatus, Hodgs.
Faun. Brit. Ind., Birds, II, p. 304.
'This Pipit was excessively common, alike on the bare plateau and in the wooded valleys. Near Hlaingdet on the Thazi-Taunggyi road I came on a ratker large green tree snake (Tragops prasinus) which had got hold of an individual of this species by the head. The bird was still alive and fluttering vigorously, but when released from the snake's mouth seemed unable to fly away and expired in about an hour.

152 (847). Anthes rofulds, Vieill.
Faun. Brit. Ind., Birds, 1I, p. 308.
Common. This and the preceding species were the only Pipits seen, neither d. siriolatus nor A. richardi was met with.

Family Alaudide.
*153 (861). Alacda gulqula, Frankl.
Faun. Brit. Ind., Birds, II, p. 326.
Very common on the high plateaux. (H.N.T.).
154 (873). Mirafra microptera, Hume.
Fuun. Brit. lind., Birdy, II, p. 336.
Onc specimen was procured at Kalaw 4300 ft . It is common iu the plains below at Thazi.

Family Nectarinidea.
155 (882). Æthopyga seheme, Tickell.
Fuun. Brit. Ind., Birds, II, p. 348.
Common from the lowest altitudes up to 3600 ft . I have lately procured several specimens in the Yatsauk State. The males of this species are very pugnacious and chase each other about. A male in possession of a tree will not allow another to come near it. The males of X. dabryi and X. gouldix are much more tolerant of each others presence. (H.N.T.).

156 (888). Æthopyga gocldie, Vigors.
Faur. Brit. Ind., Birds, II, p. 352.
Loi-San.Pa at 6000 ft ; observed nowhere else. (H.N.T.).
1900.] observed in the Southern Shan States of Upper Burma.

157 (889). Athopyan dabryi, J. Vert.
Faun. Brit. Ind., Birds, II, p. 353.
Loi-San-Pa 6000 ft . and above. Confined to ligh altitudes. Common on Loi-San-Pa. (H.N.T.).

158 (890). ※thopyga saturata, Hodgs.
Faun. Brit. Ind., Birds, II, p. 354.
Loi-San-Pa at 6000 ft . and upwards. Very common on the flowers of the wild cherry.

159 (895). Arachnechtera asiatica, Lath.
Faun. Brit. Ind., Birds, II, p. 359.
Confined as a rule to the lower altitudes in the States, rarely ascending above 4000 ft . (H.N.T.). Two specimens procured, Taunggyi 4700 feet, and Kalaw 4300 feet.

160 (906). Arachnothera maga, Hodgs.
Faun. Brit. Ind., Birds, II, p. 369.
Fairly common in well-wooded parts. Has a very distinct call which I have heard mimicked by Chloropsis hardwickii. (H.N.T.). Loi-San-Pa from the foot up to about 6000 feet.

Family Diceide.

161 (912). Dicelm cruentatum, Linn.
Faun. Brit. Ind., Birds, II, p. 376.
Found at elevations from 1000 to 4000 feet. (H.N.T.). This pretty little species was common at most places along our route, working about bunches of creepers and flowers. It was not observed either at T'aunggyi or on Loi-San-Pa above 4000 feet.

162 (914). Diceum cerysorrheom, Temm.
Faun. Brit. Ind., Birds, II, p. 378.
Less common than the preceding species. (H.N.T.). One specimen procured at about 2500 ft . elevation.

163 (915). Dicerdm ignipectus, Hodgs.
Faun. Brit. Ind., Birds, II, p. 378.
Loi-San-Pa at 4000 ft . and upwards.
164 (917). Diceum olvaceum, Wald.
Fauss. Brit. Isd., Birds, II, p. 380.
Kalaw and Lai-Sun-Pa at $\$ 000$ feet and upwards.

165 (925). Pachyalossa melanoxantia, Hodgs.
Faun. Brit. Ind., Birds, II, p. 386.
This very beantiful Flower-pecker was only twice seen and procured, a σ in the Yatsauk State at about 2500 feet elevation, and a q on Loi-San. Pa at 6000 feet. Like all the Dicreide it is a restless little bird, frequenting bunches of creepers and flowers and twisting in and out among them in incessant motion.

Family Picide.
166 (948). Gecinus striolates, Blyth.
Faun. Brit. Ind., Birds, III, p. 20.
Seen only once, and a specimen procured in the Yatsauk State at 2500 ft . elevation.

167 (950). Gecinds occipitalis, Vigors.
Faun. Brit. Ind., Birds, III, p. 22.
Met with on several occasions, bat not above 4000 feet.
168 (954). Gecinds nigrigenis, Hame.
Faun. Brit. Ind., Birds, III, p. 26.
Not uncommon in the dry forests. One specimen at about 2500 ft . shot in company with a number of Garrulus leucotis.

169 (960). Hypopicus hyperythrds, Vigors.
Faun. Brit. Ind., Birds, III, p. 32.
It appears to prefer dry oak forest to other jungle. (H.N.T). Kalaw 4300 ft ., Yatsauk State 2500 ft . to about 4000 ft .

170 (968). Dendrocopos atratcs, Blyth.
Faun. Brit. Ind., Birds, III, p. 40.
Loi-San-Pa at 6000 feet and above.
171 (975). Iyngipicus canicapillus, Blyth.
Faun. Brit. Ind., Birds, III, p. 46.
Met with in dry forest on the plateau between Yatsank and Möng Pöng at about 3000 feet. Occurs at Taunggyi 4800 ft .

172 (988). Tiga javanensis, Ljang.
Faun. Brit. Ind., Birds, III, p. 61.
Common in dry forest. This species goes about in mobs in company with Gecinus nigrigenis, Jays, Drongos, \&c. (H.N.T.).
1900.] observed in the Southern Shan States of Upper Burma.
*173 (996). Hemilophus pulverdlenits, Temm.
Faun. Brit. Ind., Birds, III, p. 71.
*174 (998). Thriponax feddeni, Blanford.
Faun. Brit. Ind., Birds, III, p. 73.
Both these birds were met with during our tour more than once, but no specimeus were obtained. The former affects more dense and moister forests than the latter, which is essentially a bird of the dry forests.
*175 (1003). Iynx torquilla, Linn.
Faın. Brit. Ind., Birds, III, p. 78.
Common on the Taunggyi plateau in the winter. (H.N.T.).

Family Capitonide.

176 (1007). Megalema virens, Bodd.
Faun. Brit. Ind., Birds, III, p. 86.
One specimen Loi-San-Pa at 6000 fect. Universally distributed over the States in high forest over 3000 feet. (H.N.T.).

177 (1009). Thereiceryx lineatus, Vieill.
Faun. Brit. Ind., Birds, III, p. 88.
Common. Occasional specimens have the sides of the neck, breast, and upper abdomen pale dirty brown without any linention.

178 (1012). Cyanops asiatica, Lath.
Faun. Brit. Ind., Birds, III, p. 92.
Was commonly met with.
179 (1018). Cyanops ramsayi, Wald.
Faın. Brit. Ind., Birds, III, p. 97.
Found in dense forests at altitudes of 5800 ft . and above. (H.N.T.). Common on Loi-San-Pa above 6000 ft .

180 (1019). Xantholema hematocephala, P. L. S. Müller.
Faun. Brit. Ind., Birds, III, p. 98.
Common in the lower hot valleys. One specimen was procured on Loi-San-Pa above 6000 ft .

Family Coraciade.

* 181 (1023). Coracias afpinis, McClell.

Faun. Brit. Ind., Birds, III, p. 105.
Common.

182 (1025). Eurystomus orientalis, Linn.
Faun. Brit. Iud., Birds, III, p. 107.
Common in heavy jungle in the northern parts of the Yatsauk State. (H.N.T.).

Fumily Meropide.

183 (1026). Merops viridis, Linn.
Fatcn. Brit. Ind., Birds, III, p. 110.
Common. Ascends up to 6000 ft ., at which altitude one specimen was procured on Loi-San-Pa.

184 (1030). Melittophagus swinhoit, Hame.
Faun. Brit. Ind., Birds, III, p. 114.
Common in some of the low valleys of the States. (H.N.T.). One shot below Kalav at about 3000 ft ., but too much damaged to preserve.

185 (1031). Nyctiornis athertoni, Jard. \& Selby.
Faun. Brit. Ind., Birds, III, p. 115.
Rather uncommon in the States. (H.N.T.). Two specimens procured between Taunggyi and Fort Stedman. Elevation about 3500 ft .

Family Alcedinida.

*186 (1033). Cerfle varia, Strickland.
Faun. Brit. Ind., Birds, III, p. 119.
Seen during the tour near several of the streams. Common around the lake at Fort Stedman.
*187 (1034). Ceryle lugubris, Vigors.
Faun. Brit. Ind., Birds, III, p. 121.
Occasionally found at the head waters of some of the larger streams in very dense dark forest. (H.N.T.).

188 (1035). Alcedo ispida, Linn.
Faun. Brit. Ind., Birds, III, p. 122.
Common.
*189 (1043). Pelargopsis gurial, Pearson.
Faun. Brit. Ind., Birds, III, p. 129.
Common in the low vallegs. (H.N.T.).
190 (1044). Halcyon smprnensis, Linn.
Furn. Brit. Ind., Birds, III, p. 132.
Met with commovly along our route.

191 (104.5). Halcyon pileata, Bodd.
Faıun. Brit. Ind., Birds, III, p. 133.
lather rare. Found at low altitudes only. (H.N.T.).

Family Bjcerotide.

* 192 (1051). Dichoceros bicornis, Linn.

Faun. Brit. Ind., Birds, III, p. 142.
The Great Hornbill was both seen and heard on several occasions in the Yatsauk State.

193 (1053). Anteracoceros albirostris, Gmelin.
Faunz. Brit. Ind., Birds, III, p. 145.
Common. At the town of Möng Pöng 2000 ft . elevation we were encamped under a Ficus tree in fruit, which was all day long frequented by this species in crowds.

194 (1054). Reytidoceros ondolates, Shaw.
Faun. Brit. Ind., Birds, III, p. 147.
I have only seen and shot this species in the evergreen forests skirting the banks of the Mèkong river in the Kengtang State. (H.N.T.).

195 (1057). Aceros nepalensis, Hodgs.
Faun. Brit. Ind., Birds, III, p. 149.
Rare. Confined to the heavy forest on the highest hill ranges. (H.N.T.). One specimen procured on Loi-San-Pa at about 7000 ft .

Family UPOPIDE.

196 (1067). Upupa indica, Reich.
Faun. Brit. Ind., Birds, III, p. 161.
The Indian Hoopoe was fairly common in the Yatsauk State.

Fantily Cypselide.

197 (1086). Macroptertx coronata, Tick.
Faun. Brit. Ind., Birds, III, p. 180.
Fairly common in the more wooded portions of the States.
Other Swifts and Swiftlets were seen, but none sufficiently close for identification. Among the latter a Palm Swiftlet was fairly common at Kalaw, but no specimens were secured,
J. II. 17

Family Caprimolgides.
198 (1091). Caprimulgus asiaticos, Lath.
Faun. Brit. Ind., Birds, III, p. 186.
This species was frequently put up along the road in scrub jangle. It does not seem to affect high forest.

199 (1095). Caprimolads indices, Lath.
Faun. Brit. Ind., Birds, III, p. 190.
One specimen seen and procured on Loi-San-Pa at about 7000 ft .
*200 (1096). Lyncornis cerviniceps, Gould.
Faun. Brit. Ind, Birds, III, p. 192.
Common all over the States in suitable localities. (H.N.T.). Its ringing trisyllabic cry was heard once or twice on the plateau between Yatsank and Möng Pöng.

Family Trogonide.
201 (1101). Harpactes* rertrarocephalos, Gould.
Faun. Brit. Ind., Birds, III, p. 200.
Common. Confined to the lower valleys. (H.N.T.). One specimen was shot at Wetpyuyè 2800 ft ., but unfortunately was so damaged by the shot as to be passed preservation.

Family Cucolide.

*202 (1104). Ceculus canorus, Linn.
Faun. Brit. Ind., Birds, III, p. 205.
Very common all over the States in the hot weather. (H.N.T.).
203 (1108). Hierococcix sparverioides, Vigors.
Faun. Brit. Ind., Birds, III, p. 211.
One specimen procured at Kyauk-ku in the northern portion of the Yatsauk State about 3200 ft . in March. (H.N.T.).

204 (1113). Cacomantis merolinds, Scop.
Faun. Brit. Ind., Birds, III, p. 218.
Met with only between Fort Stedman and Sinhè. At Bow-ya-that 3500 ft . it was common, affecting the trees and bushes along the roadside.

[^35]1900.] observed in the Southern Shaic States of Upper Burnna.

205 (1114). Penthocrryx sonnerati, Lath.

- Faun. Brit. Ind., Birds, III, p. 219.

Kalaw at 5000 ft . One specimon.
206 (1120). Eudinamis honorata, Linn.
Faun. Brit. Ind., Birds, III, p. 228.
Very common up to altitudes of 4000 ft . (H.N.T.).
207 (1123). Rhopodytes tristis, Less.
Faun. Brit. Ind., Birds, III, p. 232.
Rare. (H.N.T.). Seen and procured at Nanpandet 2000 ft ., and at Wetpyuyè 2800 ft .
*208 (1130). Centropus sinensis, Steph.
Faun. Brit. Ind., Birds, III, p. 239.
Common. (H.N.T.).

Family Psittacide.
209 (1142). Paleornis finschi, Hume.
Faun. Brit. Ind., Birds, III, p. 254.
This is the common Paraquet met with throughout the States.
210 (1150). Loricolis vernalis, Spartm.
Faun. Brit. Ind., Birds, IlI, p. 261.
I have shot this species in the State of Möngpan and Markmai. (H.N.T.).

Family Strigide.
211 (1152). Strix flammea, Linn.
Faun. Brit. Ind., Birds, III, p. 264.
Found at Taunggyi. I have taken the nests on low bushes and rocks on swampy ground near Tannggyi. There were three young in each nest. (H.N.T.).

212 (1160). Sybmidm indrani, Sykes.
Faun. Brit. Ind., Birds, III, p. 275.
On the Crag at Taunggyi 4400 ft . (H.N.T.).

Family Asionides.
213 (1166). Ketupa javanensis, Less.
Faun. Brit. Ind., Birde, III, p. 283.
I have shot this species in trans-Salween Mawkmai. (H.N.T.)
*214 (1170). Huhua nepalensis, Hodgs.
Faun. Brit. Ind., Birds, III, p. 287.
Occasionally found in the heavy forest at the foot of the high ranges.

215 (1180). Athene brama, Temm.
Faun. Brit. Ind., Birds, III, p. 301.
Common in the Pein Valley Mawkmai State. (H.N.T.). One specimen procured just above Nanpandet at about 2000 ft . elevation.

216 (1183). Glaucidium cocoloides, Vigors.
Faun. Brit. Ind., Birds, III, p. 305.
Wetpyaye 2800 ft . One specimen procured.
*217 (1187). Ninox scotolati, Raff.
Faun. Brit. Ind., Birds, III, p. 309.
Very common all over the States, except at the higher elevations. (H.N.T.).

Family Pandionide.
218 (1189). Pandion haliaĕtus, Linn.
Faun. Brit. Ind., Birds, III, p. 314.
I have procured this bird on the lake at Fort Stedman, and also on the Loikaw river.

Family Vulturide.
*219 (1191). Otogyps calves, Scop.
Faun. Brit. Ind., Birds, III, p. 318.
Common. (H.N.T.). Two specimens were seen at close quarters round the carcass of a dog near the Fort Stedman lake.
*220 (1196). Pseddogyps bengalensis, Gmelin.
Faun. Brit. Ind., Birds, III, p. 324.
Common. Generally met with during our tour.
Family Falconide.
221 (1202). Aquila bifasciata, J. E. Gray.
Faun. Brit. Ind., Birds, III, p. 336.
This is the commonest true Eagle that is found in the Sonthern Shan States. Leaves the country in May. (H.N.T.). One specimen at Bow-ya-that 3000 ft .
1900.] observed in the Southern Shan States of Upper Burma.

222 (1205). Aquila macolata, Gmelin.
Faun. Brit. Ind., Birds, III, p. 340.
I have shot this species close to the town of Mongnai. (H.N.T.).
*223 (1208). Hierä̈tus pennatus, Gmelin.
Faun. Brit. Ind., Birds, III, p. 344.
Sparsely distributed all over the States, except on the highest hills in the winter.

224 (1212). SpizaËtus limnâ̈tci, Horsf.
Faurr. Brit. Ind., Birds, IlI, p. 351.
Very common in the heavy jungles at the foot of the hill ranges. (H.N.T.). Two specimens obtained at about 2500 ft . elevation in the Möng Pöng Sub-State.

225 (1217). Spilornis cheela, Lath.
Faun. Brit. Ind., Birds, III, p. 357.
Common in the low valleys. I procured a young specimen with only just the faintest traces of spots on the plumage of the lower parts. (H.N.T.).

226 (1221). Butastur liventer, Temm.
Faun. Brit. Ind., Birds, III, p. 364.
Common. Confined to dry eng forest up to 3500 ft . I saw an individual chase a Shikra (Astur badius) and make it drop a lizard that it was carrying off. The Bazzard then got possession of the lizard. (H.N.T.). One specimen shot near the foot of Loi-San-Pa about 3000 ft .

*227 (1228). Haliastur indus, Bodd.

Faun. Brit. Ind., Birds, III, p. 372.
Coufined to the low valleys. Often seen on the shores of the Inle lake, Fort Stedman. (H.N.T.).
*228 (1229). Milvus govinda, Sykes.
Faun. Brit. Ind., Birds, IIl, p. 374.
Common. Disappears in the rains and returns at the end of October. (H.N.T.).
*229 (1230). Milvos melanotis, Temm.
Faun. Brit. Ind., Birds, III, p. 377.
Common in the well-wooded States. (H.N.T.).

Seen once or twice in the Yatsauk State. One specimen obtained in the plains between Bow-ya-that and Hèho 4000 ft .
*231 (1236). Circus melanoledcus, Forster.
Faun. Brit. Ind., Birds, III, p. 385.
Common. Does not leave the platean till the end of May. (H.N.T.).
*232 (1237). Circus ervainosos, Linn.
Faun. Brit. Ind., Birds, III, p. 387.
Common. Was seen more than once near the lake at Fort Stedman, and at Yatsauk.

233 (1238). Circus spilonotos, Kanp.
Faun. Brit. Ind., Birds, III, p. 388.
Rare. One specimen procured near Möng Pöng at about 2000 ft .
234 (1244). Astur badios, Gmelin.
Faun. Brit. Ind., Birds, III, p. 398.
Specimens of only the lighter Barmese form (Astur poliopsis, Hume) were procared between Taunggyi and Fort Stedman, and at Kalaw.
$\dot{2} 35$ (1246). Lophospizlas trivirgatus, Temm.
Faun. Brit. Ind., Birds, III, p. 401.
Rare. I have shot it at Taunggyi. (H.N.'T.).
236 (1247). Accipiter nisus, Linn.
Faun. Brit. Ind., Birds, III, p. 402.
Rare. One specimen procured on the road between Taunggyi and Fort Stedman at about 5000 ft . elevation. The speoimen, a σ°, is a remarkably large one. Length $17^{\prime \prime}$, Wing $10 \cdot 1^{\prime \prime}$.
*237 (1255). Falco perigrinator, Sundev.
Faun. Brit. Ind., Birds, III, p. 415.
Has bred for the last three years on the steep rock known as "The Crag" at Taunggyi. (H.N.T.).
*238 (1257). Falco jogger, G. E. Gray.
Faun. Brit. Ind., Birds, III, p. 419.
Common in the low hot open valleys. (H.N.T.).
We saw but failed to secure an individual of this species which
frequented a group of trees in the great paddy plain lying between the town of Möng Löng and the foot of Loi-San-Pa in the Möng Köng State, elevation aboat 3000 ft .

239 (1260). Falco sobbuteo, Linn.
Faun. Brit. Ind., Birds, III, p. 422.
Passes through as a migrant. (H.N.T.). One specimen, a rery richly coloured δ, was obtained near the town of Yatsauk.

240 (1261). Falco severus, Horsf.
Fatn. Brit. Ind., Birds, III, p. 423.
Found sparingly in the well-wooded States. I have obtained it at Yatsank. (H.N.T.).
*241 (1262). Erythropus amorensls, Garney.
Faun. Brit. Ind., Birds, III, p. 424.
This species passes through the States every year on its journey back to Northern Asia. It migrates in parties of several hundred individuals, and only remains in any one place for a day or so. The date on which the birds appear in the Sonthern Shan States is very constant, and is about the 15th April. On that date I observed it in Mawkmai in 1897, and in 1898. I saw it in large parties in the Yatsnuk State on the 18th April. Again in 1899 I met with it near Kengtung on the 16th April, while this year (1900) I noticed large numbers of them at Tannggyi on the 14th April. (H.N.T.).

- 242 (1265). Tinnunculus alaudarius, Gmelin.

Farn. Brit. Ind., Birds, III, p. 428.
Common. (H.N.T.). One specimen procared at Kalaw 4300 ft.
243 (1267). Microhierax eutolmos, Blgth.
Faun. Brit. Ind., Birds, III, p. 432.
Common. Not found above 4000 ft. as a rule. (H.N.T.). Two specimens procured in the Yatsank State, one at Wetpyuye.

Family Colombides.

244 (1271). Crocopos phericopterds, Lath.
Faun. Brit. Ind., Birds, IV, p. 5.
Common in heary hill jungle. (H.N.T.). Procured on the fraiting Ficus trees at Sinhè 4000 ft ., and in the Yatsank State.
*245 (1281). Treron nepalensis, Hodga.
Faun. Brit. Ind., Birds, IV, p. 14.
Common on the high ranges. (H.N.T.).
246 (1283). Sphenocercus sphendrds, Vigors.
Fuun. Brit. Ind., Birds, IV, p. 16.
Common on the high ranges. Found up to 6000 ft . (H.N.T.).
A q was obtained on Loi-San-Pa at about 7000 ft .
247 (1287). Ducdla griseicapilla, Wald.
Faun. Brit. Ind., Birds, IV, p. 22.
Common up to all altitudes at suitable times of the year. (H.N.T.). Only one specimen was procured during our tour ; and it was only seen and heard in January on Loi-San-Pa at and above 6000 ft .

248 (1291). Chalcophaps indica, Linn.
Faun. Brit. Ind., Birds, IV, p. 26.
Confined to the low-lying hot valleys. I once procured the skin of a new species of this genus in the Mawkmai forests. This bird differed in having a pure white (not grey) rump. The bill and feet were of a horny-brown colour and not red. Otherwise it agreed with C. indica. Unfortunately the skin was destroyed by dogs before I could return to head-quarters. I noticed several individuals in the forest in which I shot the specimen noted above.

249 (1297). Dendrotreron hodasoni, Vigors.
Fatr. Brit. Ind, Birds, IV, p. 33.
"I have procured a most extraordinary bird for these hills (the eastern slopes of the Crag at Taunggyi), viz., the Spotted Wood-pigeon. This bird according to Blanford is confined to the Himalayas and Eastern Thibet at altitudes of from 10,000 to $13,000 \mathrm{ft}$. in the summer. I procured it at Taunggyi last Sunday 22nd April (the hottest time of the year here is the end of April), on the Crag at about an altitude of 5600 ft . I saw several others at the same time." (Extract from a letter dated 24th April from Mr. Thompson).

250 (1304). Tortur orientalis, Lath. -
Faun. Brit. Ind., Birds, IV, p. 40.
This dove was very common. Several specimens were procured.
*2:1 (1309). Turtur cambarensis, Gmelin.
Faun. Brit. Ind., Birds, IV, p. 45.
Common. (H.N.T.). Observed daring the tour near the towns of Möng Pöng and Möng Löng.

252 (1312). Macroptaia tosalia, Hodgs.
Faın. Brit. Ind., Birds, IV, p. 49.
Decidedly rare. I lately procured a very fine specimen in the N.W. portion of the Yatsauk State at an altitude of 3600 ft .

Family Prabianide.

253 (1328). Gallus perrdaineus, Blyth.
Faun. Brit. Ind., Birds, IV, p. 75.
Common. I have not found this species at altitudes above 4500 ft . (H.N.T.).

254 (1331). Prasiands homia, Hume.
Faun. Brit. Ind., Birds, 1V, p. 80.
Found at Kalaw, on the hill behind Taunggyi, very common in trans-Salween Mawkmai at 3500 ft ., and I have recently pat up a magnificent male at Payingon on the plateau in the N.W. corner of the Yatsank State. (H.N.T.).

255 (1340). Gennedos lineatos, Vigors.
Faun. Brit. Ind., Birds, IV, p. 92.
One s out of a small party of three or four shot at Wetpyn-ye 2800 ft .
*256 (1352). Bambusicola fytchit, Anderson.
Faun. Brit. Ind., Birds, IV, p. 110.
Common. (H.N.T.). Met with on one occasion only during the toar, at Taunggyi 4800 ft .

257 (1356). Cotornix coromandelica, Gmelin.
Faun. Brit. Ind., Birde, IV, p. 116.
Common at Hèho in the rains.
258 (1363). Arboricola rupigdlaris, Blyth.
Faun. Brit. Ind., Birds, IV, p. 126.
One $\sigma^{\text {a }}$ specimen procured on Loi-San-Pa at about 6000 ft . It belongs to the sab-species or variety named A. tickelli by Hame.

259 (1374). Francolinus chinensis, Osbeck.
Faun. Brit. Ind., Birds, IV, p. 138.
Very common on the plateaux but was not seen or heard on Loi-San-Pa. This bird has a habit of sitting on trees by the roadside, from whence it keeps attering its characteristic call:
J. II. 18

Family Tormioide.
260 (1382). Turnix pognax, Temm.
Faun. Brit. Ind., Birds, IV, p. 151.
Common. (H.N.T.). One specimen was procured in the Yatsauk State at about 2500 ft .

Family Ralidide.
261 (1402). Gallinola chloropus, Linn.
Faun. Brit. Ind., Birds, IV, p. 175.
This species was common on the lake at Fort Stedman and on the marsh near Yatsauk.
*262 (1404). Porphybio poliocephalus, Lath.
Faun. Brit. Ind., Birds, IV, p. 178.
The same remark applies to this as to the preceding spesies.
*263 (1405). Folica atra, Linn.
Faun. Brit. Ind., Birds, IV, p. 180.
Apparently not so common as the two preceding species.
Family Gruide.
*264 (1410). Gros searpit, Blanf.
Faun. Brit. Ind., Birds, IV, p. 189.
Close to the lake of Fort Stedman a couple of parties of this species were seen safficiently close for identification. So far as my observation goes this bird does not build nearly as large a nest as G. antigone. Its cry too seems to me to differ somewhat.

Family Glareolide.

265 (1425). Glarbola orientalis, Leach.
Faun. Brit. Ind., Birds, IV, p. 214.
Yatsauk State, on the Honan plain. (H.N.T.).
266 (1427). Glareola lactea, Temm.
Faun. Brit. Ind., Birds, IV, p. 216.
In the valley of the Yong-Mawkmai State. (H.N.T.).
Family Parride.
267 (1428). Metopidivs indicus, Lath.
Faun. Brit. Ind., Bivds, IV, p. 218.
Very common on all the tanks. (H.N.T.).

1900]. observed in the Southern Shan States of Opper Burma.
268 (1429). Hydrophasiands chirurgus, Scop.
Faun. Brit. Ind., Birds, IV, p. 219.
A few were seen and one shot near Bow-ya-that.

Family Charadrides.
269 (1432). Sarcogrammus atrinuchalis, Blyth.
Faun. Brit. Ind., Birds, IV, p. 226.
Very common. (H.N.T.). One specimen at Hèho.
*270 (1435). Hoplopterus ventralis, Wagl.
Faun. Brit. Ind., Birds, IV, p. 229.
Common on the banks of the larger rivers, such as the Salween and Mèkong. (H.N.T.).

271 (1439). Charadrios folvos, Gmelin.
Faun. Brit. Ind., Birds, IV, p. 234.
Common on the shores of the lake at Fort Stedman and at Hèho. (H.N.T.).

272 (?). AGIalitis sp.?
A Sand Plover was procured by me near Hèho 4200 ft ., but was carelessly lost by my servant who was carrying it before it was examined and identified.

273 (1460). Totanus hypoledcos, Linn.
Faurs, Brit. Ind., Birds, IV, p. 260.
Met with at Kalaw, Fort Stedman, Bow-ya-that, \&c.
274 (1461). Totanus Glareola, Gmelin.
Faun. Brit. Ind., Birds, IV, p. 261.
Sinhè 4300 ft .
Near the lake at Fort Stedman and on the road to Bow-ya-that a few Stints of kinds were seen but not procared or identified, I am sorry to say.

275 (1482). Soolopax rusticula, Linn.
Faun. Brit. Ind., Birds, IV, p. 283.
Common. Several are shot every jear at Taunggyi. (H.N.T.).
276 (1483). Gallinago nemoricola, Hodge.
Faun. Brit. Ind., Birds, IV, p. 285.
Common in the marshes to the south of Taunggyi, where several couple are shot every year. (H.N.T.).

278 (1485). Gallinago stenura, Kuhl.
Faun. Brit. Ind., Birde, 1V, p. 289.
Both species of Snipe are common. The latter is perhaps more plentiful than the former.

279 (1487). Gallinago galiindla, Linn.
Faun. Brit. Ind., Birds, IV, p. 292.
A few are shot every year on the shores of the Fort Stedman lake. It is also found at Hopong Saga and Mawkmai. (H.N.T.).

280 (1488). Rostratula capensis, Linn.
Faun. Brit. Ind., Birds, IV, p. 293.
Very common. (H.N.T.).
Family Laride.
281 (1491). Labus brunneicephalds, Jerdon.
Faun. Brit. Ind., Birds, IV, p. 301.
Two specimens procured on the Fort Stedman lake.
282 (1496). Hydrochblidon hybrida, Pallas.
Faun. Brit. Ind., Birds, IV, p. 307.
Found on the Fort Stedman lake. I have not noticed it anywhere else except ou the Salween river. (H.N.T.). Three specimens procured.

Family Pialacrocioracide.

*283 (1526). Pbalacrocorax carbo, Linn. Faus. Brit. Ind., Birds, IV, p. 340.
*284 (1528). Phalacrocorax javanices, Horsf.
Faun. Brit. Ind., Birds, IV, p. 342.
Both species are common in the States in suitable localities. (B.N.T.).
*285 (1529). Plotus melanogastrr, Pennant.
Faun. Brit. Ind., Birds, IV, p. 344.
Very common. (H.N.T.). I passed within a few feet of one seated on a fishing stake in the lake at Fort Stedman. (C.T.B.).

1900]. observed in the Southern Shan States of Upper Burma.
Family Ibidide.
*286 (1544). Plegadis falcinellus, Linn.
Faun. Brit. Ind., Birds, IV, p. 364.
Not uncommon. (H.N.T.). A small flock was seen but unfortunately out of shot, in the swamp near the town of Möng Löng 3000 ft.

Family Ciconilde.

287 (1548). Dissura episcopos, Bodd.
Faun. Brit. Ind., Birds, IV, p. 370.
One shot at Möng Pöng 2500 ft . Seems, in the States, to keep to the banks of streams.
*288 (1550). Leptoptilus dubius, Gmelin.
Faun. Brit. Ind., Birds, IV, p. 373.
Rare. I have seen it close to the Mèkong river and once at Taunggyi. (H.N.T.).

Family Ardeide.
*289 (1566). Ardrola bacchos, Bonap. Faun. Brit. Ind., Birds, IV, p. 394.
Found throaghout the States. (H.N.T.).
I beliere I saw A. grayi too, several times, but no specimen was shot, and I cannot be certain that I identified it correctly. (C.T.B).
*290 (1568). Nycticorax ariseus, Linn.
F'aun. Brit. Ind., Birds, IV, p. 397.
Common. (H.N.T.).
Fannily Anatide.
291 (1589). Dendrocticna javanica, Horsf.
Faun. Brit. Ind., Birds, IV, p. 430.
Very common.
292 (1591). Nettopus coromandelianos, Gmelin.
Faun. Brit. Ind., Birds, IV, p. 433.
Common. Specimens of both the above were shot on the Fort Stedman lake.

293 (1593). Anas pecilobeyncea, Forst.
Faun. Brit. Ind., Birds, IV, p. 436.
Common. This and the next species meet at the lake, Fort Stedman, and intermediate individuals (hybrids) are often shot. (H.N.T.).

294 (1593 bis). Anss zonoriyncha, Swinh.*
Common. (H.N.T.). Met with during our tour on the Fort Stedman lake and at Möng Pöng.

295 (1595). Chatlelasmus streperve, Linn.
Faun. Brit. Ind., Birds, IV, p. 440.
Abundant at Mongnai and on the marshy ground bordering the Thabet Chaung (stream) in the Hopong and Waung Wun States.

296 (1600). Dafila acuta, Linn.
Faun. Brit. Ind., Birds, IV, p. 447.
Common. (H.N.T.).
297 (1601). Qderqueddla circia, Linn.
Faun. Brit. Ind., Birds, IV, p. 449.
Common. (H.N.T.). This and the preceding species was not uncommon on the Fort Stedman lake in December and January.
*298 (1602). Spatola clypeata, Linn.
Faun. Brit. Ind., Birds, IV, p. 452.
Rather rare. Found on the Fort Stedman lake and the Mongnai - tanks. (H.N.T.).

299 (1606). Nyroca perrdginea, Gmelin.
Faun. Brit. Ind., Birds, IV, p. 460.
I have shot this species on the small tank at Mongnai. (H.N.T.).
Family Podicipedide.
300 (1615). Podicipes oribtates, Linn.
Faun. Brit. Ind., Birds, IV, p. 473.
I once obtained a pair on the Inlè lake, Fort Stedman, in December.
*301 (1617). Podicipes albipennis, Sharpe.
Faun. Brit. Ind., Birds, IV, p. 475.
Common. (H.N.T.).

[^36]VII.-On the Form of Cormorant inhabiting the Crozette Islands.-By F. Fins, B.A., F.Z.S., Deputy Superintendent of the Indian Museum.

(With exhibition of specimen.)

[Received 80th May ; Read 6th June, 1900.]
In the British Musenm Catalogue of Birds, vol. xxvi, p. 394, Mr. W. R. Ogilvie-Grant refers the Cormorant of the Crozette Islauds to Phalacrocorax verrucosus, with a mark of doubt. It may therefore be of interest to ornithologists to know that we have in the Indian Museum, among the specimens belonging to the Asiatic Society, the type of Blyth's Hypoleucus melanogenis (sic), which came from the Crozettes, and was received in 1860 from the late Mr. E. L. Layard, on behalf of the Government Museum, Cape Town, together with numerous skins of South African Mammals and Birds. As the reference, in J.A.S.B., vol. xxix, p. 101, has appareatly been overlooked by the author of the Catalogue, I give it below in full :-"* Hypoledcus melanoarnis, nobis, n.s. Very like H. varius (Gm., Ph. hypoleucos, Gould), of Anstralia, but distinguished by its black cheeks and crestfeathers $1 \frac{1}{4} \mathrm{in}$. long. Wing $10 \frac{1}{2} \mathrm{in}$. Tail 5 in . Bill to forehead $2 \frac{1}{18} \mathrm{in}$. Foot 4 in. From the 'Crozettes.'"

The asterisk indicates that the species was new to the Asiatic Society's collection. The skin was mounted, bat has been long ago dismounted, and is now in a rather bad state. It bears part of a paper label with the name, locality, and reference to description in Blyth's handwriting. A later label repeats the information, with the addition of the donor's name.

On comparing the specimen in question with the excellent figares and descriptions of the Eypoleucus groap of Cormorants in the volume of the British Musenm Catalogue above referred to, it is seen to be obviously most closely allied to Phalacrocorax albiventer and P. verrucosus, being generally parple-black above, glossed green on wings, and white below from chin to vent, and the feet having evidently been orange, not black as in P. varius, with which Blyth compared it. The chin-feathering extending barely before the gape, and the black cheeks noticed by Blyth evidently ally it to the two first-named species; and it further agrees with the former of these in the black not extending down the side of the lower jaw, and in the possession of a moderate white alar bar; the smaller dimensions, however, bring it nearer to P. verrucosus, with which it almost exactly agrees in this respect, and to this species I should be inclined to refer it, unless it be considered distinct, in which case the Crozette Island Cormorant will stand as Phalacrocorax melanogenys (Blyth).
VIII.-On Two Rave Indian Pheasants.-By F. Finn, B.A:, F.Z.S., Deputy Superintendent of the Indian Museum, and Liedtenant H. H. Turner.

(With exbibition of specimens:)

[Received 30th May; Read 6th June, 1900.]
The Pheasants I am dealing with in the present brief paper were met with in the Chin Hills during the present year by Lieatenant H. H. 'lurner, who is responsible for the accompanying notes in brackets, and who submitted his specimens of the birds to me for identification.

Phasianus humise.

A typical male of this species, agreeing with the Manipur form, of which we have a specimen in the Museum, not with the nearly whiterumped Ruby Mines race or species discriminated by me in J.A.S.B., vol. lxvi, pt. 2, p. 523, and since named by Mr. Oates (Ibis, 1898, p. 124) Calophasis burmannicus.
[I had left my camp, which was pitched about six miles from Fort White, on the eveuing of the 6th March, to go after some Hill Partridge, which one of my men had seen just below my camp; not seeing any sigus of them, I walked on for about a mile, and was returning along the road (the Fort White-Kalemyo road), when glancing down the khud I saw something grey disappearing in the long grass just below me. I immediately started to go after it, when I saw what appeared to me a light blue streak just disappearing. I immediately fired, but it was with faint hopes that I walked up to the spot, as not only did I think the bird had disappeared before I shot, but I had just at the moment of shooting slipped. I was therefore very much delighted when I' saw the blue streak tumbling down the khud below me. I immediately went after him and secured him; as I was descending the original grey bird, which was evidently the female, got up and flew a short distance. I walked her up, and my dog again puther up; unfortunately, owing to the thick jungle, I was unable to get a shot. Walking on, however, I put up another, whether a cock or hen I could not say, as it was already dusk. I fired, but the bird flew away, and although I believe it dropped, I could not find it. These birds when I saw them were feeding amongst the dry leaves which littered the ground.

The next evening I tried the upper side of the road and put several (four at least) of these same birds out of some long grass on a steep hill-side. I only managed to get one long shot, which was not successful. I again tried the next morning, and was successful in bagging another; my dog put it up on our right, and flying very

1900.] F. Finn \& H. H. Tarner-Two Rare Indian Pheasants.

low through the bashes it crossed just in front of me. Unfortanately the bird was not well skinned and I had to throw this specimen away.

The specimen that I luave retained is a full-grown cock; the other one was a young cock without the long tail; the plumage was otherwise identical with that of the other bird. The hill on which I obtained these specimens was between 4000 and 5000 feet high, being one of the spurs of the Chin Hills ranning down into the Kale valley, and the birds were close to the Fort Kalemyo-Fort White road, just about at milestone 20. The latitude is approximately 23°, and the longitude approximately 94°.]

Gennæиs davisoni ?

A pair of Kalij procured by Lienteunnt Turner appear to come nearest to what Mr. W. R. Ogilvie-Grant (Cat. B. M. Birds, vol. xxii, p. 304), and Dr. W. T. Blanford (Faun. Brit. Ind., Birds, vol. iv, p. 95), call by the above name. The male resembles that of G. horsfieldi in size, and in form of tail, and possesses equally well-marked white bands on the feathers of the lower back and rump. It differs, however, markedly in having the feathers of the upper surface behind the head, wings, and tail, all clearly though finely pencilled with white irregular lines, the line on the white-tipped brok and rump feathers which precedes the white band at the tip being separated from it by a black space about equal in breadth to the band itself. A few of the feathers of the black under-surface are similarly but less clearly pencilled with white upon their outer webs.

It is thas intermediate between G. horsfieldi and G. andersoni* (with the type of which I have comparel it) but far more nearly approaches the former, not having the long curved tail and orest of the latter, and with the white pencillings much reduced in breadth and less regular. There is also no tendency to plain whiteness in the middle or to blackness in the outer tail-feathers, all being equally black with white pencilling. It must also very closely resemble Mr. E. W. Oates' G. williamsi from the same district, ("The Game Birds of India," vol. i, p. 342) ; bnt that bird has the light markings of the plumage buff and not white, except for the barring on the ramp. It is quite different in character from the Asiatic Society's specimens of forms intermediate between G. horefieldi and G. lineatus, the white markings in these being blurred and indistinct.

[^37]The female is like that of G. horsfieldi, but paler and duller, and with the stippling of the plumage more distinct; the black lateral tail-feathers also are pencilled with white, as in the male, but less regularly, and the pencilling tends to die out at the tips of the outer pairs.

This sex also therefore appears to closely correspond with Mr. Oates' G. williamsi, except again for the white pencilling, which also does not tend to disappenr on the outermost feathers to the extent indicnted by Mr. Oates. The facinl skin in both birds has evidently been red, and the bill and feet horn-coloured, as in G. horsfieldi.

This form is thus distinguishable from any as yet described, and, if it should be thought worthy of a name, might be called G. turneri, after its discoverer; but I am very much averse to giving names to these numerons and variable forms of Genneus, and hence range it provisionally under that subspecies of G. horsfieldi to which it bears the most resemblance. To G. lineatus I should say that it had no relationship, unless \mathcal{G}. andersoni be indeed, as Dr. Blanford suggests, a cross between this species and G. nycthemerus. But without breeding together G. nycthemerus, G. horsfieldi, and G. lineatus in confinement and noting the result, I do not see how the status of these numerons more or less pencilled forms of the genus is to be settled. The buff pencilling in some of the species described by Mr. Oates is peculiarly difficult to nccount for, except on the supposition that they are all really distinct, which seems to me most improbable à priori.
[The two (cock and hen) Kalij were shot by me on the 15th March, 1900, on the road between Kalewa and Minza, Kalewa being an important village on the Chindwin from whence supplies are sent up to the Chin Hills; Minza is a small village 20 miles or so to the south of Kalewa, the birds being shot about 12 miles from Kalewa. When first I saw them they were in the thick bushes on the bank of a small stream, but they immediately flew into the bamboo jungle, and it was here that I shot them. I shot another the next morning close to the same spot, but my dog so spoilt the skin that I had to eat the bird instead of skinning it, and very excellent eating it was. I had already shot a hen of this species (I think there is little doubt that it was the same, though rather darker than the female I mentioned above) at Yasygo, a village in the Kale valley about 50 miles to the north. It was shot, however, at such close quarters that the skin was rained.

The latitade in which the above pair were found is approximately 23°, and the longitude approximately $94^{\circ} 30^{\prime}$; the elevation was betwreen 600 and 800 feet.]
IX.-Notes on the Structure and Function of the Tracheal Bulb in mals Anatidæ.-By F. Finn, B.A., F.Z.S., Deputy Superintendent of the Indian Musuem.
[Received 30th May ; Read 6th Jane, 1900.]
The peculiar bony, or bony and membranons, bulbs found at the base of the trachea in so many males of the dack tribe, are well known to be confined to individuals of that family and sex alone. But, well known as the Anatides are or should be, from the fact that so many species are shot for food or kept in captivity, thus making specimens easily available for dissection, this structure of the trachea does not appear to have been recorded in some even of the best known species, nor does its functional inportance ever appear to have been fully realized. It is my purpose here to note briefly some specific peculiarities in the form of the organ which seem to have escaped the notice of naturalists, and to conclude with some observations on its presumable nse.

Nettopus coromandelianus.

In writing a popular series of articles in the Asian newspaper in 1898-99, destined for sportsmen who wished to identify the ducks they shot, I was careful to note the structure of the trachea in each species when I was able to give the information, in hopes of interesting my readers in this point. Thus I mentioned that the male of the above species was devoid of a tracheal bulb, a fact I had ascertained from my own examination of the trachea of this bird. Dr. W. T. Blanford, in a letter to me on the subject, has informed me that this observation is new, and I am hence induced to record it here. I find, however, that Sir E. Newton (Ibis, 1863, p. 459), says of Nettopus auritus, "Unlike most other ducks, the trachea of the male in this species is of a very simple form, there being scarcely any enlargement whatever at the lower extremity." It is possible, therefore, that the absence of a tracheal bulb may characterize the genus, as appears to be the case with Erismatura, in which genus MacGillivray, presumably referring to E. rubida, states that "There is no expansion or tympanam, as in other ducks" (Orn. Biogr., vol. iv, 1838, p. 331, fide Beddard, Structure and Classification of Birds, p. 464, footnote). Pallas certainly states (Zoog. Ross. As., vol. ii, p. 285), that such a tympanum is absent in E. leucocephala, a fact which I have been nble personally to verify (see J.A.S.B., vol. lxvi, pt. 2, p. 527). It would, however, be rash to assume that such deficiency of the tracheal bulb must necessarily apply to all the species of these genera, since among the members of the genus

Oidemia, O. nigra alone is exceptional in having no difference of this kind between the sexes.

Aix galericulata.
Well-known as is the Mandarin duck, I have been unable to find any reference to a description of the tracheal structure of the male, and I therefore venture to record that there exists in this sex of the species a large, rather flattened, thin-walled bony bulb of rounded outline, somewhat resembling that of the Muscovy (Cairina moschata).

Uairina moschata \times Anas boschas.

It may be of interest to note that the male hybrid between these two domestic ducks, judging from two specimens of each species and of the hybrid examined by me, agrees with the Mallard in the size and form of the tracheal bulb, but has this rather thinner-walled, thas approaching the structure of the very thin-walled balb found in the Mascovy drake, the very flattened and expanded form of which is characteristic.

Casarca rutila.

I have been unable to discover any mention of the form of the male trachea in this species, and so was unable to give any account of it when writing the series above-mentioned. Since then, however, I have obtained a specimen, and find the bulb present and bony-walled, bat very small, only about the size of a pea, thus differing very much from the great double inflation found in Tadorna cornuta.

Fonction of the Tracheal Bulb in Drakes.

There can be no doubt that the use of this peculiar structure is to modify the voice of the owner, as was pointed out, indeed, by Yarrell ("British Birds," article Mallard) many years ago; but the fact needs drawing attention to, as it has been doubted, for Coues (fide Dresser, "Birds of Europe," article American Bittern) states that "The carions cartilaginous or osseous bulbs at the lower larynx of most Ducks seem to have no influence on the voice." Bat nothing could be further from the truth. Yarrell (loc. cit.) approvingly quotes Gilbert White's observation on the sexaal difference of voice in Dacks; and careful stady of the living birds will show that in nearly every case where the tracheal enlargement exists in the male, he emits a correspondingly different note from the female-generally one of a weaker character, if not always. The accompanying table will make this point clear.

With a bony bulb in trachea of male.
Name. Voice of Male. Voice of Female.
Carina moschata. A panting hiss. A sharp quack.
Aix galericulata. A snorting whistle(weesh!) A quacking sneeze (atch!)
Chenalopex ægyp-
tiacus.
Eınetta falcata.

A hasky chatter.
A whistling cry like a A quack five times repeatduckling's.
Dafila acuta.
A faint weak quack.
A harsh single quack.

With a partly bony, partly membranous bulb in trachea of male.

Rhodonessa cary- A melodious double call Not known; but never ophyllacea. (wugh-ah!)

Nyroca baevi. A faint low quack.
Nyroca africana.
Merganser castor. A harsh croak (karr!)
gives the male note, while the drake often calls.
A harsh croak (karr!)

Of course many more well-known cases could be given, but I have in the above table merely given some, which being imperfectly or not at all recorded, have attracted my special notice. Casarca rutila is an exception proving the rule, since in this bird the tracheal balb of the male is, as above noted, singularly small, nnd there appears to be no difference between the voice of the sexes in consequence. Authors in describing the sexual difference in the voices of various Anatids, often epeak as if the quack were common to both sexes, and another note pecaliar to the male alone. At other times no sexual distinction in voice is mentioned, as in Hume's account of the Pintnil (Dafila acuta) "Game Birds of India," vol. iii, p. 193). The same explanation will, I think, account for both errors, the birds having been studied from a distance when in flocks, and the cries of the separate birds thus having been confused. With regard to our two domestic ducks (Anas boschas and Cairina moschata) the drakes seem quite incapable of giving the dack's note, and vice versa, and I think the same rule will be found to apply throughont. That there are certain species, like Nettopus coromandelianus and Cdenia nigra, in which the male has no tracheal balb and yet gives a different call from the female, in no way invalidates the importance of this structure in the others; for the voices of male birds, in the Gallinss and Passeres for instance, often differ from those of females without any corresponding difference in anatomical structure. The tracheal bulb in the Anatidæ, where found, merely, in my opinion, makes auch difference necessary and permanent.

X.-Note on Calinaga, an aberrant genus of Asiatic Butterfies.-By
 Lionbl de Nictillee, F.E.S., C.M.Z.S., \&c.
 [Received 5th Jane; Read 4th July, 1900.]

In the "Memoirs and Proceedings of the Manchester Literary and Philosophical Society," vol. xliii, part iv, n. 11, pp. 1-23, pls. iv, v and vi (1899), appears a paper by Mr. John Waison entitled "On Calinaga, the Single Genus of an aberrant Sub-Family of Butterflies," in which he has brought together a mass of most interesting facts mostly based on his own original observations regarding these butterflies. This paper should be carefully studied by everyone interested in the phylogeny of this anomalous genus.

The following brief notes will shew the very various positions in the uatural order of Buttertlies in which Calinaga has been placed by different writers:-

Dr. F. Moore in 1857 when first describing the genus placed it in the subfamily Nymphalinæ next following the genus Hestina, Westwood; in 1865 he placed it at the end of the Papilionidæ, the Pieridæ being retained as a distinct family; in 1895 be replaced it in the family Nymphalidæ, but proposed a new subfamily for it, the Calinaginæ, which will follow the subfamily Nymphalinæ. In 1861 Dr. C. Felder placed it in the family Nymphalinos after the genus Penthema, Doubleday. Mr. W. F. Kirby in 1871 placed the genus second in the subfamily Papilioninæ, but in 1877 be removed it to the Nymphalinæ; in 1894 he stated that it belonged to the Nymphalidx. In 1872 Herr Gustav Weymer noted that Calinaga does uot belong to the Papilioninæ, but to the Pierinæ. In 1873 Mynheer P. C. T. Snellen placed Calinaga in the Nymphalinze. M. Charles Oberthür in 1881 noted that the antennal characters of the genus place it betiveen a genus of Pierines (Leuconea) and a genus of Papilioninæ (Parnassius). M. H. Lacas in 1884 placed it in the same position as M. Oberthür in 1881. Dr. A. G. Batler in 1885 placed Calinaga in the Nymphulinæ, bat said that he had no doubt that its proper place is in the subfamily Satyrinæ. In 1886 Dr. 0. Standinger placed the genus in the sabfamily Nymphalinæ. In 1886 I placed it in the Nymphalinz wholly on account of the forelegs of the imago of the male being pectoral anfitted them for use in walking. At that date I had seen no female, the forelegs of which have since been found to be perfect but unfit for use in walking, being very small and pectoral as in the opposite sex. Dr. E. Schatz in 1887 placed Calinaga in the "Diademen" group, which is the fourth group in lis seventh family " Nymphaliden." For Diadema the genus Hypolimnas is intended, as Diadema having been proposed in 1817 for a genus of Crustacea
cannot be used for the genus of Butterflies proposed by Boisdaval in 1832. In 1888 Mr . H. J. Elwes placed the genus in the $N y m p h a l i n e r$. In 1892 Mr . J. H. Leech placed it in the Nymphalinæ. In 1898 Dr. Karl Jordan placed the subfamily Callinaginæ [sic!] in the family Nymphalidæ. Lastly in 1899 Mr . John Watson noted that the genus has "A great similarity to the Papilionidæ (subfamilies Papilioninæ, Parnassiinæ, and Pierinæ), and to the Nymphalidæ (subfamily Danainæ, but not to the subfamily which includes the genus Hypolymnas*)." In writing to me on February 10th, 1900, Mr. Watson says that the genus "Must be placed next to (not in) the Danainæ."

Mr. Watson notes that the egg as far as he has been able to study it with very insufficient and imperfect material, i.e., the broken upper portions of two eggs of Calinaga davidis, Oberthür, obtained from the dried body of the female, shews that Calinaga is near to the Danainæ, i.e., to the genera Hestia and Danais. I hnve nothing to arge against this conclusion, in fact I agree with it so far that I think it probable that Calinaga is allied to the subgenus Radena of the genus Danais. The acquisition of a perfect freshly deposited egg would, I may nole, settle definitely at once and for ever the position of this anomalous genus. I may note that Mr. W. Doherty has pointed out that Rudena nicobarica, Wood-Mason and de Nicéville, has 16 vertical ribs on the egg, and that Radena vulgaris, Butler, bas from 14 to 16 vertical ribs, and 25 cross-lines. When the egg of Calinaga is discovered it will be interesting to note if the vertical ribs and cross-lines agree with those of Rudena. Mr. Doherty describes the eggs of the Danainæ as "Much higher than wide, leathery, radiate, with numerous broad flattened ribs and distinct cross-lines, reticulate over a small area at the apex." The micropyle of the eggs of butterflies is of little or no value for classificatory purposes.

As regnrds the foreleg, which in the male is very bairy, imperfect, having but a single joiut to the tarsus, while in the female it is perfect, having five tarsal joints, the terminal joint furnished with a pair of claws, a pair of paronychia, and a pulvillus, Mr. Watson notes that the female of Calinaga "Shews in its tarsal structure the most ancient type of leg of the whole of the Nymphalide." I have examined the forelegs of both sexes of Calinaga, which I could not do in 1886 when I dealt with the genus in the second vol. of "The Butterflies of India, Burmah and Ceglon," as at that date I had seen no female, from which it is clear that the genus cannot be placed in M. Constant Bar's group Tetrapoda, in which both sexes have the forefeet or tarsi imperfect, the Tetrapoda being

[^38]equivalent to the family Nymphalides, but that Calinaga should find a place in the Heteropoda, which has the forefeet imperfect in the male but perfect in the female, the Heteropoda being equivalent to the families Lemoniidæ ard Lycænidæ. But to place Calinaga in either of those fanilies on the structure of the forelegs only is obviously out of the question, as in every other respect the genus shews no relationship to those families. The forelegs of both sexes of Calinaga are highly specialised, and have lost all functional characters, being extremely small and quite unfitted for walking. This is a characteristic of the Nymphalidæ, but the fact that the male has a nymphalid foreleg, while the female has in structure a foreleg, which, bat for its ridiculously small size unfitting it for use, would place the genus amonget the Lenoniider, Lycænide, Papilionide and $H_{\text {esperiidee which have six fally }}$ developed ambulatory legs in the female, removes the genus from any known family of batterflies as hitherto diagnosed, the structure of the forelegs having of recent years been largely used as a primary basis on which to divide the families.

Calinaga has a prototype in the genus Psendergolis, usually also placed in the sulfamily Nymphalinex, bat for which Dr. Karl Jordan has proposed the subfamily name Pseudergolinas, the foreleg of the male of which has a single joint to the tarsus, the female having five tarsal joints, the terminal joint furnished with a pair of claws, a palvillas, and bifid paronychia. In both sexes in Pseudergolis the forelegs are very distinctly longer both actually and proportionally than in Calinaga (in while they are ridicalously short), bat are still quite unfitted for walking. Pseudergolis therefore is another genus that can find no place as far as I can see in any existing family of batterflies as hitherto dingnosed. Its transformations (Pseudergolis wedah, Kollar) are known fortunately, and have been figured by me in Journ. Bomb. Nat. Hist. Soc., vol. xi, p. 371, n. 83, pl. U, figs. $9 a, 9 b$, larva; $9 c, 9 d, 9 e, 9 f$, pupa (1898). The full grown lnrva reminds one somewhat of that of the genns Apatura ($=$ Potamis, Hübner, to follow Dr. F. Moore), sabgenus Rohana, Moore, while the papa is like that of the genus Athyma. Mr. Watson says that Pseudergolis "In point of geueral resemblance and nearation is undoubtedly in the Precis and Junonia section of the Nymphalines." Mr. W. Doherty, who first discovered the abnormality in the forelegs of the female, placed it in the Apaturider, "Differing but little from its neighbours in other points [except the feet], if the feet offered really reliable characters" (Journ. A.S.B., vol. lx, pt. 2, p. 12 (1891). Mr. Doherty placed Pseudergolis in his Junonia groap, which embraced the genera Junonia, Precis, Pseudergolis and Rohana (Journ. A.S.B., vol. 1v, pt. 2, p. 123, n. 82 (1886).

With regard to the antennæ of Calinaga, Mr. Watson says that they are "Similar in general form to those of Danais and Euplosa, and in scaling are like those of the Parassiins." In my opinion the antennæ superficially most nearly resemble those of the genus Luehdorfia of the Papilionine, with which they agree very closely in leugth and shape. In Calinaga they are too short and stont to agree well with the Dunains, and too long to agree with Parnassius, besides which the antennæ of the latter genas are more abruptly clubbed than in Calinaga, and the club is thicker. The structure of the legs and the neuration will, however, in my opinion, remove Calinaga entively from the Papilionidz.

With regard to the basal cell of the hindwing in Calinaga, which is caused by the peculiar conformation of the costal, subcostal and median nervares together with another vein called by Mr. Watson the " interno-costal nervule," that writer sums up the evidence as regnids Calinaga that in formation it is "Similar to Parnassizs, and dissimilar to the Danainæ, and still less similar to the genus Hypolimnas." I have nothing to add to this. The basal cell is found in the Danainee, Morphine, Pierinæ, and Papilionins.

As regards the general facies of Calinaga I ngree with Mr. Watson that it reminds one of the genus Aporia of the Pierinæ, still more so of some species of Parmussius, but in my opinion most of all to certain species of the subgeuns Radenis of the Danainæ, sny Radena meganira, Godart, for the dark Calinaga budilha, Moore, and Radena juventa, Cramer, for the lighter Calinaga davidis, Oberthür, and C. cercyon, mihi. Neither of these species of Radena, however, occur where the Calinagas are found. The disposition and extent of the markings of the two genera Radena and Calinaga is very mnrkedly similar. Calinaga is almost unique in the heavily lairy, ferruginous clothing of the thorax of both sexes of all the known species, which strongly contrasts with the black abdomen, and this hairiness is characteristic of Parnassius. The coloration feature of the thorax is also noticeable in Parnassius citrinarius, Motschulsky, of which P. glacialis, Butler, is a synonym, but in the latter species the coloured hairy clothing of the thorax is of much less extent, forming merely n collar, and is rather paler, more fulvous, in shade. I may note that the hairless, leathery abdomen of Calinuga reminds one of that of the genus Danais.

I can extend the geographical range of the genus Oalinaga considerably beyond that given by Mr . Watson, as it is found in the Western as well as in the Eastern Himalayas, but it is a noticeable fact that as far as is at present known C. buddha occurs in the Western Himalayas only in the Kulu Valley, near Dalhousie, in Chamba, at Murree, and possibly near Massoorie, there being an immense gap of
nearly 600 miles before it is again met with in Sikkim in the Eastern Himnlayas ; while to the east O. davidis, Oberthür, occurs in Central as well as in Western China, while C. sudassana, Melvill, is found in Upper Burma and Upper Siam.

Dr. George Watt obtained Calinaga brahma, Butler, which is a synonym of C. buddha, Moore, "Near Assam" according to Dr. Butler who described it, but Mr. J. H. Elwes has noted that the specimens were probably collected in the Naga Hills on the march from Manipur to Kohima. In Mr. Elwes' collection is a female specimen of O. buddha from Chamba in the Western Himalayas. O. buddha was originally described from N. India, presented by Colonel Buckley, who collected largely in the neighbourhood of Massoorie in the Western Himalnyas, but no specimens from the Mussoorie region have been obtained in recent years. Excepting Dr. Watt there is no European in India as far as I know who has seen a Calinaga alive except Mr. A. Grahame Young, who informs me that it is not very rare in the Kulu Valley, also in the Western Himalayas; that it frequents the banks of heavily wooded streams from 3,500 to under 6,000 feet elevation above the sea, never higher than that; that it is purely a forest insect, never found amongst mere brushwood bat always amongst trees; and occurs generally from about 25th March to 20th May. He notes that once, and once only, he saw three altogether, in July, 1872. It is very fond of settling on wet sand or gravel, when disturbed it flies off with a strong Papilio-like flight, and that it is very strong on the wing. Last year (1899), Mr. Young tells me that his native collector reported that he saw over twenty specimens, bat caught only five. In Kalu it is very local, Mr. Young knows of two spots only where it occurs.

In 1886 I noted that "The species [of Calinaga] are probably mimetic." I think so still, and that they mimic species of Danais, O. buddha, O. davidis, and C. cercyon mimicking D. limniace, Cramer, C. sudassana mimicking D. sita, Kollar ($=$ D. tytia, Gray), and O. lhatso, Oberthür, possibly the same species; the mimic and its model in all cases being found in the same locality.

In conclasion I may note that the opinion I expressed in 1886 that "The proper position of the genus is amongst the Nymphalider, though a knowledge of its transformations is necessary for determining its exact position in that family" remains unaltered. Till its egg is properly known (eggs extracted from the body of a long deceased specimen are not very satisfactory, though very mach better than nothing), and its larva and pupa are discovered, especially the young larva on first emergence from the egg, the position of the genus must remain uncertain. It is not a hesperid, papilionid, lycenid or lemoniidid, so must
come into the family Nymphalidæ. Various authors bave placed it in the Danainæ, Satyrinæ, Nymphalinæ, Pierinæ, and Papilioninæ. Its most probable position is I think in the subfamily Danainæ as Mr. Watson states, and I would place it tentatively after Hestia and Ideopsis and before Danais, next before the subgenus Radena. If, however, the male has no extrusible tufts of hairs at the end of the abdomen as have all the Danainæ, it cannot be placed in that sabfamily. I think it probable that these tufts are absent. The structure of the forelegs of the female in correlation with that of the male removes the genera Calinaga and Pseudergolis from any hitherto known family of butterflies, if the sequence and definition of the rhopalocerous families is to be primarily based on the structure of the forelegs of the imago as bas been done of recent jears. But I think these two genera must come into the existing families as aberrant genera, the genus Oalinaga amongst the Danains and the genus Pseudergolis amongst the Nymphalines. In all five species of Calinaga are known. I have given a list of them in Journ. A.S.B., vol. lxvi, pt. 2, p. 551 (1897).

XI.-Notes on birds collected in Kumaon.-By Captain H. J. Walton, I.M.S.

[Received 6th Jane; Read 4th Jaly, 1900.]
The birds enumerated in the following list were collected by me in British Garhwal and the Almora district of Kamaon during the months of April-July, 1899.

The nature of the duty on which I was engaged rendered it necessary for me to visit nearly the whole of British Garhwal, and most of the district lying east of Almora almost to the boundary of Nepal. Unfortunately my camps had to be selected without any reference to their merits as collecting grounds, and, indeed, as I was travelling nearly every day, most of the birds were shot actually from the roads.

Garhwal is a large district, extending far up into the Himalayas, bounded on the north by Thibet, on the west by Native Garhwal, and on the south and east by Kumaon. Although there are some very high peaks and mountain ranges, as a rule the valleys up which the roads run are rather low-lying, averaging about 6,000 feet, but varying from about 4,000 to 12,000 feet above sea-level. The sides of the valleys are almost everywhere covered with tree jungle, but from Chamoli to Yoshimath, and again in the neighbourhood of the Mana and Niti passes, the hillsides are almost bare. In parts the jungle is very thick
indeed, and as it is precisely in such places that many of the lirds are met with, unless one has plenty of time at one's disposal, one is sure to overlook n great many species. The Garhwalis do not seem to take much interest in birds, and they are by no means skilful in marking down those that are shot. I lost a great many birds owing to the diffoulty of finding them in thick undergrowth.

The climate of Garhwal, in summer, presents great and sudden variations. As one marches along, it is often very cold on the ligher roads, and then, after a steep descent into a low-lying valley, the heat becomes very trying. This, of course, is a good thing in one respect, as the birds met with necessarily vary very much, even in the course of a single march.

At the beginning of A pril the weather was cold with a good deal of rain. The latter part of the month of May and the beginning of June were hot and fine. The rains began about the 10 th of June, and soon became very heavy indeed. At the end of June and throughout July the birds were very silent: the jungles were wet and slippery and full of small but voracious leeches, and, consequently, not very attractive.

Nearly all the birds were breeding at the time I visited Kumaon : I regret that I had too little time at my disposal to devote any attention to nests. The choice lay betiveen birds and eggs, and I preferred the former. All the pheasants were breeding or preparing to breed, and had retired into the depths of the jungles, consequently I did not see very many. I was shown a breeding-place of the White-bellied or Snowpigeon (Columba leuconota) at the lower end of the Mana pass, but on May 20th, the date of my visit, the eggs had not been laid. I hope to receive some from the headman of the neighbouring village, later on. I also saw two breeding sites of the Alpine Swift (Cypselus melba) in rocky precipices above the Alaknanda river, but they were quite inaccessible.

I left Naini Tal on April 9th, and marching vid Almora and Ranikhet, entered Garhwal on April 18th. I went first to Kedarnath, which is about 10,000 feet above sea-level in the north-west of the district. The roads were crowded with pilgrims on their way to the famous temple. These people come every year from all parts of India, most of them marching up the Ganges valley from Hurdwar, as soon as the fair there is over. I met pilgrims from Hyderabad (Deccan) and Quetta. The pilgrimage season lasts for about six months, and one can only hope that the spiritual benefits received are at all in proportion to the physical discomforts undergone by the pilgrims, many of them very old men and women. It was bitterly cold at Kedarnath, and snowed hard the day I was there (May 4th).

From Kedarnath I went riâ Ukhimath and Yoshimath to the

Mana Pass, which I reached on May 19th. By that date the weather was beginning to get much warmer, though the pass was not yet open. Thence my ronte was to the Niti pass. On May 31st, iwo Thibetans, the first of the year, had just crossed the pass, but they reported that they had been much delayed on the road by heavy snow-drifts. From the Niti pass I marched nearly due south, entering the Almora district on June 15th. I proceeded to Pithorngarh, in the east of the district, and returned to Naini Tal on Jaly 17th.

The numbers and nomenclature adopted in the following list are those given by Messrs. Oates and Blauford in "The Fauna of British India, Birds."

1. Corvus corax.-I did not see any Ravens in Garhwal, but, according to native accounts, they visit the higher valleys in winter.
2. Corvus macrorhynchus.-The Jungle-Crow is common in all the valleys, except the very highest.
3. Corvus splendens.-The Indian House-Crow only occurs aboat the larger hill stations in Kumaon : I did not see any in Garhwal.
4. Urocissa occipitalis.-The Red-billed Blue Magpie is very common, up to about 6,000 feet, wherever there is tree or bush jungle.
5. Urocissa flavirostris.-Common at rather higher elevations than the last species.
6. Dendrocitta himalayensis.-Very common: seen generally in small parties of from four to six.
7. Garrulus lanceolatus.-Common ap to about 6,000 feet: this bird feeds a great deal on the ground.
8. Garrulus bispecularis.-Also common: occurs up to rather higher elevations than G. lanceolatus.
9. Graculus eremita.-I did not see the Red-billed Chough below 10,000 feet. It was common near Badrinath, and the Mann pass. There were none at Kedarnath.
10. Pyrrhocovax alpinus.-The Yellow-billed Chough was very common, and very tame, about Malari, and at one or two other places in Garhwal. The birds flew aboat the camp in a very unconcerned way. They have a much softer note than the Red-billed Chough.
11. Parus atriceps.-Common, at moderate altitudes.
12. Parus monticola.-Very numerous.
13. Egithaliscus erythrocephalus,-Very common.
14. Machlolophus aanthogenys.-I only saw the Yellow-cheeked Tit once-near Naini Tal. A small party were feeding in some low trees on the banks of a small stream. I shot one specimen, but although I was constantly on the look-ont for more, I did not see the bird again. I fancy, therefore, that it must be rather locally distributed in Kumaon.
15. Lophophanes melanolophus.-The Crested Black Tit is common throughout the district.
16. Garrulax leucolophus.-Tolerably common in the lower hills.
17. Garrulax albigularis.-The White-throated Laughing-Tbrush is very common. One of its notes is a regular biss-like a snake rather than a bird. It is an inquisitive bird, and as a rule not at all shy. My Scottish terrier was an object of great interest to this and other kinds of Laughing-Thrushes. Though they never actually mobbed it, as Drongos and Mynas often do, they often followed the dog for some distance through the jungle. I saw about twenty birds of this species following a marten (Mustela flavigula) in the same way.
18. Irochalopterum erythrocephalum.-This is such a skalker that it appears to be much rarer than it probably is. The stomach of one I shot was full of small snails.
19. Trochalopterum variegatum.-Fairly common. It has the usual habits of the Laughing-Thrushes; is very noisy, and goes about in small troops among scattered bushes and thin jungle.
20. Trochalopterum lineatum.-Very common indeed. It has a tri-syllabic call, preceded by a low trill : the latter is not heard, unless one is very close to the bird.
21. Pomatorhinus ruficollis.-Another inveterate skalker in thick undergrowth: I never saw more than three birds together.
22. Stachyrhidopsis pyrrhops.-In thick jungle; not often seen.
23. Myiophoneus temmincki.-Common everywhere near running water, from the lowest valleys to above the snows. It is a thirsty bird, and very fond of bathing.
24. Lioptila capistrata.-The Black-headed Sibia is very common, especially on the edge of forest. It has a very loud, shrill song, which it sings perched upon some conspicuous branch. Besides this it has a variety of very harsh notes. Out of six specimens that I collected I find that the back and scapulars of one (a young male) are almost concolorous with the lower plumage, which is much duller rafous than in the others.
25. Siva cyanuroptera.-I saw and shot the Blue-winged Siva a few miles from Almora, where it was common. I did not notice it elsewhere.
26. Zosterops palpebrosa.-I did not see this White-eye in Garhwal : it was common in parts of the Almora district.
27. Ixulus flavicollis.-A retiring bird, seen among thick undergrowth, in tree jungle.
28. Ohloropsis hardwickii.-Not seen in Garhwal : locally common in the Almora distriot.
29. Psaroglossa spiloptera.-Mr. Oates separates this bird from the Starlings, nnd he is no doubt right. All the same its habits are very like those of Mynas, except that it is never seen on the ground. It is very noisy and flies about in flocks. It has a very harsh call-note. A young bird had brownish irides.
30. Hypsipetes psaroides.-Very common at moderate elevalions. It has many different, mostly harsh, notes. One of them is like the " mew" of a young kitten.
31. Molpastes intermedius.
32. Molpastes leucogenys.-This and M. intermedius are the common Bulbals of Kumaon : they do not occur much above 6,000 feet.
33. Sitta himalayensis.-Very common and generally distributed. It is a wouderfal tree climber, and progresses with equal ease, vertically, upwards, or downwards.
34. Sitta cinnamomeiventris.-Replaces S. himalayensis at the lower elevations: very common at Naini Tal.
35. Sitta frontalis.-I obtained only one specimen in the Almora district.
36. Dicrurus longicaudatus.-The Ashy Drongo is very common throughout the district. The iris in young birds is dark brown.
37. Certhia himalayana.-Common everywhere. It has a rapidly repcated note, which is very loud for sach a small bird.
38. Certhia nepulensis.-I obtained one specimen, a male, near Yoshimath, Garhwal, on June 6th. The testes were so large that it was probably breeding then. This Tree-Creeper does not appear to have been previously recorded west of Nepal.
39. Franklinia gracilis.-Franklin's Wren-Warbler was common at moderate elevations.
40. Phylloscopus affinis.-Tickell's Willow-Warbler was very common and breeding in Garhwal, above 8,000 feet : it has a loud song.
41. Phylloscopus humii.-I am ancertain whether a Willow-Warbler that I obtained should be referred to P. superciliosus or to P. lummii : the coronal band is certainly quite distinct, and, therefore, according to "The Fruna Brit. Ind., Birds," vol. i, page 410, more resembles P. superciliosus. On the other hand, the second primary is intermediate in length between the eighth and ninth, and the bird should therefore be P. humii (loc. cit., p. ${ }^{\circ}$ 411). According to the geographical distribation given by Mr. Oates, it is more likely to be P. humii. Even with the help of Mr. Brooks's paper in Str. Feath., vol. vii, on the subject, the identification remains undecided in my mind.
42. Acanthopneuste viridanus.-Common.
43. Acanthopneuste occipitalis.-Another common species at rather
high elevations : evidently breeding at about 10,000 feet, at the end of May.
44. Cryptolopha xanthoschista. - Hodgson's Grey-headed Fly-catcher-Warbler is common every where.
45. Suya crinigera.-Common throughout the district. It has an agreenble, but weak song; nlso a "chiff-chaff"-like call, repeated several times in quick succession.
46. Lanius nigriceps.-Common in the enst of the Almora district, especially about Pithoragarh; not seen in Garhwal.
47. Lanius erythronotus.-Common up to about 7,000 feet.
48. Pericrocotus brevirostris.-This was the only Miniret I saw ; it is generally distributed.
49. Campophaga melanoschista.-I procured specimens and saw this bird almost throughout the whole district.
50. Oriolus kundoo.-Common in many of the lower valleys.
51. Sturuia malabarica.-I only saw this bird once; near Almora.
52. Acridotheres tristis.-Common in the Almora district: only noticed at Chamoli, in Garliwal, where it was apparently breeding in holes in the cliffs, in company with Oypselus melba and C. affinis.
53. Hemichelidon sibivica.-I got some specimens near Niti, at about 10,000 feet; I did not notice it elsewhere.
54. Cyornis superciliaris. -Commou.
55. Stoparola melanops.-Very common at low elevations.
56. Culicicapa ceylonensis.-Common.
57. Niltava nacgrigorio.-The Small Niltara is met with among low thick undergrowth in the more open, low-lying valleys of Garhwal.
58. Tersiphone paradisi.-The "Ribbon-bird" is common in the lower parts of the district.
59. Chelidorhynx hypoxanthum.-Common, especially in the higher forests. It has the habit of opening its tail out fan-wise, as it hops about bushes.
60. Pratincola caprata.-Common.
61. Pratincola maura.-Common.
62. Oreicola ferrea.-The Dark-grey Bush-Chat is met with from the lowest valleys to nearly 11,000 feet. It was common, in May, about Niti, almost up to the snow line.
63. Henicurus maculatus.-Common on the lower streams and nbout small waterfalls. I saiv a couple feeding in a flooded rice field at some distance from running water. It is rather shy and restless, and frequently perches on low bushes near the edge of a stream. The smallest brook suffices to attract this bird. By quietly approaching one of the many culverts that span small streams on the road between Naini

Tal and Almora, one was pretty sure to get a glimpse of a Forktail or two.
637. Microcichla scouleri.-I only saw the Little Forktail at one place, near Kedarnath, where it was very common. It has a short twittering song, which it sings in the intervals of searching under stones for food. It is remarkable to see such a frail little bird standing "knee deep" in the most rapid torrents.
638. Chimarrhornis leucocephalus.-Common throughout the valleys of Garhwal : it was especially numerous about Kedarnath and Badrinath, in May.
644. Ruticilla rufiventris.-This was the only Redstart that I saw, and that only near the Niti Pass. In the plains of India, in the cold weather, this is quite a tame, confiding bird, but I found it very wary in Garhwal, and had some difficulty in procuring a specimen. This, a male, shot on May 31st, had very large testes, and if not already breeding, would certainly have done so very soon. I had a long but fruitless search for nests of this species.
646. Rhyacornis fuliginosus.-Common about all the lower streams in Kamaon.
651. Calliope pectoralis.-I saw this bird at Mana and Niti in May. It has a long and pretty, though weak song. All that I shot were males. I noticed Ω plain-looking bird, perching on stones and low bushes, and rather shy: it was quite a surprise to me, on shooting one, to see the bright crimson throat.
654. Ianthia rufilata.-I only got one specimen, a hen, in Garhwal, in June.
663. Oopsychus saularis.-Common at moderate elevations, throughout the whole of Kumaon.
672. Merula albicincta.-The White-collared Onzel is fairly common in Garhwal. It frequents rather open forest. Both male and female have white tips, as well as white shafts, to the under tail coverts. The margin of the eyelids is bright yellow.
676. Merula boulboul.-A common forest bird. It is one of the best songsters I know, and its loud and varied notes are a striking refatation of the old calumny that Indian birds "don't sing." It especially frequents the tops of high trees.
677. Merula atrigularis.-I only saw and obtained one specimen, at Dwarahath, Almora. It was feeding on wild cherries near the Dak Bungalow.
678. Merula unicolor.-Tickell's Oazel was not very common. I noted the following colours in a σ°, shot on June 26th, which, from the condition of its testes, must have been breeding-

Iris-Dark brown.
J. II. 21

Bill-Yellow throaghout.
Tarsi-Greenish-yellow; fect, more yellow; claws, yellowish-horny. 683: Geocichla wardi.-Rather a retiring bird; met with only in moderately open forest.
690. Petrophila erythrogastra.-Not nearly so common as P. cinclorhyncha. "Rock-thrush" seems an inappropriate name for this bird in the Himalayas. I generally saw it perched near the top of a high tree.
691. Petrophila cinclorlyncha.-Very common at low elevations. The call-note is a single, rather loud whistle. The Blue-headed RockThrush, like the last species, is often seen on high trees; it goes about in small parties of three or four individuals.
693. Petrophila cyanus.-Not verý common, but still seen throughout most of the district. A male, shot near Niti, at aboui 10,200 feet, on May 30th, had testes about the size of peas.
695. T'urdus viscivorus.-Common at high elevations in Garhwal, even above the snow. It is very pugnncious towards its own kind. I nerer heard it atter other than very loud, harsh notes.
701. Oreociucla mollissima.-This bird is distinctly rare in Garhwal. I obtained one specimen near Yoshimath, among snow drifts at an altitude of about 13,000 feet.
704. Zoothera monticola.-I only met with the Large Brown Thrush in thick forest: it does not seem to be at all common. The claws of the anterior toes are white; that of the posterior dusky.
709. Cinclus asiaticus.-This was the only Dipper I obtained : it is very common.
727. Uroloncha acuticauda.-Hodgson's Munia is common in the lower valleys.
735. Uroloncha punctulata.-Common in the same localities as the last species.
746. Pyrrhula erythrocephala.-Frequents low ringall undergrowth in jungle; not at all shy.
755. Propasser palcherrimus.-Very common about Mana and Niti, above 10,000 feet. It frequents low bushes, going nbout in considerable flocks. Although this is certainly a handsome bird, its specific name would be more appropriate to P. rhodochrous, which is a lovely bird in 'life.
758. Propasser rhodochrous.-Only noticed about Badrinath (10,284 feet). It was very common there in May; in the Mana and Niti districts it was replaced by the last species.
761. Carpodacus erythrinus.-Very common indeed in the lower valleys. Oates gives its range up to 10,000 feet, but I did not see it in Garhwal abore 7,000 feet.
767. Carduelis caniceps.-I shot one, a o', out of a large flock, $^{\text {a }}$, perched on a high fir tree, near Niti, at over 10,000 feet: this was the only occasion on which I saw this species.
771. Metoponia pusilla.-A common, familiar bird near Niti. The birds were sitting about, like sparrows, on the house tops of the village of Bampa, in May. Like sparrows, too, they roosted at night in large numbers on one or two particular trees, with the same noisy twittering as each batch of new-comers arrived and settled down for the night. The reproductive organs were in an advanced stage of development, and the bird must, I think, nest in the neighbourhood. The forehead and anterior portion of the crown are rather orange than crimson in my specimens.
772. Hypacanthis spinoides.-Common, up to 10,000 feet. It occurred in very large flocks at Ramni, in June (9,000 feet).
776. Passer domesticus.-Common about the hill stations and lower valleys. Yoshimath (6,000 feet) was the highest place in Garhwal where it was common.
780. Passer cinnamomeus.-This is the common Jungle-Sparrow in Kumaon : it is also found round the higher villages. Oates gives its range up to 7,000 feet, but I obtained specimens at Dangari, Garhwal, at well over 10,000 feet.
790. Emberiza fucata.-The Grey-Leaded Bunting is common throughout Garhwal.
794. Emberiza stracheyi.-Common up to 11,000 feet. It has a very soft, sibilant call-note; besides this, there is a long, disoonnected sort of song.
803. Melophus melanicterus.-Common.
818. Hirundo smithii.-The Wire-tailed Swallow is generally diptributed throughout the lower valleys.
822. Hirundo nepalensis.-Common.
826. Motacilla alba.-I shot a male, in fall summer plamage, at Trijugi Narayan, Garhwal, on May 2nd. The testes were very small.
830. Notacilla hodgsoni.-Common towards the end of May; near Niti. It was very tame, and seems less restless than most Wagtails. I think that this species mast breed in Garhwal, as the reproductive organs of those I shot were all fully developed. I was unable, however, to find any nests.
831. Motacilla maderaspatensis.-The only place at which I saw and procured the Large Pied Wagtail was at Bageswar, to the east of Almora. It was very common about the river there.
832. Hotacilla melanope.-Common and probably breeding in the ligher ranges. Reproductive organs very large in May and Jane.
840. Anthus trivialis.-I procared several specimens in April, bat did not see the bird later in the summer.
841. Anthus maculatus.-I shot some of this species at 10,000 feet at the end of May. The sexual organs were still very small.
844. Authus similis.-Not very common, and only seen at low elevations.
847. Anthus rufulus.-Baijnath, in the Almora district, is the only place where I obtained this bird.
850. Anthus vosaceus.-Common on bare ground, at elevations of 10,000 feet and over. The day that I visited Kedaruath (May 4th) Hodgson's Pipit was in great force on the plain below the temple. It was a bitterly cold day and snowing hård, but the birds seemed quite cheerful. Its habits seem to be very similar to those of A. pratensis : it sings both on the wing and also when perched on some low bush or stone.
853. Oreocorys sylvanus.-The Upland Pipit is common on bare hill sides at moderate elevations. It has a very shrill call of two notes, frequently repeated, and soars, like a lark, to a height of twenty or thirty feet.
888. Wthopyga gouldis.-This Sun-bird was locally common, above 7,000 feet. At certain places, on a fine sunny day, one would notice numbers fitting about. On dull, overcast days one scarcely ever sees them.
890. Ethopyga saturata.-Rather less common than the preceding species.
946. Gecinus squamatus.-Very common in all well-wooded parts. I shot one specimen at above 11,000 feet. Like all the genns, it feeds a great deal on the ground. Small black ants are a very favourite food; the Woodpecker stands by the side of the ants' ran, and picks them off as they come along. The bird also diligently hants the rhododendrons.
950. Gecinus occipitalis.-Met with at moderate elevations, bat it is, I think, nowhere very common.
951. Gecinus chlorolophus.-I only obtained one specimen in Garhwal of this species.
960. Hypopicus hyperythrus.-Very common indeed throughoat the entire district, wherever there are trees. It has a very loud, harsh note, and taps the trees rapidly, making a lond rattle. The bill is pale yellow beneath.
961. Dendrocopus himalayensis.-The Western Himalayan Pied Woodpecker is also very common. It has a loud "clucking" note, and seems partial to very rotten trees : it feeds a great deal on the ground.
969. Dendrocopus auriceps.-Fairly common at moderate elevations.
974. Iyngipicus pygmæっts.-I only procured this bird once, near Almora.
992. Chrysocolaptes gutticristatus.-Tickell's Golden-backed Woodpecker is not uncommon in the lower valleys of the eastern part of the Almora Division : I did not see it in Garhwal.
1006. Megalæma marshallorum.-Very common all over Kumaon, up to about 8,000 feet. I found this Barbet very wary indeed, and it was by no means ensy to procure specimens. To start with, it is rather difficult to locate the particular tree from which the noisy chorus is proceeding. The Barbets keep a sharp look-out, and most of my attempts at stalking them ended in failure. However, the flocks seem to be very regnalar in their movements, frequenting a given tree at almost exactly the same time every day, as long as the fruit on it lasts. I obtained several specimens by taking up a position under a tree a little before the time that I had seen the birds the day before. They almost always kept the " appointment," and I got an easy shot.
1012. Cyanops asiatica.-Common in the low-lying valleys of the eastern part of Kamaon. I did not see or hear the bird in Garhwal.
1025. Eurystomus orientalis.-I got one specimen in Kumaon at an elevation of 4,000 feet. This was the only occasion on which I saw this bird.
1034. Ceryle lagubris. -The Himalayan Pied Kingfisher is common at moderate altitudes. It wanders about a good deal forsaking a stream as soon as the water gets at all thick. It is usually found in pairs and is rather wary. It perches indifferently on stones or branches.
1035. Alcedo ispida.-Not at all ancommon on the lower streams, both in Garhwal and in the Almora district. I only shot one specimen, at Bageswar. This, a male, has a shorter bill than my specimens from other parts of India, the distance from the gape being only $1.7^{\prime \prime}$.
1067. Upupa indica.- Common up to about 6000 feet.
1068. Cypselus melba.-I saw two breeding places of the Alpine Swift in Garhwal; both on the Alaknanda river. They were quite inaccessible, being situated in high perpendicular cliffs at a considerable elevation above the river.
1072. Cypselus leuconyx.-At moderate elevations. This bird does not fly very fast, for a Swift. Two of my specimens, both hens, measure $6.8^{\prime \prime}$; the wing of one being $6.5^{\prime \prime}$, and of the other $6.55^{\prime \prime}$, thus approaching the dimensions of O. pacificus. The feet of both were pale coloured and the claws almost black.
1073. Oypselus affinis.-Not seen above about 6000 feet.
1095. Caprimulgus indicus.-This was the only Nightjar I obtained in Garhwal : it is common.
1104. Cuculus canorus.-Very common.
1105. Cuculus saturatus.-Also common. I often heard the call of what I believed to be C. poliocephalus, but I obtained no specimens.
1107. Cuculus micropterus.-Very common. Its call notes are often heard on moonlight nights. It has a harsh alarm note, like " jŭg-jŭg. jŭg," frequently repeated.
1118. Coccystes jacobinus.-I shot one specimen, in the Almora district, at about 6000 feet, at the end of June.
1141. Palæornis schisticeps.-Very common indeed. I shot one bird in Garhwal, at 11,000 feet, in June.
1160. Syrnium indrani.
1184. Glaucidium radiatum.-These were the only two Owls that I procured, though I saw at least two other species that I was unable to identify.
1193. Gyps himalayensis.-I saw this fine Vulture on several occasions. There were five or six sitting on the rocks above Bampa, near the Niti Pass. They were not at all shy and allowed me to approach within thirty yards of them.
1199. Gypaëtus barbatus.-The Lämmergeyer is common, but the percentage of birds in fully adult plumage is very small.
1217. Spilornis cheela.-The Crested Serpent-Eagle is common, near running water, up to 6000 feet. It is very tame and has a loud cry.
1229. Milvus govinula.-The Common Pariab Kite is met with up to considerable elevations, wherever the country is open. I did not see M. melanotis, although constantly on the look out for it.
1248. Accipiter virgatus.-Fairly common.
1260. Falco subbuteo. -I saw either this species or F. severus many times, bat could not procure a specimen.
1265. Tinnunculus alaudarius.-Very common.
1283. Sphenocercus sphentrus.-The Kokla Green Pigeon is very common. It has prolonged rather mournful notes, and a very swift and powerful flight. I saw one bird hanging almost head downwards from a sleuder branch, in a most un-pigeon-like attitude, as it attempted to reach some food. As I was within four yards of the bird, and watched it for some minutes, I am quite sare that I identified it correctly.
1292. Columba intermedia.-Common in cultivated districts, at moderate elevations.
1294. Columba rupestris.-I ouly saw the Blue Hill Pigeon at Badrinath, Garhwal. A few were feeding in company with O. leuconota. A hen bird, that I shot, had the irides orange, with a narrow inner circle of yellow. On May 20th, the ova were of the size of peas.
1296. Columba leuconota.-Very common at and above the snowlevel, and not at all wild. They frequent the lill paths and the banks of streams, during the middle of the day, in pairs, or parties of three or four individuals. In the morning and ovening they assemble in flocks of twenty to sixty birds and feed in the fields. I saw one of their breeding places at Mann, at the foot of the pass, on May 20th. It. was in a cliff about eighty feet ligh, overhanging a cascade. The natives told me that the Snow-Pigeon always builds rather low down, near the water, to avoid the Choughs, which mostly frequent the higher parls of the cliff. I do not think that there were any eggs laid on the date of my visit, but I saw one bird carrying building materials to a ledge in the rock, and many couting, the malcs behaving just like domestic pigeons. I also sav one pair in coitu.
1297. Dendrotrevon hodgsoni.-I saw this very liandsomo Wood Pigeon on several occasions, during the month of May, at about 7000 feet. Blanford snys about this bird :-"A shy bird, usaally seen in small flocks amongst the pine forests." I shot a pair at Gorikund, near Kedarnath, on May 2nd. They were feeding on low bushes, about thirty yards from my tent, and abont fifty yards from the village, which was crowded with noisy pilgrims. They did not seem to be at all shy. I shot the hen first; the cock flew away for Ω short distance, and returned almost at once to the spot from which he had been distarbed. The reproductive organs were well developed, and the birds must soon have bred. I could get no information from the natives abont their nidification. The claws are very bright yellow-not "pale yellow" ns stated by Jerdon.
1305. Turtur ferrago -The Indian Tartle Dove is common, and met with up to 10,000 feet.
1307. I'urtur suratensis.-Very common, ap to about 8000 feet.
1310. Turtur risorius.-Common at low elevations.
1333. Catreus wallichi.-I did not see the Cheer Pheasant myself, but I bonglit a skin said to have been obtnined near Ranikhet.
1334. Pucrasia macrolopha.-Met with singly or in pairs in many parts of the disirict. At the time of my visit to Kamnon, all the pheasants were breeding, and I disturbed them as little as possible.
1336. Gennæus albicristatus -Very common. I sav a cock clap. ping his wings and making a great demonstration in front of an apparently indifferent hen.
1342. Lophophorus refulgens -Tolerably plentiful, and very wary.
1344. Tragopan satyra.-I did not come across this pheasant, but I bought a skin from a native. The bird was said to have been shot near the Pindari Glacier.
1372. Francolinus vulgaris.-Very common ap to 7000. I heard a cock calling at Ramni, Garhwal (about 9000 feet), just above the limit of cultivation.
1462. Totanus ochropus.-I shot a Green Sandpiper in sammer plumage, and saw a few others, at Adabadri, Garhwal, on April 20th. A few days later they disappeared.
XII.-Noviciæ Indicæ XVII. Some new plants from Eastern India.By D. Prain.
[Received 11th June; Read 4th July, 1900.]
In this paper are contained descriptions of twelve previoasly undescribed species of plants from the north-eastern frontiers of Iudia. A considerable number of these have been examined and compared at the Kew Herbariam by Sir George King, who has kindly andertaken, for some of them, the responsibility of joint authorship. The descriptions are, as usual, driwn up in such a way as to conform to the descriptions given in Sir J. D. Hooker's Flora of British India.

TILIACE 压.

1. Grewia (Eugrewia) nagensiom Prain; shrabby, leaves scabrous, ovate-lanceolate, ncuminate, finely subequally serrate; cymes axillary, peduncled; buds obovate, striate; drupe 2-or 1-lobed, subtesselately rugose with lenticular swellings, each crowned by a stellate hair.

Assam ; Eastern Naga Hills at Naraza, J. W. Masters 1263! Teock Ghat near Tingali Bam, Prain's Collector 128! 262! Margarita, Prain's Collector!

Yoang shoots scabrons with stellate hairs; branches terete, sparsely stellately hairy. Leaves rather thick, 4.6 in . long, 2.5 in . wide, base rounded, 3 -nerved, central nerve with 3.4 pairs of slightly arohing nerves, sparsely stellately hairy above, rather densely stellately hairy, especially in the nerves, beneath; stipules sabulate as long as the petioles. Cymes axillary, umbellate, few-flowered, peduncles $\cdot 3-5 \mathrm{in}$. long, pedicels as long, in fruit elongate and reaching $\cdot 6 \mathrm{in}$., bracts triangular-lanceolate, $\cdot 2 \mathrm{in}$. long, stellate-hairy outside, striate within. Buds $\cdot 25 \mathrm{in}$. long, $\cdot \mathbf{2}$ in. wide. Sepals $\cdot \mathbf{4} \mathrm{in}$. long, lanceolate. Petals linear, 3 in . long. Torus densely adpressed-rasty-tomentose, $\cdot 15 \mathrm{in}$. long, cylindric. Drupe with 1 or 2 orbicalar lobes, $\cdot 3 \mathrm{in}$. long and broad and 25 in. thick.

The Calcatta Native Collector describes the flowers as yellow. The leaves most nearly resemble those of the Burmese species G. microstemma; the margins are, however, more finely toothed. The flowers are quite unlike those of G. microstemma and most closely resemble those of G. oppositifolia, bat the toras is very considerably
longor than in that apecies. The fruits afford the moat distinctive character; they approach moat nearly to, though they are still widely different from, those of G. umbellifera Bedd. (G. capitata Dalz.), next to which species the systematic position of the present one is.

OLACINEAT.

2. Gomprandra serbata King \& Prain; leaves serrate, ovate or ovate-lanceolate, cymes axillary or also from leaf-scars lower down, rather longer than the petioles.

Kıси! Hills; Myitkyina, Prain's Collector !

Abstract

A small tree, everywhere glabrous. Leaves chartaceous, glandular-sqerate eycept at the cuneate base, aper acute, nerves about 9 pairs, prominent beneath; length usually about 6 in., breadth $8.8 \mathrm{in} . ;$ petiole 5 in . Cymes finely puberulous. Oalyw minute, $4-5$-toothed. Corolla and stamens not seen. Fruit $\cdot 5$ in. long, ovate, naeramel gradually to an acute tip, dark-brown, smooth, crowned by the remains of the stigma, pericarp thin, firmly coriaceons, the inner layer almost woody. Seed large, testa pale, thin.

Very different from any of the other species of Gomphandra either in Herb. Kow or Herb, Oaleutta.

COMBRETACEA.

3. Combretum kaobinpase King \& Prain; loaver ofotarlaдopqit late, candate, glabrous above, finely rasty-pubescent henqath, only subopposite ; flowers in axillary, simple or sparingly branched, almost spicate lax racemes; calyx not constricted above the ovary, densely rusty ontside, glabrops within.

Kıонім Hills; near Sime, Prain's Oollector!

A large scandent shrab, without thorns; branches densely rusty-pubescent. Leaves snbopposite, $8-9 \mathrm{in}$. long, 8-25-8 in. wide, chartaceons, candate apex $\cdot 5-75$ in. long, margin entire, base abruptly cuneate or almost rounded ; petiole densely rasty, 85 in . long, stipules subulate $\mathbf{2 5} \mathrm{in}$. long, subpersistent. Racemes 8 - $\mathbf{4}$ in. long, branches if present few, 1-1.5 in. long, rachis densely rusty; bracteoles minute, rasty. Flowers subsessile. Calya campanulate, 6 -lobed, densely rusty externally throughont, $\cdot 2 \mathrm{in}$. long, lobes ovate-acute, glabrous within. Petals narrow obovate, exceeding the calyx, $\cdot 15 \mathrm{in}$. long, glabrous. Stamens 10 , those of the antipetalous series with short but distinct filaments and lanceolate anthers, the others with short broad oblong anthers subsessile. Ovary sessile, quite glabrous, gradually narrowed inte the glabrous simple style.

A very distinct species unlike any of the 5-merous Indian species. Among Indiap Combreta it mopt reaembles C. dasystachyum Kpry, which has homever s-merons flowers. In foliage it very closely reeemblem Combretum ferrugineum Schtmper, from Abymainia.

OLRACEAE.

4. Jasminum excellems King \& Prain; glabroas; leaves opposite pinnatoly $\%$-foliolate, less often 5 -foliolate or occasionally close to the: J. II, 22
inflorescence 3 -foliolate, leaflets cordate- or ovate-lanceolate, glabrous, sub-3-nerved; cymes axillary lax; calyx-teeth short; corolla white, tabe - 8 in. long.

Kachin Hills; Shan Busti, Sadon, 5000 ft., Prain's Gollector !
An extensive olimber. Terminal leaflet $2-2 \cdot 5 \mathrm{in}$. long, $\cdot 5-75$ in wide, lateral nearly as wide, usually 3 , less often 2 pairs, only $1 \cdot 25-1 \cdot 5 \mathrm{in}$. long. Cymes 10-14. flowered, bracts subulate $\cdot \mathbf{2} \cdot \mathbf{2 5} \mathrm{in}$. long, pedicels $\cdot 5-1 \cdot 25 \mathrm{in}$., slender. Calys glabrous, teeth subulate $\cdot 1 \mathrm{in}$. long, as long as the tube. Corolla white, lobes elliptic, subacate, $\cdot 5$ in. long, $\cdot 25-3$ in. wide. Fruit not seen.

Neither in the Kew Herbarium nor in that of Calcatta can we find anything like this very handsome Jasmine. The inflorescence reminds one most of that of J. dispermum, when its cymes are axillary, but the long slender pedicels, the calyz, and the leaves are very different. The species comes nearest J. officinale Linn., but again the calyx-teeth are different, being in our plant mach shorter, while the cymes are axillary not terminal, and the pedicels are longer than in J. officinale.

ASCLEPIADACEA.

5. Marsdenta (Eumarsdenia) leiocarpa King \& Prain; quite glabrous except the finely puberulous rachis and pedicels; leaves ovatelanceolate or ovate caudate-acuminate, base rounded or cuneate; flowers in rather lax axillary racemes; follicles quite glabrous.

Kachin Hills; between Myitkynia and Sadon, Prain's Oollector !
A large olimber; stem stout, smooth as are the branches, petioles and leaves on both surfaces from a very early stage; the youngest leaves very finely deciduously laxly puberulous. Leaves 8-6 in. by $1-3$ in., nerves spreading, rather prominent beneath, 5-8 pairs, glandular above at the petiole; petiole $75-1.25$ in. long. Racemes 4-6 in. long, lower portion of axillary rachis 1-2 in. long, uniform and glabrous (peduncle-like), the rest puberulous, slightly zig-zag, with small tumid minutely scaly and pubescent nodes in the retiring angles, about 8 in . apart below, approximate above. Flowers at the nodes usually solitary, sometimes germinate, rarely more, on puberulons slender pedicels 25 in . long. Sepuls suborbioular, nearly glabrons, with faintly hyaline margins. Corolla not seen. Follicles, only one of a pair developed, when quite ripe 1.6 in . long, $\cdot 15 \mathrm{in}$. in diam., lanceolate, rather abruptly narrowed at the base, coriaceous, quite glabrous in the very youngest stage. Seeds narrowly ovoid, $\mathbf{- 2 5}$ in. loug.

Very nearly related to M. tinctoria B. Br., and M. eriocarpa Hook. f., but extremely distinct on acconnt of its much smaller, quite glabrous follicles, and amaller aceds.
6. Crroplaia rachinensis Prain; leaves slightly paberalous above and on margins, glabrous glaucescent beneath, long petioled, ovate acuminate base rounded; corolla-lobes subspathulate half as long as the slightly curved tabe, their apices ciliate and connate so as to form a conical crown over the not greatly dilated throat; coronal lobes 10 , triangular, ciliate, less than half as long as the linear, slightly clavate,
straight processes. C. pabescens Prain in Rec. Bot. Surv. Ind. i, 252 not of Wall.

Kachin Hills; Myitkyina, Prain's Collector!

A slender climber with glabrous stems, branches, peduncles and pedicels. Leaves $8-3.5 \mathrm{in}$. by $1 \cdot 5-1 \cdot 75 \mathrm{in}$. ; petioles $\cdot 6-75 \mathrm{in}$. Peduncles rather slender, as long as petioles, 8-12-fid., pedicels $\cdot 5-6 \mathrm{in}$. slender. Calys-segments lanceolate their tips pinkish, glabrous, $\cdot 2$ in. long. Corolla slightly curved, $1 \cdot 25 \mathrm{in}$. long, base slightly inflated, apper third of tube somewhut abruptly funnel-shaped; tube pale green with small purple spots in upper third and with pinkish lines below; lobes green in lower, yellow in npper half and the margins there purple-ciliate. Follicles slender, spreading horizontally, each 4 in . long, ${ }^{25} \mathrm{in}$. in dium., greenish with irregular red streaks. Beeds ahont 20 in each follicle, narrow ovate, compressed, 4 in . long, -12 in . wide, coma white, nearly twice as long as seeds.

Erroneously distribated in 1898 under the name C. pubescens, this is to be found in various collections. The species is perhaps most nearly related to C. Throaitesii Hook., from Ceylon, but is abundantly distinct. The present description is drawn up from living specimens which have flowered in the Royal Botanic Garden, Calcatta.

ACANTHACE $\underset{\text {. }}{ }$

7. Grmnostachyum (Cryptophragmiam) Listeri Prain; minately puberulous; leaves large, short-petioled, oblanceolate; panicles mostly lateral, many-flowered ; corolla $\cdot 75 \mathrm{in}$. long.

Chitragong ; Demagiri, iu rocky places, Lister 162 !
A small undershrub, under a foot high. Leaves attaining 8 in . by 3 in., widest at the junction of the anterior and middle third, acute or acuminate, tapering gradually in the basal half to a petiole $\cdot 5-75$ in. long, margins entire, veins slightly arched forward, 12-14 pairs, minutely puberulous on both surfaces. Panicles chiefly from the axils of the lower leaves and the leaf-scars below these, $1 \cdot 5-2 \cdot 5 \mathrm{in}$. long, branches subspicate; flowers solitary or clustered; bracts small, linear. Sepals $\cdot 2$ in., linear. Corolla puberalous. Anthers linear-oblong. Capsule -5 in., very uarrow, glabrate. Seeds ovoid, compressed.

Very closely related to Gymnostachyum latifolium T. And. (Cryptophragmium latifolium Dalz.), and with that species standing, as regards habit, rather distinctly apart from the other Indian Gymnostachya. It is, however, very distinct from G. latifolium on account of its differently shaped leaves, its shorter flowers with different anthers, and its much smaller capsales. We are indebted to Mr. C. B. Clarke, for having very kindly compared our specimens with the material preserved in the Herbarium at Kew.
8. Peribtropar longifolia King \& Prain; leaves distinctly petioled, lanceolate, glabrous except for some adpressed hairs on midrib above and below; bracts lanceolate, faintly puberulous; corolla pink, $1 \cdot 25 \mathrm{in}$. long.

Kachin Hills; Sadon, Prain's Collector! Eabtern Naga Hills; near Balijan, Prain's Collector!

Leates 4-6 in. long, 75-1 in. wide, margin tudulate, graduahy tapering frota junction of middle and lower third to apex and to a slender petiole $\boldsymbol{\nabla} 5 \mathrm{f}$. f , longs raphides very slender plentiful on both surfaces. Bracts $\mathbf{7 5} \mathbf{i n}$. long, $\mathbf{~} 25 \mathrm{in}$. wide, acute. Filaments sparsely pubescent; anther-cells linear, one superposed for half its length.

This is very like a plant at Kew from Ichang, (Henry n. 4158) as regaids foliage, bat the Ichang plant has broader bracts than the Kachin one though fit has a similar coñdonsed inflorescence. Hypoestes salicifolia O. Kantze, represented at Kew by a fiowerless scrap, named by its author, resembles our plant in łeaves, infloreecence and bracts without however quite agreeing with it absolately in theve oharactivers. Our plant has however the two-celled anthers that distingaish Poristrophe from Hypoestes. Henry's n .4158 from Iohang, at Oalcutta, differs considerably from our phant.

LABIATe.

9. Gomphostrama (Pogosiphon) inopinatem Prain; ascending, leaty stoms and floweriag scapes distinct; leaves distinctly petioled; spikes erect, not interrupted even at the base.

Kachin Hills; Langkon, 3000 ft. elev., Prain's Collector!

Stems ascending, rooting below, 4 -grooved, and with rounded angles, several from a woody roobstock with numerous tufted, woody, branching, sleader roots; about a foot high; densely clothed with a close, ash-grey, stellate tomentum, intermized with a copious pabescence of laxly spreading, long, white hairs. Leaües b-6 pairs, the lowest small, the pairs 3 -4 in. apart; petioles $1-1 \cdot 5$ in. (occasiomally about 2 in.) long, pubescent hike the stems but with fewer long, lax, white haits in proportion to the stellate pubescence; lamina broadly ovate-acnte, 3-5 in. long by 1•75-3 in. wide, the base of lower leaves slightly cuneate, of the upper rounded; margin finely crenate except at the basal fifth; nerves about 6 pairs, ascending ; piper surfroe finely velvety with a soft, ash-grey, stellate pabescence interspersed with longer, simple, subadpressed tomentum, under surface softly velvety with a felted, whitishgrey, stellate pubescence. Flowers densely whorled, in radical spikes 2 in . long, 1.25 in . wide, on erect peduncles $8-6 \mathrm{in}$. long, with sometimes a pair of small foliaceons opposite bracts about 25 below the spike; peduncles with pubescence exactly as on the stem, but themselves terete and more slender; floral bracts obovate, dentate, sparsely stellate-pubescent tinged with pink, the lowest ${ }^{\circ} 5 \mathrm{in}$. long, $\cdot 25 \mathrm{in}$. wide. Calys wide-campanulate, glabrous within, tube rather closely stellate externaily, limb with 5 equal, wide-triangular claret or purple lobes, sparsely stellatio on the strongish central and weaker marginal nerves; 5 in . long, 3 in . wide, the lobes $\cdot 2 \mathrm{in}$. long ; bracteoles obovate-lanceolate $\cdot 2-25 \mathrm{in}$. long, reddish. Corolla : 75 in . long, upper lip subentire, lower 3-lobed with slightly emarginate mid-lobe and infiated throat, apparently annulate within. Stamens exserted, filaments hirsúte at their insertion. Ovary and style glabrous. Nutlets usuahy 4, eothétimes 2i8, reddish, quite glabrous, wall viry thickly coriacebve when dry.

Onky one of our peoimens had a few rather shrivelled corollas, from two of these, unsoaked as carefully as possible, the above description is given. Their colour-ia not particularly noted by the native collector, who simply remarks "filowers red," with reference doubtless to the purple or claret-coloured calyx. "Further examination of less advanced specimens will be requifed in orderito confmen the
existence of a distinct annulus．Its other characters however amply jastify its title to specific rank．It is not very like any of the hitherto described Indian Gomphostominata．The fact that the flowers ocour on independent leafless stems or ectupes recahb the habit of G．chinense Ofiv．and the fact that the calyx and lews markedly the bracteoles are purple－coloured，recails also G．Curtisii，sard G．pedunown latum which are the other members of the group Pedunculata to whioh G ．chinense belongs．The general facies of the species nevertheless rather recalls the Strobilina group of the § Pogosiphon to which，from the presence of hairs within the corolla tabe，it mast necessarily be referred．If，however，we are right in sapposing that these hairs form a distinct annulus，instead of being scattered as in the other Btrobilina，it must be considered in this respect as linking that group with the hitherto somewhat isolated G ．Hemsleyanum．

This is the second new species recorded since the pablioation by the writer in 1891 of An account of the Genus Gomphostemma（Ann．Roy．Bot．Gard．，Caloutta，iii． 227，et seq．）．The other species，Gomphostemma furfuracea Hallier fil．，has been very fulty and accurately described and figured by its author，after comparison with the material in the Calcutta Herbarinm，in Bull．de l＇herbier Botzsier vi．s51， 688 t． 9 ， f． 1 a -0 （1898）．It is a species of § Eugomphostemma，groap Melissifolia，and as its bracts are＇not＇longer than the calyx it comes nearest to G ．velatinum and G ．Neastercii． The outer brects are however in shape like those of G．ovatum and G．melissifotium， so that it stands，as its atthor has already indicated，intermediate between $⿴ 囗 十$ ．ovatum and G．Mastersii．It is a native of Eastern Sumatra．

Another point with reference to this genus may be noted in passing．In the acconnt of the genus referred to above，the position of Gomphostemma favescens Miq．was left doubtful．In the following year the writer was able to say that， judging from specimens of the plant＇（Anthoooma flavescons Zoll．）on which Miquel＇s species is based，kindly lent by Dr．Treab from the Buitenzorg Herbarium，this species was ìn reatity Cyinaria acuminata Dcne．In 1895 the writer was afforded， though the kindness of M Drake ael Oadtillo，on opportunity of examining the actuad type specimen of inthocoma flavescens and of thras confirming the nocustocy of the identification pablished in Δ mnals of Botany vi． 214 （1892）．

OHLORANTHACE

10．Chloranthus kachinensus King \＆Prain．；leaves aubsesside， ovate，caudate－acuminate，margin finely gland－serrate except at the onente base；antifers 3，comate by their connective；spikes in termi－ nal chasters．

Kachin Hills；Shan Busti，Sadon，near water，Prain＇s Collector ？
An．evergreen ．erect undershrub；loaves glabrous，chining above，dull and finely paberaloys of the nerves beneath，nerves about 10 pairs doubly inarcked within the margin，length；6－8 int，breedth 3－8．5 in．，caudate apex • $75-1$ lạ．long ；patiole si in； long or 0．Spikes 3.5 in ．long，4－6 together，faecicled at the epex of the braucheos among linear bracts，surrounded by 2 olosely approximated，distichous pairs of leaves．

The leaves most resemble those of C．officinalis Bl．，but the fascicled instead of panicled spikes at once distinguish it．The inflorescence is like that of C ．nervosus Coll．\＆Hemsl．，from the Shan Platean，which is however at once diatinguished by its coarsely serrate，distinctly petioled and amaller leaves which are not caudate－ aouminate at the apez．

LILIACE .

11. Smilax (Ensmilax) Pottingeri Prain; branches terete, smooth or with few minute black verruce日 ; leaves 6-8 in. by $4 \cdot 5-5 \cdot 5$ in., ovate abraptly acuminate, the narrow tip ${ }^{6} 6$ in. long, thinly subooriaceous or chartaceons, very dark green above, glancescent beneath, 5 -costate from the slightly cordate base, petiole 1.5 in ,, the basal portion 6 in . long, narrowly sheathing; peduncles solitary, axillnry, $3 \cdot 5-4 \mathrm{in}$. long, very slender, rigidly wiry, terete, smooth, 25 - 30 -flowered; pedicels rigid, slender, grooved, $\cdot 5-6$ in. long. S. macrophylla Prain in lec. Bot. Surv. Ind. i. 275 (not of Roxb.).

Kachin Hills; Myanngjong, Pottinger; near Sadon, Prain's Collector!

An extensive climber; leaves somewhat shining above, with strong secondary reticulations; between the main-nerves on both surfaces ; cirrhri slender, wiry, $4-5 \mathrm{in}$. long, springing from apex of sheathing part of petiole. Peduncle springing from a swelling $\cdot 2$ in. above the petiole, bracts 0 , bracteoles at base of pedicels shortly oblong obtuse, pale•brown, palea-like, persistent, making a small globose head $\cdot 25 \mathrm{in}$. across. of flowers not seen. i Perianth segments ovate obtuse under $\cdot 2 \mathrm{in}$. loug; staminodes 3, style short with 3 stout recurved stigmas. Fruit small - 25 in . diam.

A very distinct species coming nearest 8 . ferox and its allies, but not very closely related to any hitherto described Indian species.

AROIDEA.

12. Cryptoconyns Croddasiana Prain; leaves linear-lanceolate; tube of spathe narrow, longer than the limb, limb of spathe lanceolate acnte not twisted, distinctly rather distantly transversely plicate within.

Kachin Hills; Keja river, near Sima, Prain's Oollector!
Taberous, stoloniferous. Leaves 5-8 in. long, $25-3$ in. wide, rather abraptly acute, lower fourth to third sheathing; midrib distinct. Scape very short. Tube of spathe 3 in. long, limb 1.25 iu . long, lanceolate acuminate, purple within, with transverse folds, ${ }^{\bullet} 1 \mathrm{in}$. apart, crosming its whole inner surface.

A very distinct species, in habit much resembling a small form of C. ciliata Fisch., and in this reapect unlike any other Indian species of the genus, Its spathe has, however, a limb that is rather longer and much narrower in proportion to the tube than that of C. ciliata, while there are no fimbriæ but, instead, there are numerous transverse rugm as in C. spiralis Eisch., which has however different learea, a twisted limb to the spathe, with a tube mach ahorter than the limb. This species has been very kindly compared with the material preserved in Herb. Kow by Sir George King and Mr. N. E. Brown.

> XIII.-A list of the Asiatic species of Ormosia.-By D. Prain.
> [Received 21st June; Read 4th July, 1900.]

On two previous occasions the writer has dealt with the genus Ormosia (N.O. Leguminosse) in the Society's Journal.t The communication of three new forms from the Kachin Hills representing at least two new species, and the presence of two apparently undescribed forms among Chinese collections, renders it advisible to provide the requisite specific descriptions. It may therefore be as well to give at the same time a key to all the known Asiatic species as a preliminary to an exhaustive monograph of the genus.

According to Hooker and Jackson ${ }^{2}$ the earliest name for the genus is Toolichiba ${ }^{3}$ Adans. ; as however, the name Ormosia ${ }^{4}$ Jacks. is in familiar use it is conveuient to retain it. Other generic names have been from time to time applied to one or more species of Ormosia. These are Layia Hook. and Arn., ${ }^{5}$ Chenolobium Miq. ${ }^{6}$ and, in the writer's opinion, Arillaria Kurz. ${ }^{7}$ To these Bentham has tentatively added Macrotropis DC., ${ }^{8}$ a genus founded by DeCandolle to include two plants from S. China and Cochin China that form the genus Anagyris Lour. ${ }^{9}$ as opposed to the true Anagyris of Linnæus. This tentative reduction has been formally accepted in the Index Kewensis but it is not acceptable to the writer becanse the keel, Loureiro tells us, is in his two species louger than the standard; this is not the case in any known Ormosia and as neither of Loureiro's plants are known to modern students it is better to keep Macrotropis separate. 'These objections, however, do not apply to the reduction of Macrotropis Miq. (not of DC.). ${ }^{10}$ In the first place Miquel in dealing with the two species which he referred to Macrotropis found it necessary to provide for their reception a new section Amacrotropis, characterised by having the standard as long as the other petals, that is to say Miquel had to abandon the character that is most distinctive of the true Macrotropis before he could accommodate his two species in the genus. In the second place there are authentic examples of both Miquel's plants in Herb. Calcutta and both are true Ormosius.

[^39]Arillaria Kurz, has not been accepted as a valid genus by Baker ${ }^{1}$ or by the editors of the Index Kervensis. The species on which it is founded was treated by Koxburgh, who has left a coloured drawing of the plant in Herb. Calcutta, as a Sophora. Wight has reproduced this figure ${ }^{8}$ and in discussing it has snggested that the plant is nearer to Ormosia than to Smphora but that, owing to its having a fleshy pod, it is perhaps a distinct genus. This genus he refrained from founding because the account given by Roxburgh of the arillus was not clear to him. Karz has confirmed and amplified Roxburgh's account of the arillus and has therefore provided the generic description that Wight did not venture to give. Taubert has adopted Kurz's genas, though his attitude may require to be discounted to some extent, for he at the same time retains among the Ormosias the species on which Arillaria is based. ${ }^{4}$ In spite of the views expressed by Wight, Kurz and Taubert the writer agrees with Baker and Baillon ${ }^{5}$ in thinking that the species may quite well be accomodated in Ormosia, though he nevertheless thinks the characters of the species (Ormosia robusta) are such as to entitle it to the rank of a subgenus.

Bentham has, for convenience, divided the Brazilian species of the genns into two groups, ${ }^{6}$ Concolores or species with the leaflets glabrons to the naked eye on both sides except perhaps, the midrib, and with the leares not much paler beneath than above, and Discolores with the leaves paler beneath and there manifestly puberulous silky or tomentose. Baker has also, in essence, adopted this method of subdividing the genus and Taubert has even formally adopted Bentham's groups as sections and applied them to the whole genus. This subdivision, however, does not always permit species that are naturally closely related to remain together and it is not improbable that a classification which depends more on the characters derived from fruit and seed and less on characters obtained from the shade of green and the degree of tomentum of the leaves will in future be found more satisfactory.

Below a parely tentative scheme of classification is briefly siretiched :-

Pod with woody valves; seeds scarlet with or without a black spot near the hilum not enveloped in an aril; Sub-gen. Todueriba.
Leaf-rachis bearing at its tip the distal pair of leafleta as woll as the torminal leaflet; Seot. Cbinnolobiox.

1 Hooker, Flor. Brit. Ied. ii. 252 (1878).
2 Roxbargh, Hortus Bengalensis 81 (1814).
8 Wight, Icones t. 245 (1840).

- Ingler Naturlioh. Pflansenfam. iii. 3. 194 (1804).

6 Baillon, Hist. des Plantes ii. 362 (1809).

- Martius, Flora Brasil. xv. 1. 315 (1662).

Leaf-rachis prolonged bejond the distal pair of leaflets to sapport the termi. nal one ; Sect. Ormosia proper.

Pods with thickly woody valves not septate between the large seeds which are usually solitary ; Sub-sect. Macrodisca.
Pods with thickly woody valves septate between the small seeds which are nsually several ; Sub-sect. Layia.
Pods with thinly woody valves and usaally solitary always small seeds; Sub-sent. Amacrotropis.
Pod with fleshy valves; seeds black, enveloped in a fleehy arillas; Sab-gen. Arillabia.
The Asiatic species of which sufficiently complete material has been reported should be distributed as follows among these groups :-

I. Toulichiba.

1. Chenolobiom. O. pachycarpa, O. venosa, O. decemjuga, O. septemjuga, O. polita.
2. Ormosia proper.
(a) Macrodisca. O. macrodisca, O. gracilis, O. travancorica.
(b) Layia. O. emarginata, O. Henryi, O. inopinata, O. laxa, O. glauca, O. Balanzae.
(c) Amacrotropis. O. microsperma, O. parvifolia, O. sumatrana, O. yunnanensis.

II. Arillaria. O. robusta.

'The other species given in the subjoined kes, which is more or less artificial, at all events in detail, are species of which the fruit is not yet known. In the account of Ormosia given in the Society's Journal, 1897, n previously undescribed species was there named O. nitida. Thero is however, a prior O. nitida Vogel, 1 which stands good; it has therefore been necessary to rename the Malnyan species.

Key to the Asiatic species of Ormosia.

```
Erect trees:-
    Pod with fleshy valves; seeds with complete arillas;
        leaflets glabrous beneath ... ... ... 1. robusta.
    Pod with woody valves:-
            Seeds with a black adnate basal arillus, leaves minately
            sparsely pubescent underneath :-
            Panieles fastigiate, flowers white; pod 8 cm . wide;
                seed 225 om . long ... ... ... 2. macrodisen.
            Panicles lax, flowers yellow; pod 3 cm . wide; seed
                2 cm . long ... ... ... ... 3. gracilis.
                        1 Linnæa, xi. 405 (1837).
            J. \(11 . .23\)
```


Leafleta large, 10 cm . long or longer :-

Leaflets thinly pubescent benenth; panicles lax, bracte small :-
Leaflets 7-9, rarely 5, ovate, obovate or elliptic, pale-green 14. sumatrana.
Leaflets 13, narrow oblong dark-green ... 15. yunnanensis.
Leaflets densely pubescent beneath, dark. green 11-13; panicles fastigiate, bracts conspicnous:-
Pod glabrous 16. microsperma.
Pod hirsute 16b. microsperma
vap. pidleyi.
Leaflets with short petiolnles or subsessile, leaf-rachis
bearing at its apex the distal pair of leaflets as
woll as the terminal leaflet:-
Pod with thinly woody valves, 2-2.5 cm. wide :-
Leaflets 18-15, ovate-acute
19. septemjuga.

Leaflets 19-21, lanceolate acuminate ..
Pod with thickly woody valves, 3.5 cm . wide; leaflets ovate oblong:-
Leaflets abraptly shortly cuspidate; pod persistently woolly
20. decemjuga.

Leaflets obtuse or subobtuse ; pod glabrous ... 22. venosa.
Climber; leaves glabrous beneath, dark green ... 13. scandens.

ORMOSIA Jaces.
Subgenus 1. Arillabia Kurz (pro genere) Journ. As. Soc. Beng. x ${ }^{\text {lii. 2. } 71 .}$

1. Ormosia robosta Baker in Hook. fil. Flor. Brit. Ind. ii. 252 (1878); Taub. in Engl. Naturl. Pflanzenfam. iii. 3, 194(1894). O. floribunda Wall. Cat. 5337 (1832). Sophora robusta Roxb. Hort. Beng. 31 (1814) ; Wight Icones t. 245 (1840). Arillaria robusta Kurz Journ. As. Soc. Beng. xlii. 2. 71 (1873) and xlv. 2, 224 (1876) and For. Flor. Brit. Burma i. 334 (1877) ; Taub. in Engl. Naturl. Pflanzenfam. iii. 3. 196 (1894).

Assam; Brahmapatra Valley, near foot of Akha Hills, King's Collector ! Silhet, Rocburgh (Ic. in Herb., Calcutta) ! DeSilva (Wall Oat. 5337)! Chittagong; Kodala Hill, King's Collector! Burma; Amherst, Falconer! Rangoon, Kurz! Pegu Yomah, Kurz!

Subgenus 2. Toulichiba Adans. (pro genere) Fam. ii. 326 (1763).
§ Edormosia. Ormosia Jacks. (genus) Trans. Linn. Soc. x. 360 (1811).

T Macrodisca.
2. Obmosia macbodisca Baker in Hook. fil. Flor. Brit. Ind. ii. 253 (1878) ; Prain, Journ. As. Soc. Beng. lxvi. 2. 148 and 467 (1897).

Malayan Peminsola; Malacca, Maingay! Singapore, Ridley!
3. Ormosia gracilis Prain, Journ. As. Soc. Beng. Ixvi. 2. 148 and 468 (1897).

Malayan Peninsula; Perak, Scortechini! Kunstler! Wray!
4. Ormosia semicastrata Hance, Journ. Bot. xx. 78 (1882); Forbes \& Hemsl. in Journ. Linn. Soc. xxiii. 204 (1887).

China; Hongkong, Ford, fide Hance.
This species is not yet represented in Herb. Calcutta.
5. Ormosia emarginata Benth. in Hook. Kew. Journ. iv. 77 (1852), and Flor. Hong-Kong. 96 (1861); Forbes \& Hemsl. in Journ. Linn. Soc. xxiii. 204 (1887).

China; Hongkong, Ford!
6. Ormosia calavensis Azaola in Blanco Flor. Filip. ed. 2, 230 (1845) ; Vil. Sinops. t. 41, f. H(1883) and Rev. Pl. Vasc. Filip. 113 (1886).

Philippings; Lazon, Cuming 1219! Alabat, Vidal 2617!

Vidal y Soler suggests that this is the same as Ormosia (Arillaria) robusta, bat the saggestion can only be explained on the assumption that Sen. Vidal had no good specimens of O. robusta before him. There are no fruits of this species in Herb. Calcatta; if their structure is like that of O. robusta this species must be transferred to the subgenus Arillaria.
7. Ormosia travancorica Bedd. Flor. Sylvat. i. t. 45 (1869) ; Baker in Hook. fil. Flor. Brit. Ynd. ii. 253 (1878).
S. Indis ; S. Canara, Tinivelly, Travancore, Beddome (Ic.)

This species is only represented at Calcutta by Beddome's figure.
 (1833).
8. Ormosia glauca Wall. Plant. As. Rat. ii. 23. t, 125 (1831) and Cat. 5338 (1832); Baker in Hook. fil. Flor. Brit. Ind. ii. 253 (1878); Gamble, Man. Ind. Timb. xvii. (1881) and Darjeel. List, Ed. 2.30 (1896) ; Prain, Journ. As. Soc. Beng. lxvi. 2. 467 (1897).

Nepal; Sonku, Wallich! Siekim ; Sizoke, 2500 ft., Gamble!
9. Ormosia Henryi Prain; leaflets 7-9, oblong, pale green, shortly stalked, thickly coriaceons, glabrous above, velvety beneath, pedicels as long as the calyx, pod narrow oblong, valves thick woody.

Chins; Hupel, Henry 7577!
A tree, with tawny-velvety branches. Leaflets usually 7, oblong lanceolate, very firmly coriaceons, $8-10 \mathrm{~cm}$. long, $3-4.5 \mathrm{~cm}$. wide, quite glabrous above, densely palebuff velvety beneath, apex acnte, base rounded, veins 8-9 pairs slender, somewhat prominent beneath ; petiolules 5 mm . and main rachis $8-9 \mathrm{~cm}$., olosely shortly tawny pubescent. Flowers in axillary racemes $8-9 \mathrm{~cm}$. long, tawny pabescent as are the pedicels 1.25 cm . long, bracts and bracteoles deciduous. Calyx campanulate 6 mm . long, silky. Corolla and Stamens not seen. Pod hard thick, $5-7 \mathrm{~cm}$, long, 2.5 cm .
wide, the valves black, smooth externally, slightly swollen opposite the ripe seeds, very faintly ribbed alongside the upper suture, seeds $2-5$, bright scarlet, small, 1 cm . long, 75 cm . wide, $\cdot 5 \mathrm{~cm}$. thick, separated by partitions of the tawny eaberous enducarp in which they are embedded, with no trace of arillus.

Nearest O. glauca Wall. but differing grently in the velvety ander-sarface of the leaves.
10. Ormosia inopinata Prain; leaflets 9 , less often 11 or 7, rarely 5, ovate acuminate, beneath softly closely tawny puhescent on the midrib and veins, elsewhere sparsely pubescent, leaf-rachis and branchlets velvety, veins benerth prominent finely reticulate, large, distinctly stalked ; pedicels long; pod compressed with thick woody valves.

Var. typica; corolla reddish, leaflets persistently pubescent.
Kachin Hills; Bansparao, nenr Sadon, Prain's Collector!
A large tree, with closely tawny-velvety sulcate branches. Leafets rigidly subcoriaceons $15-16 \mathrm{~cm}$. long, $5-6.5 \mathrm{~cm}$. (the terminal leaflet sometimes 8 cm .) wide, nbove with midrib at first pubescent at length quite glabrous, rather pale-green shining, beneath persistently tomentose but the tomentum sparser with age, veins 7-9 pairs prominent beneath with a fine secondary reticalntion visible also above especially on younger leaves, apex abruptly acuminate, baso cuneate or rounded; petiolales 8 mm . and leaf-rachis 22 cm . long, closely velvety. Flowers in axillary racemes or few-branched panicles 20 cm . long closely velvety as are the pedicels 6 mm . (in frait over 1 cm .) long, bracts and bracteoles minute deciduons, velvety. Calyx campanalate 9 mm . long, closely velvety both externally and withiu, teeth wide-triangalar rather longer than the tube. Corolla reddish, twioe as long as calyx. Stamens usually 9, all fertile, anthers obloug versatile. Ovary shortly stipitate, glabroas except for a few hairs on the dorsal and rather more on the ventral sutnre ; style glabrous, filiform, tip circinate; stigmn oblique; ovales 4 or 3. Pod hard flattened, with woody valves, 6 cm . long, 3 cm . wide, 1.25 cm . thick, with faint depressions between the 3 or 4 seeds, obliquely ovnte-oblong, with a distinct stipe 6 mm . long and minute tip at apex of diagonal axis remote from stipe, ventral sature with prominent parallel ridges 6 mm . apart projecting begond level of line of dehiscence ; seeds cinnabar-red with a small white hilum and no arillas, ovate, 1.5 cm . long, $\mathbf{1 ~ c m}$. across : sometimes slightly compressed and onls 7 mm . thick.

10b. Var. dubia; flowers yellow, leaves glabrescent with age on the under surface.

Kachin Hiles; Bomkatom, between Lashio and Sndon, Prain's Collector!

A large tree, branchlets faintly sulcate. Leaflets rigidly subcoriaceons 6-10 om. long, $3-4.5 \mathrm{~cm}$. wide, the terminal leatlet nlmost 5 cm . wide, light-green, glabrous shining above, pale beneath very sparsely persistently pubescent, veins 7-9 pairs prominent beneath as is the fine secondary venation which is hardly visible above, apex acuminate, base cuneate or rounded; petiolules 6 mm . and leaf rachis 15 cm . long at first pubescent at length glabrons. Flowers in axillary racemes about $\mathbf{8} \mathbf{c m}$. long, rachis finely velvety as are the pedicels 6 mm . long not elongated in fruit. Calya campanulate olosely velvety both externally and within; teeth wide-triangalar, rather longer than the tube. Corolla yellowish white, twice as long as calyx.

Stamens and ovary as in O. inopinata. Pod hard flattened, with woody valves, 5 cm . long, 3 om . wide, $1 \cdot 25 \mathrm{~cm}$. thick, somewhat swollen opposite the $1-2$ seeds, ovate-acute with distinct stipe 6 mm . long and a prominent tip at apex of vertical axis remote from stipe, ventral suture with blunt parallel ridges 6 mm . apart not projecting beyond level of line of dehiscence; seeds cinnabar-red with a small white hilum and uo arillus, 1.25 cm . long, 1 cm . across, 8 mm . thick.

The foliage of the two trees here treated as varieties of one species is hardly distingnishable and the structare of their flowers is identical. The Native Collector who has communicated the specimens of both states, however, that besides the differences in colour of petals and in shape of pods and seeds, the two trees as they grow look very different. If this should turn out to be the case it may be necessary to treat the variety here described as a dietinct species, to be known as Ormosia dubia.
11. Ormosia Balansae Drake del Castillo, Journ. de Botan. v. 215 (1891).

Tonkin; near Ta-phap, in forests, Balansa 2178.
This species is not yet represented in Herb. Calcatta.
12. Ormosia laxa Prain; leaflets 15, less often 17, lanceolateacuminate, beneath and leaf-rachis and bianchlets velvety, veins beneath inconspicnons, medinm, distinctly stalked; pedicels long.

Kachin Hills; Shan Busti near Sadon, 5000 ft., Prain's Oollector !

Abstract

A tree, with tawny-velvety branches. Leaflets lanceolate, ohartaceons, 6 cm . long, $2 \cdot 5 \mathrm{~cm}$. wide, at first finely deciduously paberulous above, densely softly tawnyvelvety beneath, veins $5-6$ pairs slender not prominent beneath, apex acuminate, tapering from the middle, base cuneate in the lower fourth; petiolules 5 mm . and main-raohis $20-25 \mathrm{~cm}$. loug, densely tawny-velvety. Flowers in axillary racemes or few-branched pauicles $8-12 \mathrm{~cm}$. long, densely tawny-velvety as are the pedicels 1.25-1 63 cm . long, bracts and bracteoles minute, decidaous, velvety. Calys campanulate densely tawny-velvety ontside, finely pubescent within, 1 cm . long, teeth wide-triangular almost as long ns tabe. Corolla twice as long as calyx. Stamens usually 8 fertile exserted in the open flower, sometimes 6 or 7 , rarely 8 fertile-if 5 , 6 or 7 fertile then with 3, 2, or 1 staminodes, always 2 stamens quite obsolete; anthers oblong, versatile. Ovary stipitate, silky with long tawny hairs especially on the sutures; style glabrous filiform, tip circinnate, stigma oblique; orules 7. Pod $6-7 \mathrm{~cm}$. long, 2.5 cm . wide, the valves black, smooth externally, slightly swollen opposite the ripe seeds, very faintly ribbed alongside both sutures; seeds 2-4, bright scarlet, 1 cm . long, 8 mm . wide, 6 mm . thick, separated by partitions of the pale woody endocarp in which they are embedded, with no arillus.

This very distinct species cannot be confounded with any of the hitherto described Ormosias. 13. Ormosia scandens Prain, Journ. As. Soc. Beng. lxvi. 2, 147 and 467 (1897).

Malayan Peninsula; Perak, Kunstler! -

This species is distinguished from all the others by its climbing habit; as its fruit is not yet known its precise systematic position cannot be positively stated. It se日ms, however, as if it might prove to be a species of § Layia. It may be
1900.] D. Prain-A list of the Asiatic species of Ormosin.
ultimately found advisible to subdivide § Layia into two gronps; those with thickwalled large pods going into one and those with thin-walled short pods being placed in the other.

बTा Amacrotropis Miq. (pro sectione) Flor. Ind. Bat. Suppl. 294 (1860).
14. Ormobia sumatrana Prain, Jorin. As. Soc. Beng. lxvi. 2, 150 and 469 (1897). Macrotropis sumatrana Miq. Flor. Ind. Bat. Suppl. 294 (1860).

Malay Archipelago; Sumatra, Teysmann 3618! Forbes 2592!2648! Malayan Peninsula; Malacca, Holmberg!
15. Ormosia ponnanensis Prain; leaflets 13, short-stalked, veins beneath distinctly raised, pedicels shorter than the calyx, pod subcompressed with thin valves, seed ovate; racemes in rather close panicles.

China; Yunnan, mountains in western Szemao, 5,000 ft. elev., Henry 11,967!

A small tree 20 ft . high, with rasty-pubescent branches. Leaflets oblong. lanceolate, firmly coriaceons, 10 om . long, $\mathbf{3 ~ c m}$. wide, glabrons above softly sparsely prbescent with longish adpreseed ash-grey hnirs beneath, veins about 10 pairs slender bnt prominent beneath, depressed above, secondary venation indistinct beneath not visible above, apex acate with a short finely acnminate sab-mucrounlate tip, base shortly cuneate, petiolules 3.5 mm . and main-rachis 16 cm . long, rustypubescent. Flowers in axillary branched panicles 14 cm . long, rusty-pubescent as are the pedioels 2 mm . long, bracts and bracteoles orate, 2.5 mm . long, 1.5 mm . wide, acate, decidnons, rusty pubescent. Calyx campanulate, rusty-pubescent both outside and inside, 8 mm . long, teeth triangular hardly as long as the tube. Corolla and Stamens not seen. Pod subsessile, irregularly orbicalar if 1 -seeded, oblong if 2 -seeded, with a broadly triangular unilateral tip, 1.3 cm . wide, 2-8.25 cm. long, lineate between the seeds; valves thin, woody, rigid, black, glabrous, ewollen opposite the seeds; seeds 1 or 2, bright scarlet, 8 mm . long, 6 mm . wide, 5 mm . thick, with white hilum and no arillas.

This species is most nearly related to O. sumatrana; its chief interest lies in its being the most northerly representative of the IT Amacrotropis, all the other known members of which are Malayan.
16. Ormosia microsperma Baker in Hook. fil. Flor. Brit. Ind. ii. 253 (1878) ; Prain, Journ. As. Soc. Beng. Ixvi. 2, 151 and 468 (1897). O. coarctata [Benth. Mss.] ; Kurz, Jouv'n. As. Soc. Beng. xlii. 2, 71 (1871) in part, not of Jacks.

Malayan Peninsola; Malacca, Griffith! Maingay! Derry! Perak, Kunstler!

16b. Vak. Ridleyi Prain, Journ. As. Soc. Beng. 2. 150 and 469 (1897).

Malayan Peninsula; Singapore, Ridley!

This "variety" is probably entitled to specife rank.
17. Ormosia parvitholia Baker in Hook. fil. Flor. Brit. Ind. ii. 253 (1878) ; Prain, Journ. As. Soc. Beng. Ixvi. 2. 149 and 469 (1897). Macrotropis? baucan Miq. Flor. Ind. Bat. Suppl. 295 (1860).

Malay Archipelago; Burneo, Haviland 57! Bangka, T'eysmann 3405! Malayan Peninsola; Singapore, Ridley 5929! 8096! Pahang, Ridley 1267! 5013! Malaccn, Griffith! Maingay! Goodenough!

Besides being a very well oharacterised species this is much more widely distributed than most of the Ormosias. An anthentic specimen of Miquel's Macrotropis? bancana in Herb. Calcatta shows that it is the same thing as Baker's Ormosia parvifolia. If the rule that the oldest specific epithet must under all circumstances be conserved is to be rigidly applied, then Mr. Baker's name mast be nbandoned in favour of the name Ormosia bancana.
§§ Cexnolobicm Miq. (pro geuere) Flor. Ind. Bat. Suppl. 302 (1860).
18. Ormosia polita Prain. O. nitida Prain, Journ. As. Soc. Beng. lxvi. 2, 149 and 488 (1897) not of Vogel.

Malayan Peninsula; Perak, Kunstler !
When a description was given of this very distinct species the fact was overlooked that there is already an Ormosia nitida Vogel, from Brazil; the name must therefore be replaced by nnother. This particnlar species is unlike the other Chenolnbia is laving perfectly glabrons dark-green shining leaves, and it moreorer resembles the Malayan, as opposed to the Indo-Chinese Layix in having small pods. It also differs from the other Chronolobia in having well developed petiolules. Its agreement with Chrenolobium lies in the fact that the leaf rachis is not prolonged begond the last pair of leatlets which are attached along with the terminal leaflet.
19. Ormosin séptemjuga Prain, Journ. As. Soc. Beng. lxvi. 2. 469 (1897). O. conrctata Kurz, Journ. As. Soc. Beng. xlii. 2. 71 (1872) in part, not of Jacks. Chaenolobium septemjugum Miq. Flor. Ind. Bat. Suppl. 302 (1860).

Malayan Archipelago; Sumatra, Diepenhorst 2547!
An authentic specimen of Miquel's plant is preserved in the Calcuttn Herbarium.
20. Ormosia decemjoga Prain, Journ. As. Soc. Beng. Ixpi. 2. 468 (1897). Chaenolobium decemjugum Miq. Flor. Ind. Bat. Suppl. 302 (1860). O. coarctata Kurz, Journ. As. Soc. Beng. xlii. 2, 71 (1872) in part, not of Jacks.

Malayan Archiprlago; Sumatra, Teysmann 3715!
An authentic specimen of Miquel's plant is in Herb. Calcatta. . This specimen shows, in my opinion, that Kurz was not justified in sapposing that this is the same as Chenolobium septemjugum and that farther he was not justified in believing that either this or C. septemjugum is the same as Ormosia microsperma which he supposed to be the same thing as O. coarctata Jacks., a Guiana species.
21. Ormosia pachycarpa Champ. ex Benth. in Hook. Kew. Journ. iv. 76 (1852) ; Benth., Flor. Hong Kong. 96 (1861); Forbes \&. Hemsl. in Journ. Linn. Soc. xxiii. 204 (1887).

China; Canton, Reeves, Hong-Kong, Lamont, Chainpion, Ford!

Abstract

Bentham states that this species was found by Reeves at Canton as well as by various collectors in Hong-Kong. Hemsley, however, snys that Reeves' specimens are without locslity. This species is very closely related to the next, though the

 two are nevertheless specifically quite distinct.22. Ormosia venosa Baker in Hook. fil. Flor. Brit. Ind. ii. 254 (1878) ; Prain, Journ. As. Soc. Beng. lxvi. 2. 152 (1897).

Malay Peninsula; Malacca, Maingay!

A very distinct species, the one to which it is most closely relnted being the

 preceding, which comes from a very remote locality.As regards distribution the most striking fentures connected with Ormosia are (1) the wide-spread occurrence of this genus throughout South Eastern Asia, from Hupeh in China to Bangka in the Malayan Archipelago, and from Travancore and Nepal to the Philippines: (2) the remarkably limited range of individual species with the exception of O. parvifolia (O. bancana) which extends from the Malay Peninsula to Bangka and Borneo, and to a less extent of 0 . sumatrana which occurs on both sides of the Strnits of Malacca. O. robusta also has a wider range than most of the species for it extends from the valley of Assam through Silhet and Chittagong to Pegu and Tenasserim. It is interesting, however, to note that very closely related species such as O. pachycarpa and O. venosi, and again O. yunnanensis and O. sumatrana, may occur in widely separated localities. In the first instance one of the closely allied species is a native of Hong-Kong, the other is a native of Malacca; the specific names of the other pair indicate their respective habitats.

From the subjoined tabular statement it will be seen that of the 22 species enumerated one is S. Indian; one Himalayan; two, but one of these with two quite distinct varieties, occur in the Kachin Hills; five occar in China; one in Tonkin; one in the Plilippines; one in Borneo, though this species also occurs in Bangka and throughout the Malay Peninsula ; three in Sumatra, thongh one of these also occurs in Malacca; and eight in the Malay Peninsula, though one of these extends to Bangka and Borneo and another extends to Sumatra. The remaining species, which forms a very distinct subgenus, is widely spread from Assam to Tenasserim in a region where no other species occurs-a region moreover which separates the two chief centres of the genus in Sonth Eastern Asia, viz.:-the Kachin-S. China area, and the Malay Peninsula. It is farther worthy of remark that, so far, no species has been recorded either from Java or from Ceylon.

Table of distribution of the South－Eastern－Asiatic species of Ormosia．

Spbcies．						$\begin{aligned} & \text { : } \\ & \text { 咅 } \\ & \text { H } \end{aligned}$			$\begin{aligned} & \dot{4} \\ & \text { 炭 } \\ & \text { 㗐 } \end{aligned}$			官	婁
O．travanoorica	．．．	1		．．．	．．．	．．．	．．．	．	\ldots	．．．	．．．	\cdots	\cdots
O．glanca	．．．	\ldots	1	\cdots	．．．	．．．	．．．	．．．	．．．	\ldots	．．．	\cdots	\cdots
O．laxa	．．．	．．．	．．．	1	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
O．inopinata	．．．	．．．	．．．	1	\cdots	．．．	．．．	．．．	\cdots	．	．．．	．．．	\cdots
O．Heuryi	．．．	．．．	\cdots	．．．	1	．．．	．．．	\cdots	．．．	．．．	．．．	．．．	．．．
O．emarginnta	．．．	．．．	．．．	．．．	1	．．．	．．．	．．．	．．．	．．．	．．．	．．．	．．．
O．semicastra	．．．	．．．	．．．	．．．	1	．．	．．．	\ldots	．．．	\cdots	．．．	．．．	\cdots
O．pachycarpa	．．．	．．．	\cdots	\cdots	1	\cdots	\cdots	．．	．．．	\cdots	．．．	．．．	\cdots
O．yannanensis	．．．	．．．	．．．	．．．	1	\cdots	\cdots	\cdots	\cdots	．．．	．．．	．．．	．．．
O．Balansae	．．．	．．．	．．．	．．．	．．．	1	\cdots	\cdots	．．．	．．．	．．．	．．．	\ldots
O．robusta	．．．	．．．	\ldots	．．．	\cdots	．．．	1	1	\ldots	\ldots	．．．	．．．	．．．
O．septemjugn	\cdots	．．．	．．．	\cdots	\cdots	．．．	\cdots	\ldots	1	．．．	\cdots	\cdots	．．．
O．decemjuga	．．．	．．．	．．．	\ldots	\cdots	\ldots	\cdots	．．．	1	\cdots	．．．	\cdots	．．．
O．sumatrans ${ }^{\text {o．microsperma }}$	．．．	．．．	．．．	．．．	\ldots	\ldots	．．．	．．．	1	1	．．．	．．．	\cdots
O．microsperma O．scandens	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	1	\cdots	\cdots	\cdots
O．polita	．．．	\ldots	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	1	\ldots	．．．	．．．
O．gracilis	．．．	\cdots	．．．	．．．	．．．	．．．	．．．	．．．	\ldots		．．．	．．．	．．．
O．macrodisca	\cdots	．．．	\cdots	\ldots	．．．	\cdots	\cdots	．．．	\cdots	1	．．．	\cdots	\ldots
O．venosa	\ldots	．．．	\ldots	．．．	．．．	\ldots	\cdots	\cdots	．．．	1	\cdots	\cdots	\cdots
O．parvifolia	．．．	．．．	．．．	\cdots	．．．	．．．	\cdots	．．．	\cdots	1	1	1	\because
O．calavensis	．．．	．．．	\ldots	．．．	．．．	\ldots	\ldots	．．．	\ldots	\ldots	\ldots	．．．	
		1	1	2	5	1	1	1	3	8	1	1	1

XIV.-The Food-plants of the Butterfies of the Kanara District of the Bombay Presidency, with a Revision of the Species of Butterflies there occurring.-By Lionel de Nictilile, F.E.S., C.M.Z.S., \&C.
[Received 23rd June ; Read 4th July, 1900.]
In the Joarnal of the Bombay Natural History Society, vol. v, pp. 260-278, 349-375, plates A, B, C, D, E and F (1890), will be found a paper entitled "Notes on the Larvæ and Pupæ of some of the Batterfies of the Bombay Presidency," by J. Davidson, Bo. C.S., and E. H. Aitken. In the same Journal, vol. x, pp. 237-259, 372-393, 568584, vol. xi, pp. 22-63, plates I, II, III, IV, V, VI, VII, and VIII (1896-98), appears a paper, which is practically a continuation of the same subject, under the title "The Butterflies of the North Canara District of the Bombay Presidency," by J. Davidson, T. R. Bell, and E. H. Aitken. The present paper is the third contribation to the subject, and is almost entirely based on the observations of Mr. T. R. D. Bell which have been placed at the disposal of the writer; but all the information contained in the above-cited papers regarding food-plants has been herein incorporated as well. The object of the paper is to give all the known food-plants of the batterfies bred by the three writers above mentioned in a compact form, and at the same time to give a revised list of the batterflies of the District of Kanara. In the first list the foodplants are arranged in botanical order, the order adopted being that of "The Flora of British India," in seven volumes, by Sir J. D. Hooker (1872-1897). In the second list the butterflies found in the Kanara district are arranged in order, with the food-plants of the larve given where known below each. Very large additions have been made to the known food-plants, nearly all of which have been discovered by Mr. Bell. It is probable that no single person has ever bred such a variety of species of batterfies in one tropical locality as Mr. Bell has done. The omissions are very few, and these Mr. Bell is trying to supply. In the list of the butterflies it will be noticed the Aphnsess concanus, Moore, which is a dry-season form of A. Lohita, Horsield, and Baoris philotas, de Nicéville, which Mr. Bell considers to be a small variety of Baoris guttatus, Bremer and Grey, caused by the larva having been starred, bave been omitted. Their names appeared on pp. 386, n. 119, and 47, n. 207 of the second paper cited above; while Nacaduba plumbeomicans, Wood-Mason and de Nicéville, and N. atrata, Horsfield; Halpe moorei, Watson, and H. ceylonica, Moore; Notocrypta
feisthamelii, Boisduval, and N. restricta, Moore, have been united, as these pairs of names are considered by the writer to represent bata single species in each instance. A considerable number of species of butterflies new to the lists have been added, bringing up the list from 233 (which includes the five species mentioned above as now omitted) to 245 species occurring in the Kanara district. The nomenclature has been brought up to date, the reasons for changing the published names being given in all cases. The importance of the Lists of Foodplants here presented need hardly be pointed out. No species of butterfly can be said to be known otherwise than superficially by a study of its perfect or imago form alone; much more than this is wanted; its egg, larva in all stages, and papa, should be studied, described, and if possible compared with the transformations of the allied species at all stages. In India, and probably in all tropical countries, seasonal dimorphism occurs to a very great and often unexpected extent, and this phenomenon can only be worked out fully by extensive breeding experiments at all seasons of the year, but more especially at the changes of the seasons, from dry to wet and from wet to dry. The lists here given will be of use not only to the student and collector of butterflies in the south-western littoral of India, but to students and collectors of batterflies in most parts of India and to a less extent elsewhere, many of the species enumerated being rery widely spread. It will even be of value as regards other species in the same genus or allied genera, as these allied species and genera will frequently be found to feed either on the same or on allied plants elsewhere. For breeding purposes a knowledge of the food-plant of the larva is half the battle, given a knowledge of that fact, success in breeding becomes almost Ω certainty. It is in many cases, probably in most, only necessary to shut up the female of any given species of butterfly in as natural conditions as possible with its foodplant for it to lay eggs; the rest requires only some care and attention. The writers of the series of papers on Kanarese butterflies liave mainly relied on actually finding the larrm of the different species to breed them successfully, while the present writer has been successful chiefly in breeding from eggs laid by captared butterflies. To find the foodplant of any particular kutterfly often entails much patient watching of the females when ovipositing. Mr. Bell has discovered the transformations of several species not hitherto described by himself, Messrs. Davidson and Aitken. These new descriptions will be found when dealing with the butterflies of the Kanara district in the second list.

- The larvæ of all the butterflies enumerated feed on vegetable food, except that of Spalgis epius, Westwood, which feeds on Coccids; these
are white, fluffy, onisciform insects commonly found on the young parts of many kinds of plants. They are often called "mealy-bugs" and "plant-lice," though the latter name is more properly applied to the Aphidx. The larvo of many kinds of butterflies will, when they cannot get vegetable food, eat each other or soft newly-formed pupæ. Mr. Bell has found that the greatest cannibals in this respect are the larvo of sertain Lycesoidre, and the worst amongst these again are the larvm of Zesius chrysomallus, Hübner, for these will at times, even when plentifully supplied with their proper vegetable food, eat any larvo which may be in a fit state to be eaten, i.e., which are either on the point of casting their skins, have just cast them, or are just going to pupate. The lycænid larve which are most addicted, after that of Z. chrysomallus, to cannibalism, are those of the Amblypodia and Tajuria groups, those of Arrhopala and Rapala being nearly as bad. He has known one larva of Tajuria cippus, Fabricias, to ent up over a dozen young ones of its own species. In Kashmir Mr. Bell bred a single imago of Hysudra selira, Moore, from a larva which had been reared on the dend leaves and flowers of its food-plant, Indigofera atropurpurea, Hamilt. (Nataral Order Leguminosse), together with several newly-formed pupm of its own species. The imago was a very fine, large specimen, so that the insect diet evidently agreed with the larva. Mr. Bell particularly noted this fact, as in all his previous experience he had been led to the conclusion that a cannibal diet was bad for the stomachs of the larve practising the habit of eating ap its fellows, as they, as a general rule, have not been healthy, and have died before pupating. The tendency to cannibalism is not confined to the Iycenidæ, bat exists also amongst the Pierinæ; the larvo of Appias will eat each other and any other species of larva feeding on the same food-plant as themselves if forced to it by hanger. He has seen the larvm of Appias libythea, Fabricius, and Appias taprobana, Moore, eat freshly-formed pupm of their own species, as well as larvo changing their skins, and also the larvm and pupm of Leptosia xiphia, Fabricias. Some of the caterpillars of the Danaine will, when food is not to be had, eat individuals of their own species. Mr. Bell has never known a larva to eat another larva feeding on a food-plant of a species different from its own, so it is probable that all larvon taste strongly of the plant they feed on, and it is also probable that cannibal larve are hardly conscions that they are eating up each other, being only guided to their proper food by the sense of taste, or possibly to a less extent by the sense of smell. None of the larvo of the Satyrinz, Elymniines, Amathusiinæ, Acreinæ, Nymphalinæ, Libythæinæ, Nemeobiinæ, Papilioninee, or Hesperiidee, have been found by Mr. Bell to eat anything bat vegetable food. All rhopalocerous larve, however, with but very few.
exceptions, eat their own cast-off skins while these are still soft and moist; and the young larvo on emerging from the egg will almost invariably ander normal conditions make their first meal off the empty egg-shell. Mr. Bell notes that all the batterfly larve he has bred change their skins fire times from the time they leave the egg to the time they turn to pupm.

As regards the larvo of the Lycsenidx, whether they are altended by ants or not, in may be noted that those which live in harmony with ants, and are probably largely dependant on their well-being on ants, the presence of the particular species of ant that lives with any particular species of buttenfly larva often fixes the choice of the batterfly laying her eggs on a particular plant or not. If the right plant has no ants, or the ants on that plant are not the ight species, the batterfly will lay no egge on that plant. Some larvo will certainly not live without the ants, and many larro are extremely nncomfortable when brought up away from their hosts or masters. In many cases it is just as important for breeding purposes to know the right species of ants as to know the right food-plant. In Kanara this is particularly noticeable in the cases of Castalius ananda, de Nicéville, Zesius chrysomallue, Hübner, Aphneus lohita, Horsield, and Catappecilma elegans, Druce: C. ananda is "protected" by ants of the genus Cremastogaster. On one occasion Mr. Bell was collecting larvo at Katgal, and the ants were principally on Zizyphus rugosa, Lamk. (Naiural Order Rhamnex) but were also swarming all over six or seven species of different trees all round, and on all of these trees there were larvm of C. ananda covered with ante and eating the leaves of the trees in all cases. Since then Mr. Bell has noticed the larva of O. ananda eating the leaves of many different plants and always in company with the same species of ants. With regard to the Zesius, Aphnsers and Catapacilma mentioned above, the femalb butterflies first look for the right species of ants, and the species of foodplant seems to be quite a secondary consideration, at any rate to a considerable extent. The larve of Zesius may be found on very nearly any plant that harbours the large red ant, Ecophylla smaragdina, Fabricius; so much so that Mr. Bell has often had a strong saspicion that the batterfly larvm will occasionally eat the ant larvm, although he has not actually seen them do so. The larva of this batterfly feeds on man'y species of plants not recorded in the lists, as Mr. Bell made no particulat note of them, all these plants being affected by the large red ints, The larver of Aphnerus and Catapocilma are only found on plants affected by ants of the genus Cremastogaster. As regards the four species of butterflies named above, the larver are often found in the ants' nests, and their pnpmalso, but not invariably. .

Mr. Bell has furnished me with the following detailed information on the subject of lycænid batterflies and ants:-

1. Neopithecops salmora, Batler. The larva but not the papa is sometimes attended by ants, generally by a species of Pheidole.
2. Cyaniris puspa, Horstield. The larva is always attended by small ants of the genas Cremastogaster, but will live comfortably without them; the pupa is not generally attended.
3. Lycenesthes emolus, Godart. The larvo, which are gregarious, are always attended by the common and large fierce red ant, ECcophylla smaragdina, Fabricins.
4. Jamides bochus, Cramer. The larve are sometimes attended by ants of the genus Cremastogaster.
5. Lampides celeno, Cramer. Sometimes attended by ants.
6. Euchrysops pandava, Horsfield. Larva attended by ants generally.
7. Castalius anandu, de Nicéville. Larva and pupa always strongly attended by ants of the genus Oremastogaster, and will not live well without them.
8. Polyommatus bosticus, Linuæus. Larva sometimes attended by ants of the genus Cremastogaster.
9. Surendra quercetorum, Moore. The imngo may often be seen settled on branches of trees and bushes swarming with ants of the genus Cremastogaster, and being caressed by them; the larva is attended by the same ants.
10. Thaduka multicaudata, Moore. The larvæ and pupæ are gregarious, and are sometimes altended by ants of the genus Oremasto. gaster, and by Ecophylla smaragdina, Fabricias.
11. Arrhopala centaurus, Fabricius. Both larva and pupa are always attended by Ecophylla smaragdina, Fabricius.
12. Arrhopala amantes, Hewitson. Both larva and pupa are always attended by Ecoophylla smaragdina, Fabricius.
13. Arrhopala canaraica, Moore. Larva and papa always attended by Eecophylla smaragdina, Fabricius, or by a small blackish ant.
14. Arrhopala bazalus, Hewitson. Larva and pupa always attended by ants of the genus Oremastogaster.
15. Curetis thetis, Drary. Mr. Bell has found handreds of the larve of this species, but not one was attended by ants. No doubt the long "bottle-brush" extrusible processes with which the larva is furnished are used to drive away ants as well as ichneumons.
16. Zesius chrysomallus, Hübner. The larva is always attended by Cecophylla smaragdina, Fabricius, and will not live well. without them.
17. Aphneeus vulcanus, Fabricius. Lırva and pupa always attended by ants of the genus Cremastogaster.
18. Aphnerus lohita, Horsfield. Larva and pupa sometimes attended by Ecophylla smaragdina, Fabricius, and always by ants of the genas Cremastogaster.
19. Tajuria indra, Moore. Larva always attended by ants, but not to a rery great extent.
20. Tajuria cippus, Fabricius. The larva is rarely attended by ants, although the female butterfly always lays lier eggs on plants which are frequented by ants of the genus Cremastogaster.
21. Catapocilma elegans, Druce. The larva and pupa are always attended by swarms of ants of the genus Crenastogaster, in fact they are found both in the permanent nests of those ants, and in small temporary nests formed by them on the branches, which latter are generally made to shelter scale insects.
22. Deudorix epijarbas, Moore. The larva is sometimes attended by ants of the genus Cremastogaster.
23. Zinaspa todara, Moore. Larva always attended by Ecophylla smaragdina, Fabricius, or ants of the genus Cremastogaster, and lives badly without them.
24. Rapala schistacea, Moore. The larra is desaltorily attended by ants of the genus Cremastogaster.
25. Rapala lankana, Moore. Larva always attended by Erophylla smaragdina, Fabricins.
26. Virachola isocrates, Fabricius. Ants are sometimes found in the fruits that contain larve of this batterfly, but do not seem to actually nttend them.
27. Virachola perse, Hewitson. The same remarks apply to this species as to the last.

In many instances it will be found that the names of the plants given in the two lists below differ in spelling from that given in the two previously published papers on Kanarese batterflies. In the present paper all the names have been carefally revised, and the spelling herein given should be followed. It was not thought necessary also to draw particular attention to these variants, or to those cases in which the names of the batterffies were also incorrectly spelt.

At the end of Parts I and II will be found lists of the foodplants, and the batterflies whose larve feed on them, of a few batterflies discovered by Mr. Bell in the Western Himalayas and Kashmir.

PAR'I I.

Δ List of the Food-plants arranged in the order of "I'he Flora of British India" on which the larve of the Butterfies of the Kanara District feed.

Order IV. ANONACEAT.

1. Unon 1 discolor, Vahl.

Papilio agamemnon, Linnæus.
2. Unona Lawil, Hook. f. and 't'.

Papilio eurypylus jason, lisper.
Fapilio antiphates alcihiades, Fabricins.
3. Polyalthia longiforia, Bentll. and H. f.* The 'debdar,' or ' asoka.'

Papilio agamemnon, Linnæns.
4. anona squamosa, Linn. The enstari-apple.

Virachola perse, Hewitson.
Papilio agamemnon, Linnæus.
5. Anona reticolata, Linn.

Papilio agamemnon, Linuæus.
6. Saccopetaldm tomentostm, Honk. f. and T.

Charaxes imna, Butler.
Papilio agamemnon, Linnæns.
Papilio eurypylus jason, Esper.
Papilio nomins, Esper.
Order XI. CAPPARIDEA.
7. Crateva rrlgiosa, Forst.

Leptosia xiphia, Fabricius.
Hebomoia australis, Butler.
Appias libythea, Fabricins.

- Appias taprobana, Moore.

8. Cadaba indica, Lamk.

Teracolus etrida, Boisduval.

* In the first Kanara paper (p. 263, n. 67) this plant is given nnder itg synonymic name Gualteria [recte Guatterin] longifo!ia, Wnll.
J. II. 25

9. Capparis Hexneana, Wall. The plants of this genus are gene. rally known as 'capers.'

Leptosia aiphia, Fabricius.
Hebomoia australis, Butler.
Nepheronia pingasa, Moore.
Nepheronia hippia, Fabricius.
Appias wardii, Moore.
Huphina remba, Moore.
10. Capparis divaricata, Lamk.

Belenois mesentina, Cramer.
11. Capparis Mooni, Wight.

Hebomoia australis, Butler.
12. Capparis sepiakia, Linn.

Leptosia xiphia, Fabricius.
Teracolus eucharis, Fabricius.
Ixias pyrene, Linnæus.
Ixias marianne, Cramer.
Hebomoia australis, Butler.
Huphina nerissa, Fabricius.
13. Capparis horrida, Linn. f.

Leptosia xiphia, Fabricius.
Nepheronia hippia, Fabricius.
Appias libythea, Fabricius.
Huphina nerissa, Fabricius.
14. ? Capparis tenera, Dalz.

Prioneris sita, Felder.
Order XIII. VIOLACEE.
15. Alsodeia zeflanica, Thwaites.

Atella alcippe, Cramer.
Order XIV. BIXINEA.
16. Flacourtia montana, Grah.

Cupha placida, Moore.
Atella phalantha, Drury.
17. Hydnocarpos Wightiana, Blume. Cirrhochroa thais, Fabricius.

Order XIX．PORTULACEA．
18．Portolaca olebacea，Linn．
Hypolimnas bolina，Linnæus．
Hypolimnas misippus，Linnæus．
Order XXV．DIPTEROCARPE压．
19．Hopea Wightiana，Wall．
Arrhopala centaurus，Fabricius．
Arrhopala amantes，Hewitson．
Arrhopala canaraica，Moore．
Arrhopala bazalus，Hewitson．
Rathinda amor，Fabricius．

Order XXVI．MALVACE疋．
20．Thesprsia Lampas，Dale．and Gibs．
Neptis kallaura，Moore．
Neptis jumbah，Moore．
21．Kydia calycina，Roxb．
Neptis jumbah，Moore．
22．Bombax malabaricum，DC．
Neptis jumbah，Moore．

Order XXVII．STERCULIACE \boldsymbol{A}
23．Helicteres Isora，Linn．
Neptis jumbah，Moore．
Caprona ransonnetii，Felder．
24．Waltheria indica，Linn．
Hesperia galba，Fabricius．
Order XXVIII．TILIACE压．
25．Grewil Microcos，Linn．
Neptis jumbah，Moore． Coladenia indrani，Moore．

26．Grewia sp．

Charaxes athamas，Drary．
27. Rota graveolens, Linn., var. anguatifolia, Pers. The rue. Papilio demolets, Linnæus.
28. Evodia Roxburgiiana, Benth.

Papilio demolion liomedon, Moore.
Papilio paris tamilana, Moore.
29. Zanthoxylum Retsa, DC.

Papilio polytes, Linnæus.
Papilio helenus daksha, Hampson.
Papilio buddha, Westwood.
30. Acronychia ladrifolia, Blume.

Papilio demolion liomedon, Moore.
31. Glycosmis pentaphylla, Correa.

Neopithecops zalmora, Butler.
Papilio demolens, Linnæus.
Papilio polytes, Linnæus.
Papilio helenus daksha, Hampson.
Papilio abrisa, Kirby.
32. Muriaya Kenigif, Spreng.

Papilio demoleus, Linnæus.
33. Paramgnta nonopeylla, Wight.

Pupilio polymnestor, Cramer.
34. Atalantia monophilla, Correa. The wild lime.

Papilio polymnestor, Cramer.
35. Citros medica, Linn. The sour lime or citron or lemon or swfet lime.

Chilades laius, Cramer.
Papilio polytes, Linnæus.
Papilio helentes daksha, Hampson.
36. Citrus decomana, Linn. The pomelo or shaddock.

Papilio demoleus, Linnæus.
Papilio polytes, Linnæus.
Papilio helents daksha, Hampson.

1900.]
L. de Nicévifie-Butterflies of the Kanara-District.
37. Tgle Mabmblos, Correa. The Biel:free: Papilio demoleus, Linnæus.

Order XXXVII. MELIACE \boldsymbol{A}.
38. aglaia Roybobghiana, Miq:

Charaxes innna, Butler.
Order XXXIX. OLACINEA.
39. Olax scandens, Roxb.

Amblypodia anitu, Hewitson.
Order XII. CELASTRINEAE
40. Salacia oblonga, Wall.

Bindahara sugriva, Horsfield.

Order XLII. RHAMNEA.

41. Zizyphus Jujuba, Lamk. The 'bier' tree or 'jujube' tree.

Neptis jumbah, Moore.
Tarucus theophrastus, Fabricius.
Castalius rosimon, Fabricius.
Castalius ananda, de Nicéville.
Castalizs ethion, Doubleday and Hewitson.
Aphneeus vulcanus, Fabricius.
42. Zizyphos Xylopyrds, Willd.

Neptis jumbah, Moore.
Castalius ananda, de Nicéville.
Castalius ethion, Doableday and Hewilson.
Rapala varuna, Horsfield.
43. Zizyphes rugosa, Lamk.

Neptis jumbah, Moore.
Castalius ananda, de Nicéville.
Castalius decidia, Hewitson.
Aphnerus vulcanus, Fabricius.
Apknseus lohita, Horsield.
Rapala varuna, Horsfield.
Rapala melampus, Cramer.
Order XLIV. SAPINDACbit.
44. Allophylus Совbe, Blame.

Odontoptilum angulata, Felder:
45. Schleichera trijuga, Willd.

Catochrysops strabo, Fabricius.
Rathinda amor, Fabricius.

Order XLVI. ANACARDIACEA.
46. Mangifera indica, Linn. The mangoe.

Euthalia garuda, Moore.
47. Anacardium occidentale, Linn. The cashewnut. Euthalia garuda, Moore.
48. Buchanania latifolia, Roxb.

Lycænesthes lycænina, Felder.
Order XLIX. CONNARACERE.
49. Rourea santaloides, W. and A.

Charaxes wardii, Moore.
50. Connards Ritchiei, Hook. f. Deudorix epijarbas, Moore.

Order L. LEGUMINOS 在.
51. Millettia racemosa, Benth.

Neptis jumbah, Moore.
Hasora chabrona, Plötz.
52. Sesbania aculeata, Pers.

Tarucus telicanus, Lang, in Bombay.
Terias hecabe, Linnæus.
53. Zornia diphylla, Pers. A vetch-like plaut.

Vanessa cardui, Linnæus.
Plebeius trochilus, Freyer.
Zizera lysimon, Hübner.
Zizera otis, Fabricins.
54. Ougeinia dalbergioides, Benth.

Oatochrysops strabo, Fabricius.
Euchrysops cnejus, Fabricius.
Tarucus telicanus, Lang.
Ouretis bulis, Doubleday and Hewitson.
Bapala molampus, Cramer.
55. Abres precatorids, Linn.

Lampides celono, Cramer.
Curetis thetis, Drury.
56. Butea prondosa, Roxb. Bastard teak.

Jamides bochus, Cramer.
Polyommatus baticus, Linnæas.
57. Cajands indicus, Spreng.

Polyommatus booticus, Linnæus.
58. Crlista scariosa, Ait.

Cyaniris puspa, Horsield.
Everes argiades, Pallas.
Catochrysops strabo, Fabricius.
Euchrysops onejus, Fabricius.
59. Dalbergia latifolia, Roxb. Blackwood or rosemood tree.

Neptis viraja, Moore.
Neptis jumbah, Moore.
Tapena thwaitesi, Moore.
60. Dalberaia rubiginosa, Roxb.

Tapena thvaitesi, Moore.
61. Dalbergia confertiflora, Benth.

Neptis kallaura, Moore.
62. Dalbrggia tamarindifolia, Roxb.

Tapena thwaitesi, Moore.
63. Dalbergia volubilis, Roxb.

Neptis viraja, Moore.*
T'apena thwailesi, Moore.
64. Pongamia glabra, Vent.

Jamides bochus, Cramer.
Lampides celeno, Cramer.
Curetis thetis, Drury.
Hasora (Parata) alexis, Fabricius.

* In the second Kanara paper (p .251, n. 41) Dalbergia racemosa appears as a food. plant of N. viraja, Moore, but this is a wrong identification for Dalbergia volubilis.

65. Derris scandens, Benth.

Hasora (Parata) butleri, Aurivillius.
Tupena thwaitesi, Moore.
66. Derris uliginosa, Benth. Hasora badra, Moore.
67. Derris Hetneana, Benth. Curetis thetis, Drury.
Hasora (Parata) butleri, Aurivillius.
68. Cesalpinia mimosoides, Lam.

Neptis (Rahinda) hordonia, Stoll.
Charaxes athamas, Drury.
69. Poinciana regia, Bojer. The gold-mohar tree.

Charares athamas, Drury.
Terias silhetana, Wallace.
70. Wagatea bpicata, Dalz.

Neptis kallaura, Moore.
Neptis jumbah, Moore.
Charaxes wardii, Moore.
Charaxes fabius, Fabricius.
Lycsnesthes emolus, Godart.
Lycrenesthes lycænina, Felder.
Nacaduba atrata, Horsfield.
Euchrysops pandava, Horsfield.
Curetis thetis, Drury.
Aphnæus lohita, Horsfield.
Rapala lankana, Moore.
Terias silhetana, Wallace.
71. Cassia Fistula, Linn. Indian Laburnum.

Catopsilia crocale, Cramer.
72. Cassia occidentalis, Linn.

Catopsilia pyranthe, Linnæus.
Terias hecabe, Linnæus.
73. Cassia Tora, Linn.

Terias hecabe, Tinnmens.
74. Cassia siamel, Lam.

Oatopsilia crocale, Cramer.
75. Cassia gladca, Lam. Terias hecabe, Linnæus.
76. Cassia pumila, Lam.

Terias libythea, Fabricius.
77. Saraca indica, Linn.

Lycernesthes emolus, Godart.
Lampides celeno, Cramer.
Cheritra jaff a, Butler.
78. Tamarindos indica, Linn. The tamarind.

Charaxes fabius, Fabricius.
Virachola isocrates, Fabricius.
79. Xylia dolabriformis, Benth. The Pegu iron-wood.

Neptis jumbah, Moore.
Cyaniris puspa, Horsfield.
Jamides bochus, Cramer.
Euchrysops pandava, Horsfield.
Arrhopala centaurus, Fabricius.
Arrhopala amantes, Hewitson.
Ouretis thetis, Drury.
Zesius chrysomallus, Hübner.
Aphneeus lohita, Horsfield.
Cheritra jaffra, Butler.
Rapala varuna, Horsfield.
Ooladenia indrani, Moore.
80. acacia Intsia, Willd.

Neptis (Rahinda) hordonia, Stoll. Form of larra with short processes.
Nacaduba noreia, Felder.
Surendra quercetorum, Moore.
Zinaspa todara, Moore.
81. Acacia Intsia, var. cesia, W. and A.

Nacaduba noreia, Felder.
Zinaspa todara, Moore.
Rapala schistacea, Moore.
Rapala lankana, Moore.
J. II. 26
82. Acacla pennata, Willd.

Neptis (Rahinda) hordonia, Stoll. Form of farva with lody processes.
Charaxes athamas, Drury.
Nacaduba noreia, Felder.
Surendra quercetorum, Moore.
Zinaspa todara, Moore.
Rapala schistacea, Moore.
Rapala lankana, Moore.
83. Albizza Lebber, Benth.

Neptis viraja, Moore.
Charaxes athamas, Drury.
84. Genus and Species unknown.

Neptis varmona, Moore.

Order LIII. CRASSULACE $\underset{\text { E }}{ }$
85. Bryophyllem calfcindm, Salisb.

Talicada nysens, Guérin.

Order LVIII. COMBRETACEL.
86. Terminalia Bellerica, Roxb.

Balamia exclamationis, Fabricius.
Cupitha purreea, Moore.
87. Terminalia tomentosa, Bedd.

Arrlopala centaurus, Fabricius.
Zesius chrysomallus, Hübner.
Catapecilma elegans, Druce.
88. Terminalia paniculata, Roth.

Lycæuesthes emolus, Godart.
Castalius ananda, de Nicéville.
Arrhopala centaurus, Fabricius.
Arrhopala amantes, Hewitson.
Arrhopala bazalus, Hewitson.
Zesius chrysomallus, Hübner.
Aphnexus lohita, Horsfield.
Catapecilma elegans, Druce.
Cupitha purreea, Moore.
89. Combretom ovalifolidm, Roxb. Cupitha purreea, Mfoore.
90. Combeetum extessum, Roxb. Lycenesthes emolus, Godart. Ismene fergusonii, de Nicéville. Bibasis sena, Moore.
Badamia exclamationis, Fabricius.
91. Quisqualis indica, Lida.

Rapala schistacea, Moore.
Rapala varuna, Horsfield.

Order LIX: MYBTACEAn.

92. Psididm Guyava, Linn. The gaava.

Zesius chrysomallus, Hübner.
Aphneus lohita, Horsield.
93. Eugenia zeylanica, Wight.

Rathinda amor, Fabricius.
94. Cabeya arborea, Roxb.

Euthalia (Cynitia) lepidea, Butler:
Rathinda amor, Fabricius.

Order LX: MELASTOMACEA.
95. Melastoma malabathricom, Ling. Euthalia (Cynitia) lepidea, Butler.

Order LXI. LYTHRACEA.
96. Lagbrstremia lancrolata, Wall.

Arrhopala centaurus, Fabricius.
Arrhopala amantes, Hewitson.
Aphneous lohita, Horsield.
Oataposcilma elegans, Druce.
97. Punica Granatud, Linn. The.pomegrenate.

Virachola isocrates, Fabricius.

Order LXIV. PASSIFLORE \boldsymbol{A}.
98. Modecca palmata, Lam. The wild passion-flower.

Trelchinia violæ, Fabricius.
Cethosia mahratta, Moore.
Cynthia saloma, de Nicéville.

Order LXV. CUCURBITACE A^{2}.

99. Zehneria umbellata, Thwaites.

Parthenos virens, Moore.

Order LXXI. ARALIACE \boldsymbol{E}.
100. Heptapledrum venolosuy, Seem. An ivy-like creeper. Ismene gomata, Moore.

Order LXXV. RUBIACE
101. Adina cordifolia, Hook. f.

Athyma selenophora, Kollar.
102. Stephegine Parvifolia, Korth.

Limenitis (Moduza) procris, Cramer.
103. Wendlandia exserta, DC.

Limenitis (Moduza) procris, Cramer.
Athyma inara, Doubleday and Hewitson.
104. Mussenda frondosa, Linn.

Limenitis (Moduza) procris, Cramer.
Athyma inara, Doubleday and Hewitson.
105. Randia uliginosa, DC.

Virachola isocrates, Fabricius.
Virachola perse, Hewitson.
106. Randia dumetorum, Lamk.

Virachola perse, Hewitson.
107. Ixora coccinea, Linn.

Rathinda amor, Fabricius.
108. Blumea sp. A kind of thistle.

Vanessa cardui, Linnæus.

Order LXXXVIII. MYRSINE压.
109. Embelia robubta, Roxb.

Abisara fraterna, Moore.
Nacaduba atrata, Horsfield.
110. Ardisia humilis, Vahl. Abisara fraterna, Moore.
Nacaduba atrata, Horsfield.

Order XC. EBENACE EA 2
111. Diospyros melanoxylon, Roxb. Ebony.

Symphædra nais, Forster.
Eiuthalia (Dophla) laudabilis, Swinhoe.
112. Diospyros Candolleana, Wight. Ebony. Euthalia (Dophla) laudabilis, Swinhoe.

Order XCII. OLEACEAE.
113. Linocieba malababica, Wall. Athyma ranga, Moore.
114. Olea dioica, Roxb. Athyma ranga, Moore.

Order XCIlI. SALVADORACEA.
115. Salvadora persica, Linn.

Teracolus amata, Fabricius.

Order XCIV. APOCYNACE \boldsymbol{N}^{2}.
116. Holarriema antidisenterica, Wall.

Euploea (Crastia) core, Cramer.
117. Nerium odordm, Soland. The oleander. Euplcoa (Crastia) core, Cramer.
118. aganosma gquogad, G. Pon.

Hestia malabarica, Moore.
119. Icenocarpus frutescerns, Br.

Euploea (Orastia) core, Cramer.
Euploea (Narmada), coreta, Godpyt.
Order XCV. ASCLEPIADEA.
120. Ceyptolepis Bdelanani, Roem. and Solh, Danais (Parantica) aglea, Cramer.
121. Calotropis gigantea, Br. The 'Madar.'

Danais (Limnas) chrysippus, Linuæas:
122. Asclbpias Curabsavica, Linn.

Danais (Limnas) chrysigrpus, Linnnæus.
123. Tylophora tenges, Blame.

Danais (Parantica) aglea, Cramer.
124. Drigea volubllis, Benth. Wax plant.

Danais (Tirumalqg.limniace, Grapuer.
Danais (Tirumala) septentrionis, Buther.
125. Genus and Species unknown.

Danais (Salatura) phexippuci, Linnsous;
Order C. BORAGINEA昰
126. Heliotropium strigosum, Willd.

Plebeius trochilus, Freyer.
Order CL. CONVOLVULACEA.
127. Arayreia speciosa, Sweet. Zesius chrysomallus, Hübner.
128. Argyreia sericea, Dalz. and Gibs. Aphneeus lohita, Horrsield.

Order CIX. ACAFTHACE ${ }^{2}$.
129. Nelsonia campestris, Br.

Precis lemonias, Linp 别s:
Zieera gaika, Trimen.

Precis almana, Linnæus.
Precis lemonias, Linnæus.
Precis hierta, Intritus.
Precis orithyia, Linnæus.
Precis atlites, Linnæus.
131. Defdalacanthos roseds, T. Anders.

Celænorrhinus leucocera, Kollar.
132. Strobilanthes callosus, Nees.

Precis iphita, Cramer.
Precis lemonias, Linnæus.
Kallima horsfieldii, Kollar.
Celonorrhinus ambareesa, Moore.
Celenorrhinüs fusca; Hàmpsoñ.
133. Blepharis asplrima, Nees.

Sarangesa purendra, Moore.
184. Barleria Prionitis, Liin.

Precis lemonias, Linnæns.
135. Bableria sp.

Precis hierta, Fabrioins.
Precis atlites, Linnæas.
136. Eranthemum malabaricum, Clarke.

Kallima korsfeldiii, Kollar.
Doleschallia polibete, Cramer.
137. Eranthemom sp.

Celænorrhinus leucocera, Kollar.
138. Genus and Species unknown.

Sarangesa dasahara, Moore.

Order CXI. VERBENACEA.
139. P Lippia nodiflora, Rich.

Precis almana, Linnæus. Mr. Bell thínks this food-plant is very doubtful for P. almana.
140. Clerodendron inpobtunatum, Gaertn.

Zesius chrysomallus, Hübner.
Order CXVI. AMARANTAOENE.
141. Cyathola prosirata, Blume.

Coladenia dan, Fabricius.
142. Achyranters aspera, Linn.

Coladenia dan, Fabricius.
Sarangesa dasahara, Moore.
143. Achyranthes bidentata, Blume.

Coladenia dan, Fabricius.
Order CXXIII. ARISTOLOCHIACEX.
144. Aribtolochia bracteata; Retz.

Papilio aristolochie, Fabricius.
145. Aristolochia indica, Linn.

Troides minos, Cramer.
Papilio hector, Linnæas.
Papilio aristolochix, Fabricins.
Order CXXVIII. LAURINE \nrightarrow.
146. Cinnamoxdy zerlanicum, Brejn. The wild cinnamon.

Cheritra jaffra, Butler.
Papilio sarpedon teredon, Felder.
Papilio clytia, Linnæus.
147. Alseodapene semecarpifolia, Nees.

Papilio sarpedon teredon, Felder.
Papilio abrisa, Kirby.
Papilio clytia, Linnæas.
148. Litsea tomentosa, Herb.

Papilio clytia, Linnæus.
149. Litsea sebifera, Pers.

Papilio sarpedon teredon, Felder.
Papilio clytia, Linnæus.

Order CXXXII. LORANTHACE .

150. Loranthus Wallichianus, Schultz. All the plants of this Nataral Order are often called 'Mistletoe' from the resemblance they benr to the European plant of that name.

Tajuria cippus, Fabricius.
151. Loranthus scurrula, Linn.

Euthalia gartuda, Moore.
Euthalia lubentina, Cramer.
Cameiza deva, Moore.
Oreon cleobis, Godart.
Tajuria cippus, Fabricius.
Ops melastignia, de Nicéville.
152. Loranthus tomentosus, Heyne.

Camena deva, Moore.
Ops melustigma, de Nicéville.
153. Loranthos longiflones, Desionss.

Castalius ananda, do Nicéville.
Zesius chrysomallus, Hübner.
T'ajuria cippus, Fabricins.
Rathinda antor, Fabricius.
Delias eucharis, Drury.
154. Loranthus elastices, Desrouss.

Creon cleobis, Godart.
I'ajuria indra, Moore.
Tajuria cippus, Fabricius.
Order CXXXV. EUPHORBIACE 2.
155. Glochidion lanceolarium, Dalz. Athyma periuts, Linnæus.
156. Glochidion zeylanicum, A. Juss.

Athyma inara, Doubleday and Hewitson.
157. Glochidion vefotincm, Wight. Athyma perius, Linnæus.
Athyma inara, Doubleday and Hewitson.
158. Hemictclia venusta, Thwaites. Appias albina, Boisduval.
J. II. 27
159. Croton sp.

Rathinda amor, Fabricius.
160. Treefia nodiflora, Linn.

Thaduka multicaudata, Moore.
161. Mallotos philippinensis, Muell.

Coladenia indrani, Moore.
162. Tragia involucrata, Linn.

Ergolis taprobana, West wood.
Ergolis ariadne, Linnæus.
163. Tragia involocrata, var. canvabina, Linn.

Ergolis taprobana, Westwood.
Ergolis ariadne, Linnæus.
Byblia ilithyia, Drury, in Khandeish and the Deccan in the Bombny Presidency.

Order CXXXVI. URTICACE E.
164. Celtis tetrandra, Roxb.

Apatura (Rohana) camiba, Moore.
Iribythea rama, Moore.
165. Trema orientalis, Blume.

Euripus consinilis, Westwood.
Neptis kallaura, Moore.
Neptis jumbah, Moore.

- 166. Strebiod asper, Lour.

Euplosa (Crastia) core, Cramer.
Euploea (Pademma) kollari, Felder.
167. Ficus bengalensis, Linn. The banyan or 'bhor' tree.

Euploea (Orastia) core, Cramer.
Cyrestis thyodamas, Boisduval.
Iraota timoleon, Stoll.
168. Ficos indica, Linn.

Cyrestis thyodamas, Boisduval.
Iraota timoleon, Stoll.
1900.] L. de Nicéville-Butterflies of the Ranara District.
169. Ficos reliaiosa, Linn. The pipal.

Euplosa (Crastia) core, Cramer.
170. Ficus glomrrata, Roxb.

Euplosa (Orastia) core, Cramer.
Oyrestis thyodamas, Boisduval.
Iraota timoleon, Stoll.
171. Flburya interrupta, Gaud. A kind of nettle. Hypolimnas bolina, Linnæus.
172. Elatostema cuneatum, Wight. Hypolimnas bolina, Linnæus.

Order CXLVIII. ORCHIDEA.
173. Reynchostylis retusa, Blame.

Chliaria othona, Hewitson.
174. Saccolabium papillosum, Lindl.

Chliaria othona, Hewitson.

Order CXLIX. SCITAMINEE.
175. Curcuma Amada, Roxb. Wild turmeric.

Udaspes folus, Cramer.
Nolocrypta feisthamelii, Boisduval.
176. Keypperia pandurata, Roxb.

Lampides elpis, Godart.
Udaspes folus, Cramer.
177. Hedychicm coronarium, Kœenig.

Lampides elpis, Godart.
Udaspes folus, Cramer.
Notocrypta feisthamelii, Boisduval.
178. AMOMUM microsiephandm, Baker.

Lampides elpis, Godart.
Udaspes folus, Cramer.
Notocrypta feithamelii, Boisduval.
Sancus pulligo, Mabille.
179. Elettaria Cardamomom, Maton. The cardamon.

Lampides elpis, Godart.

Order CLIV. DIOSCOREACEE.
180. Dioscorea pentaphylla, Linn.

Aphneus lohita, Horsfield.
Loxura atymnus, Cramer.
Tagiades atticus, Fabricius.
Tagiades obscurus, Mabille.

Order CLVI. LILIACE A.
181. Smilax macrophylla, Roxb.

Loxura atymnus, Cramer.
Tagiades atticus, Fabricins.

Order CLXIII. PALMEA.
182. Areca Catechu, Linn. The Supari or Betel-nut.

Elymnias caudata, Butler.
Gangara thyrsis, Fabricius.
Suastus gremius, Fabricius.
183. Caryota urens, Linn. The Palmyra or fan palm.

Elymuias caudata, Butler.
Gangara thyrsis, Fabricius.
Suastus gremitus, Fabricins.
184. Phenix sulvestris, Roxb. Wild date palm.

Elymnias caudata, Butler.
Gangara thyrsis, Fabricius.
Suastus gremitus, Fabricius.
Hyarotis adrastus, Cramer.
185. Calajius pseudo-tenuts, Becc. and Hook. f. Kaltan or cane.

Elymuias caudatr, Butler.
Gangara thyrsis, Fabricius.
Suastus gremius, Fabricius.
Pedestes submaculata, Staudinger.
Hyarolis adrastus, Cramer.
186. Cocos nucifera, Linn. Coconut palm.

Elymnias caudata, Butler.

Gangara thyrsis, F'abricius.
Sucstus gremius, Fabricius.
Order CLXXIII. GRAMINE压.
187. Obrza sativa, Linn. Rice.

Mycalesis (Orsotriena) mandata, Moore.
Mycalesis (Calysisme) visala, Moore.
Mycalesis (Nissarga) junonia, Butler.
Ypthima baldus, Fabricius.
Melanitis ismene, Cramer.
Baoris (Parnara) guttatus, Bremer and Grey.
Ampittia dioscorides, Fabricius.
Baoris (Parnara) bevani, Moore.
Baoris (Chapra) subochracen, Moore
Baoris (Chapra) mathias, Fabricius.
188. Zea Mays, Linn. Maize or Indian corn.

Baoris (Purnara) conjuncta, Herrich-Schäffer.
189. Grasses of different kinds.

Mycalesis (Orsotriæna) mandata, Moore.
Mycalesis (Calysisme) perseus, Frbricius.
Mycalesis (Calysisme) visala, Moore.
Mycalesis (Nissanga) junoniu, Butler.
Ypthima baldus, Fabricius.
Ypthima huebneri, Kirby.
Melanitis ismene, Cramer.
Melanitis varuha, Moore.
Iambrix salsala, Moore.
Laoris (Parnara) guttatus, Bremer and Grey.
Baracus hampsoni, Elwes and Edwards.
Taractrocera ceramas, Hewitson.
Ampittia dioscorides, Fabricins.
Aëromachus indistinctus, Moore.
Palraona gola, Moore.
Baoris (Parnara) conjuncta, Herrich-Schäffer.
Baoris (Parnara) colaca, Moorc.
Baoris (Chapra) subochracea, Moore.
Baoris (Chapra) mathias, Fabricius.
190. Bambusa arundinacea, Willd. Bamboo.

Lethe europa, Fabricins.

Lethe drypetis, Hewitson.
Melanitis gokala, Moore.
Discophora lepida, Moore.
Matapa aria, Moore
Padraona dara, Kollar.
Iumbrix salsala, Moore.
Halpe ceylonica, Moore.
Telicota bambusæ, Moore.
Baoris oceia, Hewitson.
Buoris (Parnara):kumara, Moore
191. Bambusa sp.

Discophora indica, Standinger.
Baoris (Parnara) philippina, Herrich-Schäffer.
192. Oxytenanthera monostigma, Beddome.

Discophora lepida, Moore.
Padraona dara, Kellar.
Halpe ceylonica, Moore.
Halpe hyrtacus, de Nicéville.
Telicota bambusæ, Moore.
193. Dendrocalames strictus, Nees.

Discophora lepida, Moore.
Matapid aria, Moore.
Halpe honorei, de Nicéville.
Baoris oceia, Hewitson.
194. Ochlandra stridula, Thwaites.

Zipetes saitis, Hewitson.
Discophora lepida, Moore.
Matapa aria, Moore.
Padraona dara, Kollar.
Halpe hyrtucus, de Nicéville.
Baoris oceia, Hewitson.
Baoris (Parnara) kumara, Moore.
Plants from the Western Himalayas and Kashmir, with the species of lutterfies whose larrex jeed on them.

Order L. LEGUMINOSA.

1. Indigofera atropurpurea, Hamilt.

Thecha sassanides, Kollar.
Hysudra selira, Moore.

Order LXXVIII. COMPOSIT \boldsymbol{E}.
2. Cabdíos sp.

Vavessa cardui, Linnæus.

Order CXXXVI. URTICACEA.
3. Urtica parviflora, Roxb.

Vanessa caschnirensis, Kollar.

Order CXLI. SALICINEE.
4. Salix tetrasperma, Roxb.

Vanessa xanthomelas, Wieuer Verzeichniss.

PART II.

A Rerised List of the Butterffies of the Kanara District arranged in the order of Messrs. Davidson, Bell and Aitken's previous papers, with the names of the Food-plants on which the larver feed.

Family NYMPHALIDA.

Subfamily Danarne.

1. Hestia malabarica, Moore.

Agannsma cymosa, G. Don (Apocynacee).
H. lynceus, Drury, of the previous list, p. 239, is a species restricted by Dr. F. Moore in Lep. Ind., vol. i, p. 26 (1890), to Borneo. It has the wings much longer and narrower and the coloration much darker than our South Indian species. Dr. Moore (l.c., p. 18) does not record H. malabarica from Kanara, but it undoubtedly occurs there. But he describes (1.c., p. 21, pl. ii, figs. 2, male; 2a, female; 1, lavva; 1a, pupa) H. kanarensis na a new species from North Kanara and the South Konkan. It is a smaller species than H. malabarica, 4.25 to 4.75 as against 5.0 to 5.5 inches in expanse. "The markings similarly disposed and shaped but smaller, being abont half the size of those in H. malabarica." This latter remark is an obvions exaggeration speaking of the markings as a whole, as can be verified by comparing Dr. Moore's figures of the two species in Lep. Ind. I do not think that H. kanarensis can be retained as a species distinct from H. malabarica. Its smaller size is its most distinctive character.
2. Danais (Parantica) aliba, Cmmer.

Cryptolepis Buchanani, Roem. and Sch. (Asclepiadex).
Tylophora tenuis, Blume*' (Asclepiadex).
3. Danais (Tirumala) himniace, Cramer.

Dregea volubilis, Benth. \dagger (Asclepiadee).
4. Danais (Tirumala) septentrionis, Butler.

Dregea volubilis, Benth. (Asclepiades).
Not recorded from Kanara in the lists, but andoubtedly ocenus in the district according to Mr. Bell, who says he has specimens of it which agree with the typical form both in coloration and markings. Specimens intermediate between D. limniace, Cramer, and D. septentrionis also occur, and for these Mr. Aitken in the first paper (p. 266) suggested in joke the name D. limnitrionis. Mr. Fruhstorfer has probably described this form as Tirumatin melisea draviduram in Berl. Eat. Zeitsch., vol. sliv, p. 113 (1899).
5. Danais (Limnas) chrysippes, Linnæus.

Calotropis gigantea, Br. (Ascl:piader).
Asclepius Curassavica, Linn. (Asclepiader).
6. Danais (Sulatura) plexippos, Linnæus.

The D. genutia, Cramer, of the previous list, p. 240, but Linnæus' name undoubtedly applies to this species. It has often been bred in Kanara; the larva feeds on an asclepiad, which has not been identified.
7. Euplea (Crastia) core, Cramer.

Holarrhena antidysenterica, Wall. (Apocynacere).
Nerium odorum, Soland. (Apocynacest).
Ichnocarpus frutescens, Br. (Apocynacese).
Streblus asper, Lour. (Urticaceæ).
Ficus bengalensis, Linu. (Urticacex).
Ficus religiosa, Linn. (Urticacere).
Ficus glomerata, Roxb. (Urticacers).
8. Euplea (Pudemma) kollari, Felder.

Streblis aspler, Lour. (Urticaces).
The larva is said to also feed "On several species of Ficus."
*The Tylophora carnosa, Wall., of the first paper, p. 266, is a synonym of T. tenuis, Blume.
\dagger The Hoya viridifora, Br., of the first paper, p. 266, is a synonym of Dregea rolubilis, Benth.
9. Euplea (Narmada) coreta; Godart.

Ichnocarpus frutescens, Br . (Apocynacees).
Larva. The larva is of the type of that of Euploen (Crastia) core, Cramer, except that the subdorsal tentacles are wanting on segment 6, and the two pairs on segments 3 and 4 are considerably longer. The head is round, smooth, shiny and black, with a narrow white band round the margin over the vertex, and a similar band down each side of the clypens meeting at the apex of the clypeus; the labram is white. The surface of the body is smooth and rather greasy looking. The spiracles are oval, black and shiny. The colour of the body varies somewhat, or rather the shade varies; segments 3 and 4 are dorsally always slightly yellowish. There is always a dark bluish, dorsal line or band. The general colonr of the body is a light violet-green on the somites of the dorsal half, and a chocolate-green on the somites of the ventral half; there is a subspiracular yellow line dividing the two colours; a slight yellow shade around the spirncles, and the extreme base of all three pairs of tentacles is yellow; segment 2 is light yellow with a black subdorsal shiny spot, and the anal flap is yellow, with a very large shiny black mark, covering nearly three-fourths of the dorsum; tentacles dull indigo in colour ; all the legs shiny black. Length 39 mm., breadth 6 mm ., length of tentacles of segment 3 is 14 mm ., of sogment 4 is 9 mm ., of segment 12 is 6 mm . All the tentacles are nearly strnight.

Popa. The pupa has notling in auy wny to distingaish it in shape from that of E. core. The spiracles are light brown, oval, of the asanl size. The colour of the papa is silver, with one very broad subdorsal, and oue very broad, spiracular, lightish brown band on the abdomen meeting on segment 6 , which is entirely brown, as are also segments 4 and 5 except dorsally; the shoulders and the inner margin of the wing are broadly brown, as is also the vortex of the head; there is a narrow brown band along the outer margin of the wings; a broad, dorsal, thoracic, brown band forking from the apex to the hinder margin ; a large, oblong, brown mark on the wing beyond the discoidal cell; the cremaster is strong, triangular, finttened dorsally and ventrally, with a ragose knob at the end, and a spherical tabercle at the base laterally : all shiny black, as are also the anal clasper scars; the costal margins of the wings and the haustellam are also brownish; the whole sarface is shiny and quite smooth. Length 18.5 mm . including the cremnster, breadth at segment 7 is 8.5 mm ., which is the broadest part.

Habits. The habits are the same as those of E. core in every particular. The larva eats the young leaves, living on the underside of the leaves. It papates under a leaf, langing very freely. The larva is badly persecated by ichneamons.
J. II. 28
10. Mycalesis (Orsotrizna) mandata, Moore. Oryza sativa, linn. (Gramineæ). Grasses (Gramineæ).
11. Mycalesis (Calysisme) perseus, Fabricius. Grasses (Gramineæ).
Recorded without a number in the second Kanara paper, p. 242.
12. Mycalesis (Calysisme) visala, Moore.

Oryza sativa, Linn. (Graminere).
Grasses (Gramines).
This appears in the Kanara papers as M. minens, Linnæus, a species now restricted by Dr. F. Moore to N. and E. Indin, Burma, Siam, and S.-E. China.
13. Mycalesis (Calysisme) subdita, Moore.

Not recorded in the Kanara papers, but Mr. Bell canglit it in one place, Tarimalapur, up the valley of the Kalinaddi river. Dr. Moore restricts it to South India and Ceylon. It has not heen bred in the Kanara district.
14. Mrcalesis (Nissanga) junonia, Butler.

Oryza sativa, Linn. (Graminers).
Grasses (Graminees).
15. Lethe europa, Fabricius.

Banbusa arundinacea, Willd. (Graminex).
16. Lethe drypetis, Hewitson.

Bambusa arundinacea, Willd. (Graminere).
'Ihe L. drypetes [sic] of Moore's "Lep. Ind.," and L. todara, Moore, of the second Kanara paper, p. 243, that species being a synonym of L. drypetis.
17. Lethe nerlgherriensis, Guérin.

The L. neelgheriensis [sic] of Moore's "Lep. Ind." It has not been bred in Kanara, but the imago is found above the ghâts in Haliyal and on the Dliarwar frontier. In Ceylon the larva is said to feed on grasses.
18. Ypteima baldus, Fabricius. Oryza sativa, Linn. (Gramineæ).

Grasses (Graminezs).
The Y. philomela, Johanssen, of the second Kanara paper. It is quite possible that the true Y. philomela, Johanssen (I do not know what the Y. philomela of Linnæns is) may also occur in Kanara, as I have specimens from the Nilgiri Hills, the Wynaad (type of Y. tabella, Marshall), as well as from Henzada and Manlin in Burma. Dr. F. Moore in "Lep. Ind." restricts Y. philomela, Johansson [sic], to Java and Sumatra, and gives Y. tabella full specific rank, recording it from South India and Burma. In Lep. Ind., vol. ii, p. 58, he defines I'hymipa, the genus in which he places Ypthima philomela, as having a prominent androconial patch in the male, while in describing T'hymipa tabella, p. 73, he says it has "No glandular patch nor androconia." As a matter of fact the patch is sometimes abseut, sometimes faintly present, and sometimes prominent, especially so in specimens from Java and Bali. In Sumatran specimens it is faint, in Burmese and South Indiau examples apparently entirely absent.
19. Ypthima huebneri, Kirby.

Grasses (Graminess).
Some Kanarese examples of this species have pure white cilia to the hindwing, while others have the outer half of the dise of the hindwing on the upperside suffused with white, thereby approximating in coloration to Y. ceylonica, Hewitsou.
20. Zipetgs saitis, Hewitson.

Ochlandra stridula, Thwaites (Graminez).
21. Melanitis ismene, Cramer.

Oryza sativa, Linn. (Gramines).
Grasses (Graminess).
T'he M. leda, Linnæas, of the irrst Kanara paper, p. 267.
22. Mblanitis varaba, Moore:

Grasses (Graminere).
Colonel C. Swinhoe's Mfelanitis ampa, described in Ann. and Mag. of Nat. Hist., sixth series, vol. v, p. 353, n. 1 (1890) from North Kanara, July, is a wet-season form of M. varaha.
23. Melanitis gokala, Moore.

Bambusa arundinacea, Willd. (Gramines).

Subfamily Elpmnine.

24. Elyminas catdata, Butler.

Areca Catechu, Linn. (Palmez).
Caryota urens, Linn. (Palmere).
Phoenix sylvestris, Roxb. (Palmex).
Calamus pseudo-tenuis, Becc. and Hook. f. (Palmes).
Cocos nucifera, Linn. (Palmes).

Sabfamily Amatrusine.

25. Discophora lepida, Moore.

Bambusa arundinacea, Willd. (Graminezs).
Oxytenanthera monostigma, Beddome (Graminere).
Dendrocalamus strictus, Nees (Graminees).
Ochlandra stridula, Thwaites (Gramineæ).
26. Discophora indica, Staudinger.

Bamboos (Gramineer).
This is a new record from Kanara.
Larva. The larva is similar in shape and appearance to that of D. lepida, Moore. Head semi-elliptic, as seen from the front; clypeus black with a central white line, and bordered all round with yellowish; a narrow yellow line from over the vertex of the head down the middle of the face to the npex of the clypeas; eyes black; a bunch of long porrect hairs on the top of each lobe of the head; porrect hairs disposed moderately densely also down both cheeks; colour of the hend red-brown, appearing lighter ou the vertex of each lobe because of the light-coloured banches of hair ; surface dull. Spiracles oval, black, with white centres. Surface of the body dall, covered all over moderately densely with longish erect hairs of which some few laterally are longer than the rest; there is Ω subdorsal bunch of spine-like lairs on segments 3 to 6 , making these segments look brown over the dorsam ; the other hairs are light monse-coloured. Anal flap broadly rounded at the extremity, the two anal processes bencath it are short, conical, light yellow and hairy. Colour of the body light brownish-greyish, with a thin subdorsal white line (not a broad white dorsal band as iu D. lepida) ; each segment with a latero-dorsal black mark near the front margin, which mark is very distinct on segments 2 to 7 , and hardly perceptible on the rest; behind the black marks on segments 2 to 13 is a large light chocolate-brown mark or patch; legs rose-coloured. Size somewhat smaller than D. lepida.

Pcid. The pupa is in every way the same as that of D. lepida; and
only differs from it in being smaller than the majority of papm of that species. In shade it is either bone-coloured or green according to whether it has been formed among dead leaves, \&c., or green leaves; when green the edges of the pupa along the wings are yellow as in D. lepida, bnt when bone-coloured the black spots spriukled over the surface in D. lepida are not present here; the surface of the two contignous head-points is also shiny, while in D. lepida it is dullish.

Habits. In habits the larver nnd pupm differ in no way from those of D. lepida. The larva, ns is also the case in D. lepida, will suspend itself by the tail against a perpendicular surface with its ventral surface towards the perpendicular surface, and, when pupating, will turn itself round, so that, when the papn is formed, the dorsal surface of the pupa will rest against the perpendicular surface.

Subfamily Acreine.
27. Trlchinia viole, Fabricius.

Modecca palmala, Lnm. (Passifioree).

Subfamily Nymphaline.
28. Ergolis taprobana, Westwood.

Tragia involucrata, Linn. (Euphorbiacees).
Tragia involucrata, var. cannabina, Linn. (Euphorbiacer).
29. Ebgolls ariadne, Linnæas.

Tragia involucrata, Linn. (Euphorbiaces).
Tragia ineolucrata, var. cannabina, Linn. (Euphorbiaceæ).
In Guzerat in the Bombny Presidency it has been bred on Tragia canmabina, Linn., which is given by Hooker as a var. of I'. involucrata.

30. Byblia mithyid, Drury.

This species has been bred in Khandeish and the Deccan, both in the Bombay Presidency, on Tragia involucrata, Linn., var. canvabina, Linn. (Eupkorbiucess). It has not been bred in the Kannra District itself. There is a very interesting paper in Ann. and Mag. of Nat. Hist., sixth series, vol. xviii, p. 333 (1896) by Mr. Guy A. K. Marshall, entitled "Notes on the Genus Byblia (=LIypanis)," in which he notes that he is convinced "That nll the Asiatic and continental African forms of Byblia are refernble to a single species." Dr. Chr. Aurivillius in Kiongl. Svens. Vet.-Akad. Handl., vol. xxxi, n. 5, p. 158 (1898), records Bi: ilithyia, Drury, from Africa, the Cape Verde Islands, Atabia.
and India, and B. goetzius, Herbst, from Africa onls, giving a woodent of the upperside of the forewing of each to allow of their easy identification.
31. Euripus consimilis, Westwood.

Trema orientulis, Blume (U'ricaceas).
Ega. The egg is green, shiny, and spherical in shape, though slightly ligher than broad, and has twenty-two prominent ridges from top to bottom, all parallel to each other in the manner of meridional lines: these ridges merge into the level of the surface of the egg towards its top. The breadth is 1.3 mm .

Larva. The larva is of the type of Ergolis, but has no spines on the body. Body cylindrical, thickest in the middle, and gradually decreasing in width to the very narrow hinder end, which terminates in two nearly parallel, conical processes about 2 mm . in length bearing short hairs; the body also decreases from the middle of segment 2 (where it is about the same breadth ns at segment 11/12). The head is nearly square, slightly ligher than broad however; the face almost flat, and each lobe is surmounted by a stout cylindrical process or horn, which horn is slightly longer than the head is high; it has three or four short, yellow spines before the middle, and is shortly bifurcated at the top; the front face of the horn is nearly in the same plane as the face; these two horns diverge at an angle of about 35°, and are rather widely and squarely separated at the base; on the hind vertex of the head between the horns are two small conical red-brown spines; along the side margin of the head in continuation with the outside edge of the horn are three sharp spines; the surface of the head is otherwise smooth and shiny; the colour of the head is dark green, with a long narrow white clypeus, a white band from the base of each horn ranning down each side of the central line of the face and along the sides of the clypens to the jaws, as also a white band on each cheek separating the face from the cheek; the horn-spines and the two vertex spines are tipped with black : the head is higher than segment 2 but about the same breadth. The surface of the body is dall and rough, each segment being set with seven transverse rows of minute, conical, yellow tubercles; the colour of the body is dark green with a red spot in the spiracular region of segments $3,7,10$, and $12 / 13$, those on segments 7 and 10 being larger than the other two; the yellow tubercles are each surmounted by a short hair; there is n small brown spot or two next each spiracle. Spirncles flush, oval, rather large, light green, with a very narrow, shiny black border, and a central thin white slit. Length 42 mm . altogether, breadth 7 mm ., length of horn 5 mm ., breadth of head 4 mm . The breadth across the base of the anal
processes or points (that is the breadth of the larra at that base) is about 1.5 mm .

Popa. The pupa is similar to that of Apatura (Rohana) camiba, Moore, in general facies and mode of suspension. Looked at sidewrys the pupa is a section of a circle: about a quarter moon-crescent, the ventral line being nearly straight, and the dorsal line highly and evenly curved, the abdominal segments being much compressed laterally and bighly carinated in the dorsal line, the edge of the carination being sharp, i.e., thin. The pnpa is the same breadth from the shoulders to segment 8 , and is in the middle twice as high as bioal; segments 4,5 and 6 are separated slightly in the dorsal carinated edge, and segment 6 is the highest part of the carination ; the transverse dorsal section in the middle is pear-shaped, the same section across the ventrum from spiracle to spiracle being a compressed semicircle; the head has two strong, slightly diverging, conical processes, narrowly separated at the base and about 1.5 mm . in length : these head-points are about half as far apart at the tips as the pupa is broad in the middle: the pupa increases evenly in width to the shoulders, which have each two small smooth tubercles; the thorax is convex transversely; the cremaster is stout, triangular, flattened above and below. The surface of the papr is dull, and is transversely wrinkled all over as seen under a lens; there is a low indistinct ridge from each head-point running back on to the thorax, and the wing-edge is a ridge from the shoulder to segment 4. The spiracles are depressed, oval, and the colour of the papa. The pupa is green, densely streaked with white on the thorax and head, more obscurely on the rest of the surface; the dorsal ridge and wingedge ridge is yellowish ; and there is a rather prominent brown-yellow ragosity on the spiracular line at the hinder margin of segment 7. Length 29 mm . over all, height at middle 12 mm ., breadth at middle over 8 mm .

Habits. The egg is laid on the upperside of the leaf, or near the edge on the underside. The larva, on emerging, eats the egr-shell partially, and then makes a bed of silk anywhere on the upperside of the leaf. Having grown somewhat it betakes itself to the middle of the leaf and lies along the midrib near the point, covering the surface of the leaf with a thick carpet of silk; over this carpet it weaves n network of silk which is free of the surface of the leaf, and on the top of this network the larva rests with its face in the same plane as the ventral surface, so that the horns are resting on the web. When about to pupate the larva wanders, and fiunlly finishes up on the under surface of some leaf, where it undergoes its transformation. The pupa is stoutly attached by the tail only, so that the ventral surface is parallel to the under surface of the leaf.
32. Culfa placida, Moole.

Flacourtia montana, Gral. (Bixineæ).
Herr H. Frubstorfer in Berl. Ent. Zeitsch., vol. xliii, p. 198 (1898), lias named this species C. erymanthis maja from Karwar in North• Kanara.
33. Atella phalantha, Drury.

Flacourtia montana, Grah. (Bixines).
34. Atelea alcippe, Cramer.

Alsodeia zeylanica, Thwaites (Violacese).
In the second paper; p. 248, it is noted that the larva was found " On a tree, which we believe to be a rery local species of Hydnocarpus [Bixiner, the Nararal Order which next follows the Violaces], but this requires verification." This identification is incorrect, the food-plant being Alsodeia zeylanica.
35. Cethosia mahratta, Moore.

Modecca palmata, Lam. (Passiflorere).
35. Cinthia saloma, de Nicéville.

Modecca palmata, Lam. (Passifiores).
37. Apafura (Rohana) camiba, Moore.

Cellis tetrandra, Roxb. (Urticaces).
Dr. F. Moore in Lep. Ind., vol. iii, p. 3 (1896), gives the genas Aputura (part), Firbricins, as a synonym of Potamis, Hübner. He uses Apatura for the species placed in this paper ander Hypolimnas, Hübner.
38. Precis iphita, Cramer.

Strobilanthes callosus, Nees (Acanthaceæ).
Dr. F. Moore in Lep. Ind., vol. ir, p. 62 (1899) notes that this spocies is not a true Precis, the type of that genus being the Papilio octavia of Cramer, an African species, which has the discoidal cell of the forewing closed, while Junonit (in which iphita is best placed) has it open. Dr. Chr. Aurivillius in Kongl. Svens. Vet.Akad. Hand., vol. xxxi, n. 5, p. 131 (1898), gives Junonia as a synonym of Precis, the latter being the older name. Dr. A. G. Butler in Ann. and Mag. of Nat. Hist, seventh series, vol. iv, p. 373 (1899), notes that "Prof. Aurivillius shows that Precis has priority over Junonia; therefore, although the latter is a far more satisfactory name for the genus (becnme more descriptive), I suppose it will have to go."
39. Precis almana, Linnæus.

Hygrophila spinosa, T. Anders. (Acianthacere).
Mr. Bell notes that the larva feeds on some other unidentified acanthads. In the first paper, p. 272, Asteracantha longifolia, Nees* (Acanthacess), and Lippia nodiflora, Rich. (Verbenaceæ) are recorded: the latter food-plant Mr. Bell considers to be doubtful.
40. Precta lemonias, Linnæus.

Nelsonia campestris, Br. (Acanthacere).
Hygrophila spinosa, 'T. Anders. (Acanthaces).
Strobilanthes callosus, Nees (Acanthaceæ).
Barleria Prionitis, Linn. (Acanthacese).
41. Precis hierta, Fabricius.

Hygrophila spinosa, 'I'. Anders. (Acanthaces).
? Barleria sp. (Acinthaces).
42. Precis orithyia, Linnæus.

Hygrophila spinosa, T. Anders. (Acanthacese).
43. Precis atlites, Linnæus.

Hygrophila spinosa, T. Anders. (Acanthacere).
Barleria sp. (Acanthacer).
Eag. The egg is barrel-shnped, there being thirteen longitudinal ridges from top to bottom, parallel to each other, and not continued on to the flat top; these ridges under the lens are finely beaded and are thin, being one-fifth as broad as the interspace at the middle of the egg; the flattish top of the egg has a small white ring in the centrethe micropyle; the surface of the egg is shiny and smooth; the colour is dark green with all the ridges white.

Larfa. The larva resembles in shape those of the larve of all the species of Precis found in the Kanara district, and the disposition of the spinous processes is the same. There are two such processes, one above the other, on segment 2 below the spiracle on the base of the leg; two in a horizontal line on the base of the legs of segments 3 and 4; a triangle of three on segments 5 and 6 where the leg would be were there one; two in a horizontal line above and one below, and two in a line on the base of the proleg of segments 7 to 10 ; tivo, one below the other, on segment 11 ; one sabspiracular on segments 3 to 12 ; all except the sabspiracular ones dirty watery-white in colour, and set with

[^40]J. II. 29
fine white hairs as long as the processes in the subspiracular line, these subspiracular spines being one-fourth as long again as the ones beneath that line; besides these processes there are also the following :-a dorsal, dorso-lateral, and supra-spiracular process on segments 5 to 11 ; on segments 3 and 1 a dorso-lateral and sapra-spiracular process; on segments 13 and 14 a dorso-lateral process; on segment 12 two dorsal processes, one in front of the other, as well as a dorso-lateral and supra-spiracular process; all these processes from the subspiracular ones upwards are of the same length, shiuy blackish in colour, set with two whorls of dark yellow-brown spinelets nearly as long as the processes; the processes are just under 2 mm . in length; segment 2 has ten simple, slightly-curved, spinous hairs along the front margin, black and rather long; the surface of the body is covered besides, (and herein lies its difference from other larve of Precis), with 1 mm . long fine pure white hairs, each hair springing from a minute circular pure white tubercle; a narrow dorsal line and the whole of the dorsum of segment 3 have no white hairs. The anal flap is nearly semicircular in outline and somewhat thickened at the extremity, where it is yellow-ochreons in colour. The spiracles are oval, black, with shiny black borders. Head rather small, squarish, with the vertex indented, giving an appearance of being bilobed; the vertex of each lobe bears a conical, shining, ochreous tubercle surrounded by three or four small ones ench bearing a hair, the hair of the large tubercle almays long and white; another small tabercle in the middle of each lobe ; some stiff black hairs on the upper part of the face, some soft white bairs about the base; colour of the head dark bronzy-blackish-brown, with a rather large trinngular black clypeus; colourless labrum; ochreous basal antennal joint, and blackish second joint. Neck dull greenish-black. Colour of body velvety black, looking, under the lens, slightly shiny greenish-black; the abdomen lighter blackish; a subspirncular band, sending a short shoot up and forwards before each spiracle, legs and prolegs, all brownish-ochreous. The whole larva appears frosted with white on account of the presence of the small white hairs. Leugth 40 mm ., breadth 5 mm .

Pupa. The pupa is almost exactly the same shape as that of Precis almana, Linnæus, in evory way; it differs mainly in the colour, which is a dull light brown throughout, with the front faces of the tubercles slightly darker, and the hinder faces somewhat lighter, than the colour of the body; the head-points, the apex of the thorax, and the sides of the cremaster, dark brown; the hinder half of segment 8 lighter than the body; the apex of the thorax is more pointed than that of P. almana, the apex being a conical point; the head-points are much more pronounced, being conical; the front slope from the apex of the
thorax to the front of the pupa is straight, instead of convex as in \boldsymbol{P}. almana; the cremaster is smoothly-triangular, and has no tabercles; the whole pupa is slighter. Spiracles of segment 2 indicated by a small semicircle of a light red-brown colour on the surface of segment 3; the other spiracles are narrowisb, black, somewhat raised ovals. Length 17.5 mm ., breadth 6.25 mm . at the shoulders and at segment 8 ; between these points the papa is somewhat constricted.

Habits. The egg is laid on a stalk of grass, on the dead stem of any plaut, in fact anywhere; the larva on emergence easily finds its food-plant, which generally grows in great abuadance all around; it lies on the anderside of the leaves and low down on the plant, drops to the ground curled up when touched, and remains a long time thas. The food-plant grows chiefly in damp places and always in great quantities. The pupa as a rule is affixed to a stem or leaf in some thick place, and, like the larva, is not easy to find. The butterfly is hardly ever found in jungle, bat is very plentiful along the coast in open cultivation, especially about rice fields and on the banks of tanks or ponds.
44. Neptis (Rahinda) hordonia, Stoll.

Cresalpinia minosoides, Lam. (Leguminosse).
Acacia Intsia, Willd. (Leguminoss). Form of larva with short processes.

Acacia pennata, Willd. (Leguminoss). Form of larva with long processes.

The form of N. hordonia with short processes in the larva is said to feed also on "Several species of Albizzia" (Leguminosm).
45. Neptis viraja, Moore.

Dalbergia latifolia, Roxb. (Leguminosm).
Dalbergia volubilis, Roxb.* (Leguminoses).
Albizzia Lebbek, Benth. (Leguminosse).
46. Neptis tarmona, Moore.

Peas of several kinds (Leguminose).
The N. leucothoë, Cramer, of the second Knnara paper, p. 251, that species = $N:$ matuta, Hübner, according to Dr. Moore, who restricts it to Java and Borneo.
47. Neptis columella, Cramer.

The N. ophiana, Moore, of the second Kanara paper, which is a synonym of N. columella, Cramer. Though so widely-spread, this species

[^41]has never been bred, though Messrs. Davidson, Bell and Aitken once obtained eggs and young larva, but did not record the food-plant.

48. Neptis kallaura, Moore.

Thespesia Lampas, Dalz. and Gibs. (Malvacese).
Dalbergia confertiflora, Benth. (Leguminosæ).
Wagatea spicata, Dalz. (Leguminosæ).
I'rema orientalis, Blume (Urticaceæ).
Larva. The larva is very similar to that of N. jumbah, Moore, except that it is furred-looking (minutely spined) all over. The processes are exactly the same as in N. jumbah, except that the subdorsal ones of segment 6 are shortly conical, and segments 7 and 8 have a small subdorsal tubercle, lacking in N. jumbah; all the processes are covered with cylindrical, rather long tubercles each bearing a rather long bristle in continuation; the head has the points on the vertex of each lobe rather more accentuated than in N. junzbah, and the surface is entirely covered with the same cylindrical hair-bearing tubercles as the rest of the body. The spiracles are roundly oval, broadly black-bordered, with light brown ceutres reaching from top to bottom, that is, the black border is thin at the top and the bottom. The arrangement of the coloration is exactly ns in N. jumbah: it is very light brown-pink all over, inclading the head, except laterally on segments 9 to 14 where it is deep olive-moss-green strongly suffused with rusty orange, except along the borders, and a short dark moss-green diagonal line in the ceutre, of each segment 10 to 12 ; there is the merest tinge of the same olive-moss-green dorsally on segments 5 to 9 , with Ω dorsal thin lighter line; the head has a thin dark border to the clypeus, and a slightly dark surface towards the vertex, which dark colour, however, is ouly visible between the light tubercles. Length 19 mm ., breadth at middle 5.5 mm ., the middle being the broadest part.

Pupa. The pupa is rery like that of N. jumbah. The two conical head-points are wide apart, the points at the bnse of the nntennæ (one at the base of each) are half the distance apart and about the same size, the point on the shoulder is small and sharp, the subdorsal conical tubercle on segment 6 is rather large; and there is a low, not accentuated, ridge from spiracle to spiracle on segment 7 , which is slightly curved convexly towards segment 8; the thorax has a rather highly peaked, laterally flattened apex, and this apex is rounded in outline seen from the side, the hinder slope being at an angle of about 75° to the longitudinal axis of the pupa; the wing outline, that is the expansion outline (the inner margin of the forewing), is very highly curved: nearly a semicircle, and its apex rises to ncarly the same height as the apex of
the thorax; the dorsal line of the abdomen is slightly toothed at the hinder margin of segments 8 to 11 ; the cremaster is triangular, with strong prominent waved sustensor ridges ; the spiracles are rather small, oval, shing and black. The colour of the papa is always the same: a light fresh bone-colour with a brown-pink suffasion on the dorsal region of segments 10 to 12 , a brown-gold streak along the ridge of segment 7 , a brown-gold semicircle in front of the tubercles of segmont 6 on the dorsum, and a similar streak along the hinder murgin of the thorax; a large subdorsal mother-of-pearl gold patch on segment 4, a smaller one on segment 5, some gold at the base of the tubercle on segment 6 , a silver-golden glea.n on the sides of the thorax and on the whole wingsurface in certain lights, the whole of seginent 2 silvery, a thin dursal yellow line on the abdominal segments. Length 16 mm , breadth at segment 6 from apex to apex of wing expansion 8 mm ., distance between head-points nearly 3.5 mm .

Habits. The habits of the larva are the same as those of $N . j u m b a h$ in every way. The pupa is of course suspeuded by the tail nud hangs down perpendiculaily, and is always attached to the underside of a leaf.
49. Neptis jumbah, Moore.

Thespesia Lampas, Dalz. and Gibs. (Malvacez).
Kydia calycina, Roxb. (Malvacez).
Bombax malabaricum, DC. (Malvacez).
Helicteres Isora, Linn. (Sterculiaces).
Grewia Microcos, Linn. (Tiliaceæ).
Zizyphus Jujuba, Lamk. (Rhamnese).
Zizyphus Xylopyrus, Willd. (Rhamnez).
Zizyphos rugosa, Lamk. (Rhamneæ).
Milletia racemosa, Benth. (Leguminosse).
Dalbergia latifolin, Roxb. (Legıminosæ).
Wagatea spicata, Dalz. (Leguminosæ).
Xylia dolabriformis, Benth. (Leguminoss).
I'rema orientalis, Blume (Uritcaceæ).
50. Cirbhochroa thais, Fabricius.

Bydnocarpus Wightiana, Blume (Bixines).
51. Hypolimnas bolina, Lienæus.

Portulaca oleracea, Linn. (Portulaces).
Eleurya interrupta, Gand. (Urticaces).
Elatostema cuneatum, Wight (Urticacers).
Dr. F. Moore in Lep. Ind., vol. iv, p. 135 (1899), gives the genus Hypulimnas, Hübuer, as a synonym of A_{p} atura, Fabricius.
52. Hypolimeas misippos, Linnæus.

Portuluca oleracea, Linn. (Portulacess).
53. Parthenos virbne, Moore.

Zehneria umbellata, Thwaites (Cucurbitaceas).
54. Limenitis (Moduza) procris, Cramer.

Stephegyne parvifolia, Korth. (Rubiacea).
Wendlandia exserla, DC. (Rubiacese).
Mus:zenda frondosa, Linn. (Rubiaceaz).
55. Athyma perius, Linnæus.

Glochidion lanceolarium, Dalz. (Euphorbiacere).
Glochidion velutinum, Wight (Euphorbiacees).
56. Athyma ranga, Moore.

Linociera malabarica, Wall. (Oleacere).
Olea dioica, Roxb. (Oleacere).
Athyma ranga and A. maliesa, both of Moore, being synonymous, the older name has to be used for this species. In the second Kanara paper, p. 254, it appears under the latter name.
57. Athyma inara, Doubleday and Hewitson.

Wendlandia exserta, DC. (Rubiacez).
Mussenda frondosa, Linn. (Rubiacez).
Glochidion zeylanicum, A. Juss. (Euphorbiacees).
Glochidion velutinum, Wight (Euphorbiacer).
58. Athyma selenophora, Kollar. Adina cordifolia, Hook. f. (Rubiacere).

E9. Simphedra nais, Forster.
Diospyros melanoxylon, Roxb. (Ebenaceæ).
60. Edthalia (Dophla) laddabilis, Swinhoe.

Diospyros melanoxylon, Roxb. (Ebenacess).
Diospyros Candolleana, Wight (Ebenacees).
61. Euthalia (Cynitia) lepidea, Batler.

Careya arborea, Roxb. (Myrtacez).
Melastoma malabathricum, Linn. (Melastomaces).
62. Euthalia gardda, Moore.

Mangifera indica, Linn. (Anacardiacee).

Anacardiım occidentale, Linn. (Anacardiacess).
Loranthus scurrula, Linn. (Loranthaces).
"Larva commonly feeds on the mango and cashewnut tree, also on the mulberry and the rose, and on Loranthus" (First Kanaira paper, p. 276).
63. Euthalia lobentina, Cramer.

Loranthus scurrula, Linn. (Loranthacese).
64. Vanessa * cardui, Linnæus.

Zornia diphylla, Pers. (Leguminose).
Blumea sp. (Composite).
65. Cyrestis thyodamas, Boisdural.

Ficus bengalensis, Liun. (Urticaces).
Ficus indica, Linn. (Urticacese).
Ficus glomerata, Roxb. (Urticacere).
66. Kaldima horsfieldif, Kollar.

Strobilanthes callosus, Nees (Acanthucers).
Eranthemum malabaricum, Clarke (Acanthacea).
67. Dolesohalita polibete, Cramer. \dagger

Eranthemum malabaricum, Clarke (Acantharese).
68. Charaxes wardif, Moore.

Rourea santaloides, W. and A. (Connaruces).
Wagatea spicata, Dalz. (Leguminoss).
Dr. F. Moore in Lep. Ind., vol. ii, p. 262, pl. clxaxviii, figs. 2, 2،, male; 2b, larva and pupa (1896), has named the South Indian furm of Charaxes achreiber, Godart-Eulepis wardii. I'he Hon. Walter Rothschild in Nov, Zool., vol. vi, p. 22! (1899), refers to it as local race a, Eulepis schreiber wardi. The batterfly appears as C. schreiberi, Godart, in the second Kanara paper, p. 257.
69. Charaxes athamas, Drury.

Grewia sp. (Tiliacere).
Cessalpinia mimosoides, Lam. (Leguminosse).

[^42]Poinciana regia, Bojer (Leguminose).
Acacia pennata, Willd. (Leguminnsre).
Albizzia Lebbek, Benth. (Leguminose).
Dr. F. Moore in Lep. Ind., vol. ii, p. 252 (1896) records Eulepis athumas from South India, while the Hon. W. Kothschild records in Nov. Zool., vol. vi, p. $2+9$ (1899) " a '. Eulepis athanas agrarius f. (temp. ?) madeus, Rothschild" from "Karwar, September and October; N. Canarn, September:"
70. Charaxes farius, Fubricius.

Wagatea spicata, Dalz. (Leguminose).
T'amarindus indica, Linu. (Leguminose).
71. Charaxes imna, Butler.

Saccopetalum tomentosum, Hook. f. and T. (Anonacese).
Aglain Roxhurghiana, Miq. (Meliacere).

Family LEMONIIDE.
Sulfamily Liritheina.

72. Libytira rama, Moore.

Celtis tetranda, Roxb. (Urticacese).
Lahva. At first sight the larra reminds one rather of the larpa of a species of Catopsilia (Pieringe). It is the same thickness from segment 4 to segment 10, narrowing to the head and to segment 14 ; segment 2 is abont the same breadth as the head at the front margin, but is wider behind, and has the front margin very slightly produced in the dorsal line; the anal flap is rounded behind, and its dorsal slope is nearly a quarter of a circle, the extremity nearly touching the resting surface; it las a deprossed dorsal oval mark two-thirds the width of the segment renching from its hinder extremity towards the front margin, which surface or mark is covered with brown streaks and has no hairs on it, as has the rest of the segment; the prolegs are rather long. The head is small, being only about half as broad as the larva is at the centre; it has a dull smooth surface set with minate rather sparse dark bristles; a rather large clypens; it is round in shape, with a shallow broad carved depression on the vertex; is green in colour with brown markings as seen under a lens, antennæ reddish, labrum green, eyes black, and some light hairs abont the jnws. The surface of the body is dull, each segment lins four broad ridges, that is, each segment is divided into four by thin depressell transverse lines, and on these ridges are rows of minute bristle-like black hairs all over, some even on the ventrum. The spiracles are light yrllow, black-rimmed, oval, and flush to the surface, of ordinary
size. Colour dark green, sometimes with a brownish tinge, with a thin, dorsal, light yellow line from segments 4 to 12 , and a narrow, yellow, supra-spiracular band from the head to the anal end. Length 26 mm ., breadth at middle 4.5 mm ., breadth at head 2.25 mm .

Pupa. Unlike that of any butterfly from the Kanara district, though it somewhat resembles that of Ergolis, but is fixed with its longitudinal axis parallel to the surface to which it is attached like that of Elymnias caudata, Butler; the ventral line is therefore straight from the head to segment 10 , and thence the rest of the pupa is at right-angles to its longitudinal axis; the front of the pupa seen from above is absolutely square, the head ending in a brond straight edge; the head and segment 2 form a trapezoidal piece, which is broadest transversely to the pupa-length; the sides or lateral outline of this trapeze being absolutely straight lines; the dorsal line of the pupa in segments 1 and 2 is slightly convex; the thorax forms nt the shoulders the broadest part of the papa, sloping out suddenly laterally at an angle of 135° with the lateral line of the head-piece; the thorax is somewhat convex and highly carinated along the dorsal line, this carination starting from the front margin in-seen laterally-an absolute straight line to just before the hinder margin, where it ends abruptly in a somewhat rounded peak; the dorsal outline falling thas abruptly from the peak to the hinder margin of the thorax; the dorsal outline of the abdomen starts from segment $3 / 4$ and ascends to a small sharp peak at the margin of segment $5 / 6$, whence it, descends gradually in a very slight carination to segment $8 / 9$, and then in a curve of a quarter circle to the cremaster; a thin linear low carination connects the point of the shoulder with the abdominal peak, and the wings are slightly thickened at and behind the shoulders; the transverse section of the abdomen after the peak is nearly circular; the abdominal peak is somewhat higher than the apex of the thoracic carination, and the straight top of the thoracic carination is at an angle of 45° to the longitudinal axis of the pupa. The spiracles of segment 2 are depressed narrow slits, the other spiracles are light, nearly white, ovals facing somewhat forwards. The cremaster is dorsally triangular, and embraces somewhat the last segment, its attachment-surface being considerably longer in the sense of the length of the pupa than its breadth. Colour of pupa light green, with the tops of all the carinations yellow, with a black speck on the abdominal peak; the surface of the pupa is smooth and somewhat shiny. Length 12.5 mm ., breadth at the shoulders 5 mm ., breadth at the front of the head just over 3 mm ., height at the abdominal peak 6 mm ., height at the apex of the thorax 5 mm .

Habits. The eggs are laid on the young shoots and leaves, generally J. II. 30
on a low shrub near a nulla with water in it and open to the sunlight. The larvæ live generally on the underside of the leaves, eating all but the ribs or veins to which one finds them hanging. They emit much web and fall by a silk thread when disturbed, but only when touched or otherwise violently molested; the larva rests with its true legs off the surface, and its head curved down and often turned to one side. The pupa is formed always on the underside of a leaf, and rests quite parallel to the surface of the leaf. The larva reminds one forcibly of a pierine larvæ of the Catopsilia, Ixias or Teracolus type. The butterfls, which is rare in the Kanara district, appears to be found only in the neighbourhood of its food-plant.

Subfamily Nemeobines.

73. Abisara fraterna, Moore.

Finbelia robusta, Roxb. (Myrsineæ).
Ardisia humnilis, Vahl (Myrsinere).

Family LYCANID压.
74. Neopithecops zalmora, Butler.

Glycosmis pentaphylla, Correa (Rutacere).
75. Spalgis epios, Westwood.

The larva is wholly carnivorous, feeding on Coccidx, and not touching vegetable food at all.
76. Megisba malaya, Horsfield.

This species has never been bred.
77. Plebeios* trochilds, Freyer.

Zornia diphylla, Pers. (Leguminosæ).
Heliotropium strigonum, Willd. (Boragineæ).
Larfa. Of the ordinary lycænid shape, but rather narrowed at both ends, broadest a little before the middle, somewhat narrow. Head small, hidden under segment 2 in repose, having a rather long neck; nearly black with a whitish labrum ; shiny, glabrous, and round. Segment 2 swollen ou the front margin, somewhat depressed in the

[^43]centre of the dorsum, in shape a perfect semicircle. Anal end rounded, the posterior segments sloping and flattened dorsally; the usual gland, and protrusible organs on segment 12 , present. Spiracles very minute, round, edged with dark colour, above the marginal red band. The surface of the body covered moderately densely with small, cylindrical, white tubercles, from the top of each of which springs a rather short, brownish hair. The colour of the body is green, with a dorsal red band edged with white, and a marginal (subspiracular) similar band edged broadly below with white; two parallel diagonal white lines on each segment, laterally, between the dorsal aud marginal red bands; on the dorsal red band near the front margin of each segment 3 to 10 is a small, green spot, which, on segments 3 to 5 at least, is a distinct depression, circular in shape. Length 7 mm ., breadth nearly 2.5 mm .

Popa. The pupa is distinctly lycænid in shape, but is rather long and narrow, is slightly constricted dorsally behind the thorax, though not laterally; the thorax is somewhat humped; the front of the pupa is blunt, squarish; the hinder end narrow and rounded; thickest about segment 8 and highest about segment 7. The spiracles of segment 2 are indicated by an oval, white mark. The other spiracles are small, nearly round, white. The surface of the body is rather shiny, covered with small, cylindrical, white tubercles which are each surmounted by a rather long, somewhat curved, hair, these hairs are longest on the front portion of the pupa, and are nearly colourless. The colour of the pupa is green, very watery-coloured on the wings and anterior parts. Leugth 6 mm ., breadth 2.75 mm .

Habits. The egg is laid in the axil of a leaf, on the flower, or on a pod, and the larva, on emerging, gets inside the flower or pod as the case may be and feeds therein, changing the flowers, pods, \&cc., as necessary. It changes to a pupa on a leaf or in some such place, and the papa has a lax tail-attachment and a body-band.

78. Chilades laids, Cramer.

Citrus medica, Linn. (Rutaceæ).
Now recorded for the first time from Anshi and Gairsoppa in the Kanara District.
79. Cfaniris puspa, Horsfield.

Cylista scariosa, Ait. (Leguminosz).
Xylia dolabriformis, Benth. (Leguminoss).

80. Cyaniris limbatus, Moore.

Has not been bred.
81. Zizera lysimon, Hübner.

Zornia diphylla, Pers. (Leguminosæ)
82. Zizera gaika, Trimen.

Nelsonia campestris, Br. (Acanthaceæ).
83. Zizera otis, Fabricius.

Zornia diphylla, Pers. (Leguminosæ).
Larva. The larva is of the ordinary limaciform shape like those of the genera Cyaniris, Jamides and Polyommalus. Segment 2 is semicircular with a dorsal triangular depression as usual ; the anal end is dorsally flattish, with the dorsal line inclined to the axis of the length of the larva at an angle of about 30°, and semicircularly rounded in outline, with the two cylindrical, protrusible orgaus and a slit-shaped gland; the body is broadest from segment 5 to segment 7, and highest at segment 5 ; segment 3 overhangs segment 2 as usual. The head is round, shiny, smooth, yellow, the jaws dark brown, the labrum white. Before the last moult the head is entirely dark shiny red-brown coloured and hidden under segment 2. The surface of the body is dull, covered with minate white tabercles each surmounted by a minute, sharp, white spine or hair; there is a subdorsal row of three or four curved, shiny, dark brown, rather large (for the size of the larva) hairs on segments 3 to 10 , only two bairs on each side on segments 7 to 10 ; the margin of the body is rather densely hairy, especially on segments 2 aud 14. Spiracles shiny, minnte, round (or rather hemispherical), yellow. Colour grass green, with a subspiracular yellow band from segments 5 to 12 ; an indistinct dark dorsal line. Length 9 mm ., breadth 3 mm .

Popa. The pupa is of the ordinary shape of those of the genera Cyanivis, Jamides and Polyommatus, broadest at the middle, highest at the thorax, constricted in the dorsal line behind the thorax, rounded narrowly behind, narrowly square in frout, the vertex of the head is in a plane perpendicular to the longitudinal axis of the pupa aud rather large; segment 2 is straight on the front margin, with a slight triangular shallow and wide indentation in the dorsal line, and a hind margin curved concavely towards the front of the pupa: its dorsal line is in a plane at an angle of nearly 45° to the length of the axis, and the segment is very slightly convex tranversely to the length of the papa; the thorax is humped, and the line joining the front and hind margins is in a plane at an angle of about 30° to the longitudinal axis; the dorsal line of segments 4 to 14 is convex; the ventral line of the pupa is straight; the wings are slightly expanded laterally in parallel
lines. The surface of the body is smooth, slightly sliny, and covered with erect, stiff, minate, light hairs, especially along the front margin of segment 2 and about the anal end; these hairs are simple and pointed. The spiracles of segment 2 are indicated by smooth, oval, yellow surfaces, the other spiracles are minute, shiny, convex, white surfaces. The colour of the pupa is light green with a black, dorsal stripe to segment 2; a dark, dorsal, thoracic line, a black smudge along the border of the wing at segments 4 and 5, two supra-spiracular spots on segments 7 to 12, and a dorsal, dark green line ou the abdominal segments ; the winge and shoulders are slightly blotched with brownish. Length 7 min. , breadth 3 mm .

Habirs. The eggs are laid anywhere on the plant, on the leaves, stalks or flowers; the larva eats the flowers, pods, \&c., and is difficult to find. The pupa, attached by the tail and by a body-band, is formed anywhere convenient, on the upperside or uuderside of any leaf, either dead or alive.

> 84. Lrcenesthes emolus, Godart.
> Wagatea spicata, Dalz. (Leguminose).
> Saraca indica, Linn. (Leguminosex).
> Terminalia paniculata, Roth (Combretacex).
> Combretun extensum, Roxb. (Combretacees).
85. Lycenesthes lycanina, Felder.

Buchanania latifolia, Roxb. (Anucardiacers).
Wagatea spicata, Dalz. (Leguminose).
Larva. The larva is of the asual onisciform slape, is rather broad and stont ; the segments, being somewhat swollen dorsally, are very distinctly marked, so that the lateral view of the dorsal line shows considerable constrictions between the segments; the larva is broadest and highest at segment 7, segment 2 has the usual dorsal large depression and is semicircular, hiding the head as usual ; the anal segment is thickened round the margin, and slopes dorsally at about an angle of 45° to the longitudinal axis, and is semicircular in the hinder outline; the gland, which is transverse and mouth-shaped, and the usual circular-moathed, white, protrusible organs on segment 12, are present. Head small, shiny, smooth, sellowish ; the eyes black. Spiracles of the ordinary size, round, white. Surface of the body dull, covered with small, simple, reddish hairs, which are not very densely disposed, and are for the most part nearly adpressed to the sarfacc. The colour is dark green, with a deep rose-coloured, rather fine, but very distinct, dorsal line, and a large, triangalar, greenish-yellow, subdorsal patch touching the dorsal
line in one basal angle (the base of the triangle being the hinder margin of the segment) on each segment 3 to 10 , each triangle being bounded narrowly with deep rose colour exteriorly (towards the spiracles) ; there is a marginal (nderneath the spiracles on the margin of the larva) yellow band, interrupted at the margins of the segments by a deep rose-coloured mark, along segments 4 to 10 . The dorsal line extends from segment 3 to the anal end. There is a small round depression on the dorsum of segments 3,4 and 5 , also one on the front margin of segment 2, and a lateral longitudinal depression parallel to the margins of the segments on segments 3 to 6 . There is a fringe of porrect hairs round the margin of segment 2 . Length 11 mm ., breadth 5 mm .

Pupa. The pupa is nearly exactly like that of Lycenesthes emolus, Godart, except that it is slightly more robust, i.e., stouter and more compact. The diamond-shaped dorsal mark at the hinder margin of the thorax is also present, it is this marking indeed that makes the pupa so similar to that of L. emolus. The pupa is blunt in front, the vertex of the head is flat, and in a plane at right-angles to the longitudinal axis of the pupa; the head is not visible from above; segment 2 is more or less semicircular in outline as to the front margin, though somewhat squarish to fit the flat head-surface; no dorsal constrictions, except that segment 4 is slightly lower than the apex of the thorax; no lateral constriction; the thoracic dorsal slope is gradual and in the same line with that of segment 2 , which is at an angle of less than 45° with the longitudinal axis of the pupa; the apex of the thorax, which is just near its hinder margin, is the highest point of the papa, and the broadest part is at segment 7, though the breadth varies little from the shoulders to that segment; the anal end of the pupa is somewhat broadly rounded. The spiracles of segment 2 are indicated by narrow white slits; the other spiracles are raised, oval and white. The surface of the body is covered with very minute, white tubercles which are not very densely disposed. The colour is green with a dorsal thoracic yellow line, the thoracic dorsal diamond being yellow margined with brown; there is a lateral interrupted yellowish line; the ventrum and underside are whitish ; the margins of segments $1 / 2$ and $2 / 3$ and the wings show whitishyellow; and the whole pupa is more or less spotted-looking. Length 10 mm ., breadth at centre 4.5 mm ., height at thoracic apex 4 mm .

Habits. The egg is laid on a flower or in an axil of a flower stalk, and the caterpillar at first bores into a flower bud, but afterwards lives outside carled round the flowers generally on which it feeds, being very difficult to see owing to its patchy coloratiou. It pupates amongst the flowers, or ou a flower stem, or on a leaf, \&c., fixing itself by a body, band and by the tail.
1900.] L. de Nicéville-Butterfies of the Kanara District.
86. Talicada nyseds, Guérin.

Bryophyllum calycinum, Salisb. (Crassulacer).
87. Everes argiades, Pallas. Cylista scariosa, Ait. (Leguminosæ).
88. Nacaduba macrophthalya, Felder.

Has never been bred.
89. Nacaddba hermus, Felder.

Has never been bred.
90. Nacaduba noreia, Felder.

Acacia Intsia, Willd. (Leguminosse).
Acacia Intsia, var. cesia, W. and A. (Leguminnse).
Acacia pennata, Willd. (Leguminosre).
91. Nacaduba atrata, Horsfield.

Wagatea spicata, Dalz. (Leguminosæ), N. plrmbeomicans.
Embelia robusta, Roxb. (Myrsineæ), N. atrata.
Ardisia humilis, Vahl (Myrsineæ), N. atrata.
Under this name I have included N. plumbeomicans, Wood-Mason and de Nicéville, a species originally described from the Andamans, as it is doubtfully distinct from N. atrata, Horsfield, although in the second Kanara paper separate descriptions are given of the larva nnil pupa of both. Mr. Bell thinks that the two butterflies may be distinct.
92. Nacadoba dana, de Nicéville.

This species has never been bred.
93. Jamides bochus, Cramer.

Butea frondosa, Roxb. (Leguminosæ).
Ponganiia glabra, Vent. (Leguminosæ).
Xylia dolabriformis, Benth. (Legıminosæ).
94. Lampides elpis, Godart.

Kæпnpferia pandurata, Roxb. (Scitamineæ).
Hedychium coronarium, Kœnig (Scitamineæ).
Amomum microstephanum, Baker (Scitamineæ).
Elettaria Cardamomum, Maton (Scitamineæ), the cultivated cardamom.
95. Lampides celeno, Cramer. Abrus precatorizs, Linn. (Leguminosæ).

Pongamia glabra, Vent. (Leguminoss).
Saraca indica, Linn. (Leguninosm).
96. Catochrtsops strabo, Fabricius.

Schleichera trijugn, Willd. (Sapindaceæ).
Ougeinia dalbergioides, Benth. (Leguininose).
Cylistu scariosa, Ait. (Leguminose).
97. Euchrysops cnejus, Fabricius.

Ougeinia dalbergioides, Benth. (Leguminosse).
Cylista scariosa, Ait. (Leguminoses).
In "The Entomologist," vol. xxxiii, p. 1 (1900), Dr. A. G. Butler describes the genus Euchrysops, which differs from the genus Catochrysops, Boisduval (which has hairy eyes), by haring the eyes of the imngo " Quite smooth instead of hairy."
98. Euchrysops pandava, Horsfield.

Wagatea spicata, Dalz. (Leguminose).
Xylia dolabriformis, Benth. (Leguminoses).
99. Taroces theophrastos, Fabricins.

Zizyphus Jujuba, Lamk. (Rhamnere).
100. Tarucos telicanus, Lang.

Ougeinia dalbergioiles, Benth. (Leguminosx).
This is an older name for Tarucus plinius, Fabricias, of the Kanara lists. In the first Kanara list, p. 353, it is noted that the larva in Bombay feeds on Sesbania aculeata, Pers. (Leguminoss).
101. Castalus rosimon, Fabricius.

Zizyphus Jujuba, Lamk. (Rhamnere).
102. Castalius ananda, de Nicéville.

Zizyphus Jujuba, Lamk. (Rhamneæe).
Zizyphus Xylopyrus, Willd. (Rhamnese).
Zizyphus rugosa, Lamk. (Rhamnes).
I'erminalia paniculata, Roth (Combretaces).
Loranthus longiflorus, Desrouss. (Loranthaceæ).
103. Castalius ethion, Doubleday and Hewitson.

Zizyphus Jujuba, Lamk. (Rhamueæ).
Zizyphus Xylopyrus, Willd (Rhamnex).
104. Castalids decidia, Hewitson.

Zizyphus rugosu, Lamk. (Rhamnees).
105. Polyommatos eeficus, Linnæus.

Buten frondosa, Roxb. (Leguminose).
Cajanus indicus, Spreng. (Leguminoss).
106. Amblypodia anita, Hewitson.

Olax scandens, Roxb. (Olacinees).
107. Iraota timoleon, Stoll.

Ficus bengalensis, Linn. (Urticacere).
Ficus indica, Linn. (Urticacees).
Ficus glomerata, Roxb. (Urticacere).
108. Surendra quercetorda, Moore.

Acacia Iutsia, Willd. (Leguminosse).
Acacia pennuta, Willd. (Leguminose).
109. Thaddea muliticaddata, Moore.

Trevia nudiflora, Linn. (Euphorbiacere).
Egg. The egg is similar in shnpe to that of the species of the genus Arrhopala, i.e., it is dome-slaped, bat is broadest above the base; it looks, however, to be turban-sliaped, i.e., flat on the top. The reason of this is that there are two rows of long delicate feathery-looking spikes, finely bifurcated at the top, placed at right-angles to the polar axis of the egg and slightly converging, one row to the other, at the points. There are two-and-a-lialf cells from the base to near the summit of the egy, and these spikes are situated where the walls of the middle row of cells iutersect with the walls of the top perfect cells and the bottom demi-ceils. The cells are large, nearly regularly quadrilateral, with fine rather high walls, and are flat-bottomed. On the summit the egg is punctuated, and has a rather large, central, circular depression (micropyle). The colour is finely granulated green, the walls of the cells and the spikes being white. The cells round the "equator" of the egg are ten in number. The breadth of the egg is 0.6 mm ., and the height 0.4 mm .

Lakva. The larva in shape and habits agrees in all respects absolately with that of the species of the genus Arrhopala. The head is hidden beneath the second segment, is shiny, rather large, and black. Segment 2 is semi-circular, very slightly indented in the middle of the front margin ; the middle dorsal depression is semi-elliptical (round end J. 1. 31
anterior), velvety black, with a dorsal green line. Segment 3 is suddenly some what higher and broader than segment 2. Segments 4 to 11 nearly of the same breadth and length; segments 12 to 14 decrease in breadth, the anal segment being ratber flat, thickened round the outer margin, and broadly rounded at the end, with a dorsal square velvety black patch bisected by a dorsal green line. The whole larva is depressed, being of one height from segment 4 to segment 10 , both inclusive. The spiracles are plainly visible, rather long ovals in shape, and sellow in colour. The surface of the body is covered with minate, short, star-like hairs, light-coloured and sparse; on the black patches they are black and denser than anywhere else; the surface is also laterally corrugated on each segment, with a few latero-ventral deep punctuations; the whole margin of the larva bears long simple hairs placed somewhat far apart. The gland on segment 11 is large and conspicuous, surrounded by an oral, deep black patch, which patch has a thin green line all round just within its margin; the longer axis of the oval is transverse to the body length. The organs on segment 12 are circular-mouthed, protruded as white cylinders. The colour of the larva is light green, with a dorsal dark green line flanked on either side by a white line; a latero-dorsal white line; a lateral white line: all six white lines commence on segment 3, and end just in front of the gland on segment 11. The segments are distinct. The space on the dorsum between the lateral white line and the white line flanking the dorsal green line is obscure rose-coloured. The larva changes to a brown-pink before turning into a pupa. The total length of the full-grown larva is 19 mm ., the breadth is $7 \cdot 5 \mathrm{~mm}$.

Popa. The pupa resembles that of the species of the genus. Arrhopala. The head is hidden, bowed. Segment 2 is large, very convex, with a semi-circular front margin, ascending in the dorsal line at the same angle as the front of the thorax. Thorax very evenly curved to the apex, then evenly descending to segment 5 from the rounded apex. The pupa is slightly constricted dorsally behind the thorax, not at all laterally; dorsal outline straight from segments 5 to 8 , then descending gradually to the front margin of segment 10 , after which the surface is perpendicular to the longitudinal axis of the pupa., In laternl outline the pupa increases from the head to the slightly angular shoulders, then still more, though slightly, to segments 7 . and 8 , after which it decreases gradually to the end; the end is rounded, though not broadened out like a hoof, and is applied round the margin closely to the surface of suspension. The shoulder has a small tubercular swelling. The spiracular expansion of segment 2 is small, long, facing forwards. Spiracles with swollen lips, oval, conspicnons, light brown in colour. Gland scar and marks of organs of segment 12
conspicuous. Body surface very finely covered with minute tubercular granules which sometimes coalesce into lines. Colour very dark rosy-brown, lighter on the abdomen and dorsum; a dorsal light brown line on segments 2 to 4 ; a row of two or three light brown spots parallel to the margins of the segments on each side of the dorsal line on segments 6 to 10 . Underparts of pupa light rosy-brownish-yellow. The papa is fastened by the tail and a median band. Total length 14 mm ., breadth at segment 7 is 6.5 mm ., lieight at the apex of the thorax 5.3 mm ., breath at the shoulders 5 mm .

Habits. The eggs are laid singly or in tows and threes on leaves, leaf stalks, stems and twigs, even on the trank of the tree, generally in cracks, crevices, or axils. One female lays many on the same tree. The butterfly is fond of the sun, and sits for long periods on one leaf basking with closed wings, sometimes on a twig, stem, or trunk of a tree; with care it can be caught in the fingers, but once on the wing its flight is extremely rapid though not sustained. The larva from the first moult makes a house or shelter for itself by turning over a bit of the edge of a leaf, fixing it and lining it with silk, and eating holes all round through both the layers of the leaf except on the outer side; it makes new nests as required, feeding always on the tender leaf on which is its house. It wanders off to some crevice in the bark, hole in the tree, or even down to the ground, to pupate, getting under a dead leaf, or clod of earth, or into a hole in the ground, in the latter case. A dozen pupe are sometimes found together. The butterfly is difficult to kill by squeezing. Some of the larvæ are attended by ants of the genus Cremastogaster, some are not : at any rate the ants do not appear to care much for them, as they will leave them on the slightest alarm. The pupæ are sometimes attended by these same ants. The reason the butterfly is so rare is most probably becanse the tree on which the larva feeds is, as a general rule, about 150 feet in height, with a clear stem of some 60 feet, and the butterflies keep to the top. The reason of the success in obtaining so many larve and pupæ was that extensive cuttings of this tree had taken place, and there were large arens covered with young stool-shoots. Generally, at other times, and in other places the butterflies-or what was presumed to be this batterfly-have been noticed flying round and basking on the leaves of the tops of high trees of Trewia nudiflora, Linn. The known range of this butterfly is curions, as it is recorded only from Tenasserim in Burma and from the Nilgiri Hills and North Kanara in South-Western India. The female has hitherto only been recognised : Mr. Bell has sexed when freshly canght and newly emerged all the specimens (a large number) in his collection. The male can hardly be said to differ superficially from the female, it is usually somewhat
smaller, and the bright smalt-blue of both wings on the apperside is slightly lighter and more silvery in shade.
110. Arriopala centatrus, Fabricius.

Hopea Wightiana, Wall. (Dipterocarpeæ).
Xylia dolabriformis, Benth. (Leguminose).
Terminalia tomentosa, Bedd. (Combretacew).
I'erminalia paniculata, Roth (Combretaces).
Layerstramia lanceolata, Wall.* (Lythracees).
111. Arrhopala amantes, Hewitson.

Hopea Wightiana, Wall. (Dipterocarpers).
Xylia dolabriformis, Benth. (Leguminosz).
Terminalia paniculata, Roth (Combretaceæ).
Lagerstremia lanceolata, Wall. (Lythraceæ).
112. Arrhopala abseds, Hewitson.

Has not been bred in Kanara.
113. Arrhopala canaraica, Moore.

Hopea Wightiana, Wall. (Dipterocarpex).
114. Arrhopala bazalds, Hewitson.

Hopea Wightiana, Wall. (Dipterocarpere).
T'erminalia paniculata, Roth (Combretacere).
115. Curetis thetis, Drury.

Abrus precatorius, Linn. (Leguminuse).
Pongamia glabra, Vent. (Leguminose).
Derris Heyneana, Bentl. (Leguminose).
Wagatea spicata, Dalz. (Leguminosæ).
Xylia dolabriformis, Benth. (Leguminosm).
Mr. Bell notes that the larva of this species feeds on other species of Leguminose than those named abore.
116. Coretis bolis, Doubleday and Hewitson.

Ougeiniu dalbergioides, Benth. (Leguminose).
117. Zesids chrysomallos, Hübner.

Xylia dolabriformis, Benth. (Leguminose).

[^44]Terminalia tomentosa, Bedd. (Combretaceæ).
Terninalia paniculata, Roth (Combretaces).
Psidium Guyava, Linn. (Myrtaceæ).
Clerodendron infortunatum, Gaertn. (Verbenaceæ).
Argyreia speciosa, Sweet (Convolvulaceæ).
Loranthus longiflorus, Desrouss. (Loranthaces).
Mr . Bell notes that the larva of this butterfly is found on many other plants than those given above frequented by the ferocious red, or yellow, tree ant, Ecophylla smaragdinu, Fabricius. The larve are so persistently carnivorous that each one has to be bred by itself.
118. Camena argentea, Aurivillius.

Camena (1865) is perhaps too near to Camæna (1850), the latte: name having priority, in which case the former name mast give way to Pratapa. 'Ihis butterfly appears in the second Kanara paper, p. 384, as Camena cippus, F'abricius, but Dr. Chr. Aurivillius in Ent. Tids., vol. xviii, p. 146, n. 48 (1897), has shown that the true "Hesperia" cippus of Fabricins is the same as "Hesperia" (Tajuria) longinus, Fabricius, and that the latter name mast sink as a synouym to the former, which is the older. Dr. Aurivillius has renamed the Camena cippus of authors, but not of Fabricius, Pratapa argentea. It has never been bred.

119. Camena deva, Moore.

Loranthus scurrula, Linn. (Loranthaceæ).
Loranthus tomentosus, Heyne (Loranthaceæ).
120. Creon cleobis, Godart.

Loranthus scurrula, Linn. (Loranthaceæ).
Loranthus elastictus, Desrouss. (Loranthacese).
121. Aphnedos volcanos, Fabricias.

Zizyphus Jujuba, Lamk. (Khamneæ).
Zisyphus rugosa, Lamk. (Rhamneæ).
122. 'Aphneus lohita, Horsfield.

Zixyphus rugosa, Lamk. (Rhamneæ).
Wagatea spicata, Dalz. (Leguminosæ).
Xylia dolabriformis, Benth. (Leguminosæ).
Terminalia paniculata, Roth (Combretaceæ).
Psidium Guyava, Linn. (Myrtaceæ).
Lagerstremia lanceolata, Wall. (Lythraceæ).
Argyreia sericea, Dalz. and Gibs. (Convolvulaceæ).
Dioscorea peutaphylla, Linn. (Dioscoreaceæ).

Under A. lolita the A. concanus of Moore, which is recorded (p. 386) doubtfully as a species distinct from A. lohita in the second Kanara paper, is included.

123. apheleds abnormis, Moore.

A single specimen has been obtained in the Kanara district at Jaggalbett, above the ghâts. It has never been bred.
124. Aphneus ictis, Hewitson.

There is a single male of this species in Mr. Bell's collection which I have examined. It has never been bred. This species and the last are new to the Kanara list.
125. Tajuria indra, Moore.

Loranthus elasticus, Desrouss. (Loranthaceæ).
126. Tajuria cippus, Fabricius.

Loranthus Wallichianus, Schultz. (Loranthacez).
Loranthus scurrula, Linn. (Loranthaces).
Loranthus longiforus, Desrouss. (Loranthaces).
Loranthus elasticus, Desrouss. (Loranthaceæ).
This species appears in the second Kanara paper as I'ajuria longinus, Fabricius. With regard to the change of name see No. 118 ante.
127. Tajuria jehana, Moore.

Mr. Bell has a male of this species taken at Karwar in the North Kanara district. It is new to the list of Kauarese butterflies, and has never been bred.
128. Ops melastigma, de Nicéville.

Loranthus scurrula, Linn. (Loranthacere).
Loranthus tomentosus, Heyne (Loranthacese).
129. Chliaria othona, Hewitson.

Rhynchostylis retusa, Blame (Orchidess).
Saccolabium papillosum, Lindl. (Orchidese).
130. Zeltus etoles, Fabricius.

This species has never been bred.
131. Ceeritra jayfra, Butler.

Saraca indica, Linn. (Leguminosse).
1900.] L. de Nicéville-Butterfies of the Kanara District.

Xylia dolabriformis, Benth. (Leguminosæ).
Cinnamomum zeylanicum, Breyn (Lavrineæ).
132. Rathinda amor, Fabricius.

Hopea Wightiana, Wall. (Dipterocarpere).
Schleichera trijuga, Willd. (Šupindacere).
Eugenia zeylanica, Wight (M!rtaceæ).
Careya arborea, Roxb. (Myrtacese).
Ixora coccinea, Linn (Rubiacer).
Loranthus longiflorus, Desrouss. (Loranthacers).
Croton sp. (Euphorbiacere).
133. Horaga onyx, Moore.

This species has never been bred.
134. Catapgcilma elegans, Drucc.

Terminalia tomentosa, Bedd. (Combretaces).
Terminalia paniculata, Roth (Combretaces).
Lagerstremia lavceolata, Wall. (Lythracers).
Mr. H. H. Druce in Proc. Zool. Soc. Lond., 1895, p. 612, suggests that if the Sumatran, Indian and Ceylonese species of Catapoecilma allied to C. elegans should prove to be distinct from the typical Bornean form it may be called C. major.
135. Loxura atymnus, Cramer.

Dioscorer pentaphylla, Linn. (Dinscoreaces).
Smilax macrophylla, Roxb. (Liliaceæ).
The pupa of this species is suspended by the tail only, with no median band. In the second Kanara paper, p. 390, the latter is inadvertently given as being present.

As the eight genera, Camena, Creon, Aphnæus, I'ajuria, Ops, Cheritra, Rathinda and Loxura have the pupa suspended by the cremaster ouly with no median girth, they would seem to form one very natural group, this character being an extremely aberrant one in the Lycsnidx. The larvm and pupæ in these genera are also very similar. In the genus Spalgis also the pupa is attached by the cremaster only with no median band.
136. Drodorix epijarbas, Moove.

Convarus Ritchiei, Hook. f. (Connaraceæ).
137. Zinapsa todara, Moore.

Acacia Intsia, Willd. (Leguminnose).

Acacia Intsia, var. cersia, W. and A. (Leguminoss). Acacia pennata, Willd. (Leguminose).

138. Raplla schibtacea, Moore.
Acacia Intsia, var. cersia, W. and A. (Leguminose).
Acacia pennala, Willd. (Legnminose).
Quisqualis indica, Linn. (Combretacere).

139. Rapala lankana, Moore.

Wagatea apicata, Dalz. (Leguminose).
Acacia Intsia, var. cersia, W. and A. (Leguminose).
Acacia pennata, Willd. (Leguminose).
Larva. The larva is similar in shape to the larve of other species of Rapale. Head shiny, smooth, very light yellow, with the jaws and the hasal joint of the antenne white. The "teeth" or processes on the segments are roand-topped, with a slight constriction before the end of each tooth, giving the teeth the appearance of being ball-topped; the anal teeth and subdorsal teeth of segment 2 are smaller than the rest, heing little more than knobs. There is a subdorsal tooth to each segment except segment 13, a subspiracular tooth to each segment except segments 13 ard 14 ; the subdorsal teeth of segments 11 and 12 are much further apart than on any other segment; the teeth of segment 2 are on the front margin, those of segment 14 on the hinder margin, all the rest in the middle of their respective segments. The surface of the body is smooth, oily-looking, each tooth having about eight goldenrolonred hairs proceeding from the extremity, which are about the same length ns the tooth itself. The spiracles are oval and black; the gland on segment 11, and the cylindrical protrusible organs of segment 12, are present. The colour of the larva is a light oily yellow-greenish, with a diagonal white band along the base of each subdorsal tooth, and below it, from the front margin near the subdorsal line down and back to the hinder margin to just behind the spiracle; the area on each segment in front of this line is suffused with brown; a light brown patch with a white cross on it dorsally on segment 2 , and a small subdorsal green rising on the hinder margin of that segment; the dorsal parts of segments 11 and 12 are pink-greenish; there is a dorsal bluish line. The coloar of the larva may be dark green with the diagonal lines yellow, and the areas in front of these lines deep rich brown-red when it is feeding on the red flowers of Wagatia spicata, Dalz. Length 19 mm . if moving, hreadth 5 mm . omitting the teeth, 7 mm . if the teeth be included.

Pupa. The pupa agrees in shape with those of the other species of Rapala found in North Kanara, the length from segment $4 / 5$ to the front
being about equal to the length from the same point to the anal end; the breadth is greatest at segment 7, though but little more than at the shoulders; the height is the same at segment 7 and at just before the hinder margin of the thorax; the vertex of the head is inclined towards the ventral line of the pupa; the front margin of segment 2 slightly overhangs the head, and its dorsal line is inclined at an angle of about 45° to the length axis of the pupa; this segment is large, rather square in the front outline (which is the front of the pupa), and slightly pinched laterally behind the spiracles on the margin of segment $2 / 3$; the thorax is very large, and increases in breadth from the front margin to the shoulders, is slightly pinched in front dorsally, and has the hinder margin coming to a point in the dorsal line; its dorsal line is evenly curved, is at an angle of 45° to the length-axis of the pupa in its anterior half, and curves through a plane parallel to that axis as far as the margin of segment $3 / 4$; segment 4 has its dorsal line inclined from the front margin to the hinder margin townrds the length-axis, so that the papa is constricted somewhat dorsally, its dorsal line rising again from segment $4 / 5$ to segment 7; the margin of segment $9 / 10$ is raised, as is usual with the pupæ of Rapala, there being a thin interval between the margins; the hinder end of the pups is rounded; the ventral line is straight. The surface of the pupa is finely reticulated, and has some minute erect hairs on segment 2, on the thorax, and on the dorsum of the other segments; these liairs are sparse. The spiracles of segment 2 are raised, oval, small, golden-yellow surfaces which face forwards, the other spiracles are of the same colour, small, oval and raised. The colour of the papa is light rose-brown, segments 4 and 5 are generally dark, the margin of segment $9 / 10$ is dark; there is a dorsal darkish line and a darkish lateral spot on each abdominal segment; the wings, segment 2 , and the sides of the thorax, are darkish. Length 12.25 mm ., breadth 6.25 mm . at segment 7, at the shoulders 5.75 mm .

Habits. The larfa lives on the flowers and young parts of the plant on which it feeds, and always on such plants as are frequented by the large red ants Wcophylla smaragdina, Fabricins, which tend the larvæ. Pupation takes place anywhere, amongst the flowers, in the crevices of the stems, \&c., and the pupa is attached by the tail and by a body-band. The papa when disturbed makes the usual creaking noise which is so common amongst lycenid pupe.

140. Rapala varona, Horbfield.

Zizyphus Xylopyrus, Willd. (Rhamnes).
Zizyphus rugosa, Lamk. (Rhamnes).
J. If. 32

Xylia dolabriformis, Benth. (Lejuminose). Quisqualis indica, Linn. (Oombretaces).
141. Rapala melampus, Cramer.

Zizyphus rugosa, Lamk. (Rhamnere).
Ougeinia dalbergioides, Benth. (Leguminoss).
142. Bindahara sugrifa, Horsfield.

Salacia oblonga, Wall. (Celastrineæ).
143. Virachola isocrates, Fabricius.

- Tamarindas indica, Linn. (Leguminose).

Punica Granatum, Linn. (Lythracere).
Randia uliginosa, DC. (Rubiaceæ).
144. Vikachola perse, Hewitson.

Anona squamosa, Linn. (Anonacere).
Randia uliginosa, DC. (Rubiacers).
Randia dumetorum, Lamk. (Rubiacere).

Family PAPILIONID氏.

Subfamily Pierinc.
145. Leftosia xiphia, Fabricius.

Cratæra religiosa, Forst. (Capparidere).
Capparis Heyneana, Wnll. (Capparidere).
Capparis sepiaria, Linn. (Gapparides).
Capparis horrida, Linn. f. (Capparidees).
This batterfly appears in the second Kanara list ander the synonymic generic name Nychitona.
146. Delias eochakis, Drury.

Loranthus longiflorus, Desrouss. (Loranthuces).
147. Prionelis sita, Felder.

This rare butterfly has not been bred in Kanara, but Mr. Bell has seen a femnle laying eggs on a plant which is probably Capparis tenera, Dalz. (Capparidese). The eggs hatched out, but the larva failed to reach maturity. In Cesion Mr. E. E. Green says that the larva feeds on Capparis.
148. Catopsilia ppranthe, Linnæus.

Cassia occidentalis, Linn. (Leguminoses).
149. . Catopalila crocale, Cramer.

Cassia Fistula, Linn. (Leguminosse).
Oassia siamea, Lam.* (Leguminosæ).
Larva. The larva [of C. catilla, Cramer] is very similar in every. way to that of Catopsilia crocale, Cramer [these two species are in. de Nicéville's opinion one and the same species]. The head is round, green, the clypeus edged with brown, covered with small, shiny, black tabercles which are not very large and do not hide the colour of the head; the anal flap is rounded, but looks square at the extremity, and is covered with small tubercles, not black but green, each bearing a short hair; the body is covered with rows of small black tubercles as in C. crocale, of which only the row along the spiracular line is conspicuous. The spiracles are oval, shiny and white. The colour is green, with a spiracular white band touched with bright yellow on segments 2 to 5 , and these segments, especially 3 and 4, are distinctly flanged on the spiracular line as in the larva of Hebomoia australis, Butler, though not to so great an extent. Length 51 mm ., height 7 mm .

Popa. The papa is the same as that of C. crocale at first sight, but the dorsal line of the thorax is absolntely parallel to the longitudinal axis of the pupa for two-thirds of its length; consequently the hinder part just before the margin is perpendicular to this parallel part, i.e., is raised suddenly though very slightly above the front margin of segment 4, and the front end of this parallel dorsal line is at an angle, and Ω sharpish angle, with the front slope of the thorax; the shoulder too is distinctly angled, i.e., the point where the lateral line of the head and segment 2 meets that of the wings; the front margins of segments 9 and 10 in the dorsal line when looked at sideways show a minute peak overhanging the hinder margins of segments 8 and 9 respectively; the cremaster is distinctly bifid at the extremity, and has some shiny, very short, black suspensory hooks dorsally as well as at the extremity. There is a dorsal rugose black tip to the snout terminating the head, which snout is cylindrical in its apical half; there is no black line round the eye as in C. crocale, and there is a dark greenblue dorsal line, which is yellow on the thorax, as well as the supraspiracular yellow line. Length 34 mm ., length of snout 3 mm ., breadth at segment 7 is 9 mm ., height at apex of curve of wings (segment 6) 10 mm ., height at the apex of the thorax 8 mm .
[- Habits. The habits are the same as in C. crocale in every particular both as to the larva and the papa. Mr. Bell notes that until the day (30th July, 1898), on which he wrote this description be always

[^45]considered C. crocale and C. catilla were one and the same butterfly, but it always struck him as somewhat auomalous that nearly all the butterflies caught below the hills on the North Kanara coast should be of the former form, while the great majority of those caught on the tops of the hills and in the heavy jungles should be of the latter form. There is but little doubt, he says, that the former is a more or less opencountry butterfly, while the latter keeps nearly altogether to the jungles.
150. Terias hecabe, Linnæus.

Sesbania aculeata, Pers. (Leguminosæ).
Cassia occidentalis, Linn. (Leguminoss).
Cassia Tora, Linn. (Leguminosæ).
Cassia glauca, Lam. (Leguminosæ).
151. Terias silhetana, Wallace.

Poinciana regia, Bojer (Leguminoses).
Wagatea spicata, Dalz. (Legumirosæ).
159. Terias libythea, Fabricius.

Cassia pumila, Lam. (Leguminosæ).
153. 'Ierias lefta, Boisduval.

This butterfly has not been bred in Kanara.
154. Terias venata, Moore.

There are specimens of this species in Mr. Bell's and my own collection taken in Karwar in October. It is new to the Kanara list, and it has not been bred.
155. Teracolus anata, Fabricius.

Salvadora persica, Linn. (Salvadoraceæ).
156. Teracolus etrida, Boisduval.

Cadaba indica, Lamk. (Capparider) in Bombay.
Mr. Bell has caught a single specimen only of this butterfly in Kanara, from whence Dr. Butler also records it.
157. Teracolds eucharis, Fabricius.

Capparis sepiaria, Linn. (Cappariileæ) at Bijapar.
This species is new to the Kauara list. Dr. F. Moore has recorded it from North Canara as I'. pallens, Moore, which is a synonym
of T. eucharis. Mr. Bell has received it from Bijapar, which lies N.-E. of Kanara, but has never taken it in Kanara itself.

158. Ixias pyrent, Linnæus.

Capparis sepiuria, Linn. (Capparider) at Bijapur.
Dr. A. G. Butler in his latest revision* of the genus Ixias restricts I. pyrene, Linnæus, to China, and records I. frequens, Butler, from "India generally," I. dharmsalæ, Butler, from "India, from Darjiling to the Western Provinces and southwards to the Neilgherries," and I. pirenassa, Wallace, from "Western India southwards to Depalpur." It is unknown to the writer to which of these species, if any, Dr. Butler would assign the batterfly that is placed here under the parent form. I. cingalensis, Moore, is restricted by Dr. Butler to Ceylon. Mr. Bell doubts the occurrence of I. pyrene in Kanara, though it certainly occurs commonly elsewhere in the Bombay Presidency, and at Bijapur, N.-E. of Kanara, but it has been recorded from "A place half-way up the ghat on the road to the Gairsoppa Falls."
159. Ixias marianne, Cramer.

Cappares sepiaria, Linn. (Capparideæ).
New to the Kanara list. It is common on the Malemani or Gairsoppa Ghât in Kanara. It has not beeu bred in Kanara.
160. Hebomoia australis, Butler.

Cratæva religiosa, Forst. (Capparideæ).
Capparis Heyneara, Wall. (Capparides).
Capparis Moonii, Wight (Capparides).
Capparis sepiaria, Linn. (Capparideæ).
This species appears in the second Kanara list as H. glatcippe, Linnæus, but Dr. Butler has recently separated off the South Indian and Ceylonese form under the name H. australis from the North-East Indian, Burmese, Malayan Peninsula and Chinese H. glaucippe. \dagger
161. Nepheronia pingasa, Moore.

Capparis Heyneana, Wall. (Oapparideæ).
162. Nepheronia hippia, Fabricius.

Capparis Heyneana, Wall. (Capparider).
Oapparis horrida, Linn. f. (Capparideæ).

- Ann. aud Mag. of Nut. Hist., seventh series, vol. i, pp. 133-1t3 (1898).
\dagger Ann. and Mag. of Nut. Hist., seventh series, vod. i, pp. 289-293 (1888).

163. Appias libythea; Pabricius.

Cratæva religiosa, Forst. (Capparideæ).
Capparis horrida, Linn. f, (Capparideæ).
This species is entirely omitted from Di. A. G. Butler's recent monoginph of the genus Catophaga (Ann. and Mag. of Nat. Hist., seventh series, vol. ii, pp. 392-401, 458-467 (1898). Possibly with A. zelmira, Cramer, he considers it to be a true Appias, and generically distinct from the genus Catophaga, Hübner.

164. Appias tafrobana, Moore.

Cratæva religiosa, Forst. (Capparideæ).
This species is given in the second Kanara list as A. hippoides, Moore, that species being a synonym of A. hippo, Cramer, found in North India, Burma, the Mnlay Peninsula, Indo-China, China, and many islands of the Malay Archipelago. A. lippo is distinct from A. taprobana, the latter occurring in South India and Ceylon only.

165. Appias albina, Boisduval.

Hemicyclia venusta, Thwaites (Euphorbiaces).
'Ihis species is given as A. neombo, Boisduval, in the second Kanara list. A. neombo is a species which cannot be satisfactorily identified, though I have some specimens of Appias from North Kanara that agree fairly well with the original description, but these in my opinion do not represent a distinct species, but are probably a dry-season form of A. wardii, Moore, or possibly of A. albina, Boisduval. They were all caught or bred in December. Dr. A. G. Butler in Ann. and Mag. of Nat. Hist., seventh series, vol. ii, p. 397, n. 11 (1898), places Pieris neombo as a synonym of Catophaga albina.

Larva. The larva is very like that of Appias taprobana, Moore, in appearance, but is as a rule more thickly covered with black tubercles. The body is more or less cylindrical, but narrows somewhat at segments 2 and 3, and still less so at the anal end; the anal flap is thick, semicircularly rounded, and inclined at an angle of 45° to the length. axis of the larva, and has a small, very slightly developed, conical tubercle before the extremity on each side of the dorsal line; the front half of the flap is shiny and black, and has some conical tubercles of different sizes all over it, each surmounted by a single fine hair, there being one subdorsal tubercle larger than the rest; the posterior half is green and smooth except for the tabercle above the extremity just mentioned; the body is somewhat stouter in the middle; the head is broader than the body at segment 2. Head round, shiny; oily. yellow
all over, with a mether large and rather narrow triangular clypens, the labrum and antennæ coloured like the head; the surface covered with small, conical, setiferous, black tubercles, three on each side of the dorsal line on the vertex, two or the border of the clypens at the apex on each side, and one above the apex on each side of the central line, about eight on each lobe besides, in addition to which there are several small cylindrical points, all, tubercles and points, with a surmounting fine hair. Surface of body ragose with six transverse rows, from above the spiracular region orer the dorsum, of small, shiny, conical, setiferous, black tubercles to each segment; segments 2,12 and 13 have only a few transverse rows of such tubercles; the front row of each segment is generally composed of larger tubercles than the others, and especially the subdorsal tubercle of that first row is generally large, the tubercles of segment 2 nenrly render the whole segment black; the surface is sling as well as the tubercles, and has besides a few cylindrical, setiferons, black points. Spiracles of the ordinary size, flush, oval and white. The colour of the body is a rather light green, sometimes with a tinge of lilac, with a yellow-white, spiracular, narrow band from segment $2 / 3$ to segment 12, where the band expands somewhat. The black tubercles may sometimes be very small, just black specks. The eyes are only four in number on each side, and are arranged in an arc above the base of the antennm, they are shiny, of the same colour as the head, and are generally bordered with black. Length 30 mm ., breadth 3.75 mm .

Pupa. The papa is very like that of A. taprobana; the headprocess from between the eyes is long, flattened at the sides, slightly curved, pointed at the extremity and directed apwards and forwards, sometimes straight out in a line with the axis, sometimes inclined to it; it is as long as segments 4 and 5 (in the dorsal line) together; and the edges on the ventral surface are minutely serrated. The front margin of segment 2 is produced into a small subdorsal tooth, and the dorsal line is rather strongly carinated; the thorax is rather highly carinated on the dorsal line, the lateral outline of this carina being a curve which is slightlg broken at the apex, just before which the carina is double, and the edges somewhat minutely serrate ; the lateral teeth of segments 6, 7 and 8 are all the same size and pointed; the dorsal line of the abdomen from segment $6 / 7$ somewhat carinated, the carination splitting down the sides of the cremaster on segment 14 ; the cremaster is rather small, square as seen from above, slightly bifid, with the lateral carina, which is continued forwards on to segments 11, 12 and 13. The spiracles of segment 2 are thin, yellow lines, the other spiracles are oval, flush, and white. The surface of the pupa is shiny, smooth except for a
superficial wrinkling, the carinæ, and the teeth; there is a round, blunt, low production of the shoulder. The colour of the paps is dirty whitish with a pink shade on segments 4 to 14 ; the same but transparentlooking on the rest; the head-production, the points on segment 2, the teeth of segments 5 to 7 (sometimes), and the extremity of the cremaster are black-only the top and lower edge of the point of the head however; there is a black spot on the hinder edge of segment 2 dorsally, one just behind the shoulder, one lateral on segments 3 and 4 to 12, and one dorsal on the front margin of segments 9 and 10. There is alwnys a semicircle of six darkish spots dorsally on segments 6 and 7 . The colour of the pupa when formed under a leaf is probably green, with the markings as above. The underside or ventrum of the pupa is always whitish. Length 21.25 mm ., of which the process on the head is 2.75 mm ., breadth at shoulders 5 mm ., breadth at segment 7 from tip to tip of teeth 7.5 mm .

Habits. The habits of the larva are those of A. taprobana. The pupa is formed on the underside of a leaf, on the trunk of the tree, or on any flat surface, and is attached by the tail and by a body-band.
166. Appias wardit, Moore.

Capparis Heyneana, Wall. (Capparides).
Recorded by Dr. Butler, l.c., p. 398, n. 12, from the Nilgiris, Mysore, and Rangoon. The latter locality is certainly erroneous. The species is confined to South India.
167. Huphina nerissa, Fabricins.

Capparis sepiaria, Linn. (Oapparidess).
Capparis horrida, Linn. f. (Oaparides).
H. nerissa is the parent form of this group of this genus occurring in India, but typically it is not found in South India, being represented there by H. phryne, Fabricius, under which name it appears in the second Kanara list, p. 574, n. 158.
168. Hophina remba, Moore.

Capparis Heyneana, Wall. (Oapparides).
169. Belenois mesentina, Cramer. Capparis divaricata, Lamk. (Capparides).

Subfamily Papilionina.

170. Troides minos, Cramer.

Aristolochia indica, Linn. (Arislolochiaceæ).

The generic name Ornithoptera, nuder which this species is given in the Kanara papers, is a synonym of Troides.
171. Papilio hector, Linnæas.

Aristolochia indica, Litn. (Aristolochiacess).
172. Papilio aristolociois, Fabricius.

Aristolochia bracteata, Retz. (Aristolochiacese).
Aristolochia indica, Linn. (Aristolochiacese).
The food-plant of this butterfly, Aristolochia, Linnæus, must apparently have been known to Fabricins in Europe in 1775, more than a century and a quarter ago, when he described the insect, and probably named it after the pabulum of the larva.
173. Papilio agamemnon, Linnæus.

Unona discolor, Vahl (Anonacese).
Polyalthia longifolia, Benth. and H. f.* (Anonaces).
Anona squamosa, Linn. (Anonaces).
Anona reticulata, Linn. (Anonacese).
Saccopetalum tomentosum, Hook. f. and T. (Anonacese).
174. Pafilio sabpedon teredon, Felder:

Oinnamomum zeylanicum, Breyn (Laurines).
Alseodaphne semecarpifolia, Nees (Laurines).
Titsseu sebifera, Pers. (Laurinezs).
An aberration of this species has been described by Colonel Swinhoe from Matheran in Soath India as a distinct species under the name of Delchina [sic] thermodusa. It has the anterior blue spot of the median band of the forewing absent. This aberration is found also in Ceylon.
175. Papllio eurypylus jabon, Esper.

Unona Lawii, Hook. f. and T. (Anonacese).
Saccopetalum tomentosum, Hook. f. and T. (Anonacere).
In the first Kanara paper, p. 364, this species appears under the name Papilio doson, Felder, and in the second, p. 578, as Papilio telephus, Felder, these two species being given by the Hon. Walter Rothschild in Nov. Zool., vol. ii, p. 432 (1895) as synonjms of Papilio eurypylus jason, Esper.

176. Papilio nomits, Hisper.

Saccopetalum tomentosum, Hook. f. and T. (Anonaces).

[^46]J. II. 33
177. Papilio antiphates alcibiades, Fabricius.

Unona Laviii, Hook. f. and T. (Anonaces).
178. Papilio demoledes, Linnæus.

Ruta graveolens, Linn., var. angustifolia, Pers. (Rutacees). Glycosmis pentaphylla, Correa (Rutaces).
Murraya Koonigii, Spreng. (Rutaceæ).
Citrus decumana, Linn. (Rutaceæ).
Egle Marmelos, Correa (Rutaceæ).
In the Kanara papers this species is giren under its ssnonymic name P. erithonius, Cramer.
179. Papilio polytes, Linnæus.

Zanthoxylum Rhetsa, DC. (Rutaces).
Glycosmis pentaphylla, Correa (Rutacere).
Citrus medica, Linn. (Rutacere).
Citrus decumana, Linn. (Rutacese).
180. Papilio polymnestor, Cramer.*

Paramignya monophylla, Wight (Rutaces).
Atalantia monophylla, Correa (Rutaces).
181. Papilio helentes dakbea, Hampson.

Zanthoxylum Rhetsa, DC. (Rutaces).
Glycosmis pentaphylla, Correa (Rutacees).
Citrus medica, Linn. (Rutacere).
Citrus decumana, Linn. (Rutaceæ).
182. Papilio demolion lomedon, Moore.

Evodia Roxburghiana, Benth. (Rutaceæ).
Acronychia laurifolia, Blume (Rutacea).
183. Papllio paris tamilana, Moore.

Erodia Roxburghiana, Benth. (Rutacess).
Though Mr. Bell have given me the name of the food-plant of the larva of this splendid butterfis, the largest of its groap, he has not furnished me with a description of its transformations. He has only seen the female laying eggs on the plant named.

[^47]184. Papilio bu̧duha, Westwood.

Zanthoxylum Rhetsa, DC. (Rutaceæ).
185. Papilio abrisa, Kirby.

Glycosmis pentaphylla, Correa (Rutaceæ).
Alseodaphne semecarpifolia, Nees (Laurineæ).
186. Papilio clytia, Linnæus.

Cinnamomum zeylanicum, Breyn (Laurineæ).
Alseodaphne semecarpifolia, Nees (Laurineæ).
Litsea tomentosa, Herb.* (Laurineæ), in Bombay.
Litsea sebifera, Pers. (Laurineæ).
In the two Kanara papers this butterfly appears as Papilio dissimilis, Linnæus, or P. panope, Linnæus, bat the Hon. W. Rothschild has recently shewn that P. clytia is the oldest name for it.
187. Papilio pandiyana, Moore.

This is the only Papilio in Kanara of which the food-plant lias not been discovered. The allied P. jophon, Gray, of Ceylon, has been bred, but its food-plant has not been recorded. The larva shews that this butterfly comes into the first group of the genus, being very similar to that of P. hector, Linnæas, and P. aristolochie, Fabricius, and probably feeds on the same plants.

Family HESPERIID庣.

188. Ismene gomata, Moore.

Heptapleurum venulosum, Seem. (Araliaceæ).
189. Ismene fergusonii, de Nicéville.

Combretum extensum, Roxb. (Combretaceæ).
190. Bibasis sena, Moore.

Combreturn extensum, Roxb. (Oombretaceæ).
191. Hasora (Parata) alexis, Fabricius.

Pongamia glabra, Vent. (Leguminosæ).
Dr. Chr. Aurivillius in Ent. Tids., vol. xviii, p. 150, n. 68 (1897), has recently shewn that "Hesperia" alexis, Fabricius, is an older name

[^48]for the "Papilio" chromus of Cramer, under which this apecies appears in the Kanara papers.

Larva. Head squarely rounded as seen from the front, moderately thick through; covered with rather long, erect, light hairs; the colour is yellow or red-fuscous; when yellow a black spot (the eyes) at the base of each lobe just nbove the jaws; head slightly bilobed. Segment 2 is smaller than the head, and has a dorsal, broad, black collar; it is often greenish when it has two black, lateral spots. The shape is cylindrical, the section being circular, the anal end slightly sloping and finishing off round; the last segment hos a shiny, dorsal, black sbield at the end. The spiracles nre rather long ovals, large and white. The body is sparsely covered with rather long, erect, white hair. The colour is a more or less dark mauve on the dorsal half-segments, suffused with whitey-jellow dorsally; there is a dorsal, pure mauve line, and a mora or less indistinct subdorsal pure mauve line; as also a broad, lateromargiual band of yellowish-green bordered above and below by a white line. Ventrum greenish-yellow. The larva is oily looking. There may be a lateral, black spot on each or any of segments 5 to 9 .

Popa. Head high, somewhat bowed, with a conical boss on the vertex, pointing upwards and forwards, between the eyes; the eyes are very prominent. Segment 2 broad. Thorax stout, convex, humped in the usual way; shoulders somewhat narrower than the head. Section of body circular. The pupa decreases evenly in diameter from the shoulders to the end, with a slight dorsal constriction to the cremaster, which is small and nearly cabical. The last segment before the end is broad dorsally, but disappears lnterally, and is raised on the front margin above the margin of the next segment, with a triangular indentation dorsally. Segment 14 shows as a semicircular dorsal shield-like piece, deeply indented on the dorsal line. Spiracles rather large, rather long ovals, light brown in colour, the spiracle of segment 2 linear. Surface shiny, widely and finely wrinkled, covered with more or less numerous hairs, erect on the anterior part of the body, adpressed on the posterior part ; ventrally on abdomen the hairs are erect. Colour green, generally sprinkled with white powder, with a yellowish tinge on the abdomen; the depressions of segments 13 and 14 edged with shing black. The pupa is attached by the tail and a bods-band.

Habits. The larva feeds on young leaves, and makes a loose cell by bringing the two edges of a leaflet together laxly. It pupates in such n cell. It is very moth-like in its habits; the larva rans out of its cell when disturbed. The pupa wriggles considerably when touched.

[^49]Derris Hayneana, Benth. (Leguminose).
Dr. Chr. Aurivillius in the above-cited paper renames the Hasora alexis of Butler, but not of Fabricins-Hasora butleri. Messrs. Elwes and Edwards in. Trans. Zool. Soc. Lond., vol. xiv, p. 301 (1897), cite Moore's. figure of Parata alexis in Lep. Cey. as a synonym of Hasora chromus, Cramer, $=H$. aleatis, Fabricins, but make no reference to Fabricius' original description or Butler's figure of H. alexis. The very broad, clearly defined, discal, white band of the hindwing on the underside will separate H. butleri from H. alexis.

Larva. The exact type of Hasora (Parata) alexis, Fabricius. Head from in front nearly circular, slightly, though distinctly, indented on the vertex; under a lens the surface is irregularly rugose, covered sparsely, with the exception of the upper part of the face and the vertex, with long, fine, erect, white hairs; colour very dark brown, with reddish jaws; the head is shiny, small for the body as compared with other hesperids. Segment 2 is narrower thun the head, and is shiny dark brown,' with a double, dorsal, greenish line and some long hairs as on the liead. Segment 3 as broad as-the head from the front margin. The larva is fat and greasy-looking, thickest about segments 6 to 9 , after which its diameter decreases very gradually to the broadly rounded, sloping, anal segment. The transverse section of the body is circular. The spiracles are very small, oval in shape, yellow. The surface of the body is sparsely bairy, the hairs are fine, long, erect and white, most thickly disposed round the margin of the larva; otherwise the larva is quite smooth. Colour green, suffused dorsally as far as a lateral yellow line with rather dark violet; a dorsal, dark green line bordered by a yellow line on each side, and a subdorsal line of the same colour, so that there are four parallel dorsal lines altogether; a marginal yellow line; all these lines are not continued on to the yellowish-green anal segment; a black spot laterally just outside the subdorsal line on segments $6,8,10$ and 12 ; this spot under a lens is velvety-looking. The ventrum is green. Length 32 mm . when the larva is walking, breadth 6.3 mm . at the broadest part, height 6.3 mm .

Popi. The exact counterpart of that of H. alexis in shape and colour. A very slight boss between the eyes, a small oblong space just above the boss and between the bases of the antennow, just touching these hases and not reaching the front margin of segment 2, dark brown-green in colour consequent on being free from the white powder which covers the whole pupa. Spiracles oval and black. The whole surface of the body is rather sparsely pitted and covered with rather long, fine, white hairs, which aresemi-adpressed to the surface, these hairs spring from the pits, pne from each, and are densest on the oyas. The cremaster is short,
stont, oblong, slightly curved and black. The last segment before the cremaster is roundly indented in the middle of the front margin, and the indentation is lined with black. The colour through the white powder is green on the thorax and pink on the abdomen. The only black markings are the spiracles, the markings above mentioned on the last segments, and a dorsal black line from the frout margin of the thorax a third of the whole length of the thorax towards the hinder margin. Length 23 mm ., breadth at shoulders (which are slightly angulated and the broadest part of the papa) 6.3 mm ., the height of the thorax (which is the highest part of the pupa) 6.3 mm .

Habits. The habits of the larva are exactly those of H. alearis. The cell is composed of a few tender, soft leaves joined together loosely by an irregalar web, which web is also generally spun over the mouth of the cell or shelter; the pupa is formed in the cell. The larvæ are much eaten by spiders; and are greatly attacked by parasitic Diptera and Hymenoptera. The eggs are laid on the young white leaves (the leaves of the food-plant are sometimes rose or rose-brown in colour) in a shady place, very often ligh up amongst the foliage of the trees amongst which the creeper climbs, often to a great height. The larva tas always been found at an elevation of 900 to 1000 feet above sea level.
193. Hasora chabrona, Plötz.

Millettia racemosa, Benth. (Legıminosæ).
Egg. The egg is very small for so large a hesperid, and is red or pink when first laid.

Larfa. Head rather square, broader than high, thick through, not very large for the body, rather flat on the face; the top quarter of the head red-brown in colour, the rest black, the jaws yellow and black. Segment 2 smaller than the head, shiny, smooth, swollen-looking, white in colour, with a dorsal and a lateral black band, and a marginal brown spot laterally. Body cylindrical, increasing rapidly in width from the collar to segment 4, then gradually to the middle which is the broadest part; the anal segment rather narrow, overhanging the legs, sloping, with the extremity rounded, and dorsally black and shiny. The surface of the body covered throughout with long, very fine, white hairs, each segment with four transverse fine yellowish lines. Colour of larva dirty bluish-green, with four subdorsal, broad, yellow lines, two on each side, besides a marginal and submarginal yellow line ; the dirty groundcolour is spotted finely with yellow. Length 33 mm .

Pupa. Very like that of Hasora (Parata) alexis, Fabricins, but light pink on the abdomen, dirty green-white on the wings, thorax and head. The point on the head between the eyes is short and sharply
conical. Cremaster oblong, stout, thicker than broad: The spiracle of segment 2 with a flash, rather large, oval, black surface near it. Spiracles oval, large and black. Surface pitted all over, an erect short hair being placed in each pit, these hairs are not very short, and are longest on the head, eyes, and segment 2. Thorax stoat, the constriction behind the thorax slight. A long, dorsal, black streak on the front slope of the thorax reaching its front margin, and a short, dorsal, black mark on the hinder margin; a dorsal, black mark on segment 13 ; cremaster black ; two black spots on the inner margin of each eye; the point on the head black. The entire pupa is covered with a white powder. Length 25.3 mm ., breadth at the thorax or at segment 7 is 7 mm ., height at the apex of the thorax 7 mm .

Habits. The habits are similar to those of \boldsymbol{H}. alexis in nearly all particulars.

194. Hasora badra, Moore.

Derris uliginosa, Benth. (Leguminosse).
Larva. The larva is most like that of Hasora chabrona, Plötz, but differs in markings and coloration. It is circular in transverse section, thickest in the middle and rather stoat. The head seen from the front is nearly round and somewhat bilobed, there being a depressed line over the vertex to the apex of the clypens; it is finely rugose, and has a covering of fine, rather long, erect, white hairs which are not very densely disposed; the colour is dark rose-red with the clypens black, and a black patch, varying a good deal in size, on the front face of each lobe at the base and reaching as far as the centre; the eyes are also black; the jaws tipped with white; the head is of the ordinary size for the larva of the genas Hasora. Segment 2 is shing black. Segments 13 and 14 are dirty white, the anal segment slopes in the dorsal line at an angle of more than 45° with the longitudinal axis, and is broadly rounded at the extremity. The surface of the body is dull, covered all over, but not very densely, with fine, moderately long, erect, white hairs. Spiracles oval, of the ordinary size, and yellowish. The colour is light neatral tint, with a double subdorsal line on each side running from segment 3 to segment 12, both rather ill-defined as to ontline and ranning together in places ; five or six thin lines on each segment running across transversely to the length of the body from just above the spiracle on each side; all these lines yellow; on segments 3, 4, 6, 10 and 12 is a large lateral deep parple spot or patch interrapting the anterior pair of the transverse yellow lines; on segments 5, 7, 9 and 11 there is a deep parple line between the anterior pair of transverse yellow lines in the same position as the deep purple patch on segments $3,4,6,10$ and 12 ;
there is a subspiracular white line; the ventrum is white with a slight indigo-blue wash in the colour. Length 38 mm . when at rest, bieadth 6 -mm.

Popa. The pupa is nearly exactly the same as that of Hasora (Parata) alexis, Fabricins; it has, however, a longer snout. The ejes are prominent, and the front of the head (the front of the pupa) is square, except that the vertex is produced into a triangular piece as seen from above, really a short cone surmoanted by a porrect, rather long, cylindrical, blunt-topped snont directed slightly upwards, which is as long as segment 2 is broad (breadth in the direction of the longitudinal axis of the pupa); segment 2 is broad and convex, with its dorsal line at an angle of 45° to the longitudinal axis; the thorax is hamped, and the front slope is at a greater angle to the longitadinal axis than segment 2 , the back slope being nearly parallel to that axis; the body is slightly constricted before the shoulders in lateral outline, and also at segment 4; the pupa is thickest in the middle, though only slightly more so than at the thorax, the shoulders are evenly rounded and not prominent; the papa is circular in section decreasing in diameter from the middle to the anal end, where the stout parallelopipedal cremaster rans up on to the anal segment in a lateral penrshaped piece; segment 12 has a dorsal convex shield, with a dorsal semicircular notch in it. The spiracles of segment 2 are indicated by n conical black tubercle on the front margin of the thorar ; and the other spiracles are oval and black. The surface of the body is covered all over with a white powder, and is shiny beneath this powder where visible. The colour is a very pale green, with a black patch round each spiracle; there is an oval, blob-like, black patch at the front and hinder margins of the thorax in the dorsal line; a black spot above and below on the front of each eye; a black border to the lateral pieces of the cremaster and to the dorsal shield of segment 12 ; and the snont is rugose and black. Length 28 mm . over all, length of snont $2.2 \% \mathrm{~mm}$., breadth at centre 7 mm ., height at centre 7 mm ., breadth of front of head 5 mm .

Habits. The larva makes Ω cell, similar to that of all the other species of Hasora, of young leaves loosely bound together with silk web, and feeds, whilst young, on the young lenves, thougb, when fall grown, it will feed on the fully matured leaves. The pupa is formed in the cell, which is thinly covered inside with silk. It is attached by the tail. and by a body-band.
195. Badamia exclamationis, Fabricius.

Terminalia Bellerica, Roxb. (Oombretaceæ).
Combretum extensum, Roxb. (Combretaceæ்).
196. Hespreia allba, Fabricius. Waltheria indica, Linn. (Sterculiacees).
197. Caprona ransonnetit, Felder. Helicteres Isora, Linn. (Sterculiacess).
198. Odontoptilum angulata, Felder. Allophylus Cobbe, Blume (Sapindacese).
199. Coladenia indrani, Moore.

Grevia Microcos, Linn. (Tiliacese).
Xylia dolabriformis, Benth. (Leguminose).
Mallotus philippinensis, Muell. (Euphorbiacere).
This species is given under Ooladenia tissa, Moore, in the second Kanara paper. I have given my reasons in Journ. A.S.B., vol. lxviii, pt. 2, p. 225, n. 190 (1899) for considering O. indrani and C. tissa to represent a single species.
200. Coladenia dan, Fabricius.

Oyathula prostrata, Blame (Amarantacess).
Achyranthes aspera, Linn. (Amarantacere).
Achyranthes bidentata, Blame (Amarantacees).
201. Sataropa bhagata, Moore.

Mr. Bell obtained a single male at Anshi on 27th December, 1898. It is new to the Kanara list, and has not been bred. Messrs. Elwes and Edwards do not record it from Soath India at all, bat it occurs in Orissa and the Nilgiri Hills.
202. Saranabea pubendra, Moore.

Blepharis asperrima, Nees (Acanthacess).
203. Sarangesa dasahara, Moore.

Achyranthes aspera, Linn. (Amarantacees).
An anidentified Acanthad.
Mr. Bell notes that Coladenia dan, Fabricins, and S. dasahara are so much alike in the larval and papal states that they should certainly not be generically separated. The larva of Sarangesa purendra, Moore, only differs from them in colour, but feeds on a different food-plant to the other species mentioned above.
204. Taprna thwateest, Moore.

Dalbergia latifolia, Roxb. (Leguminoss).
J. II. 34

Dalbergia rubiginosa, Roxb. (Erguminoses).
Dalbergia tamarindifolia, Roxb. (Leguminoss).
Dalbergia volubilis, Roxb. (Leguminoses).
Derris scandens, Benth. (Leguminose).
Messrs. Elwes and Edwards (1.c., p. 147, pls. xviii, fig. 19, male; $\mathbf{x x i i}$, fig. 16, inner face of left clusp of male) describe Tapena hampsoni as a species distinct from T. thwaitesi, from the Nilgiris and N. Canara. As, however, they say they have never seen typical T. thweritesi from Ceylon, it is probable that their T. hampsoni is a synongm of that species.
205. Celanorrhinos levcocera, Kollar.

Drdalacanthus roseus, T. Anders. (Acanthaces).
E!anthemum sp. (Acunthaces).
206. Celenorrhinus ambareesa, Moore.

Strobilanthes callosus, Nees (Acanthacew).
207. Celenorrhinus fusca, Hampson.

Strobilanthes callosus, Nees (Acanthacess).
Messrs. Elwes and Edwards place "Plesioneura" fusca ns a synionym of Celsenorrhinus spilothyrus, Felder, with a query, and record it from North Canara.
208. Tagiades attices, Fabricius.

Dioscorea pentaphylla, Linn. (Dioscoreacess).
Smilax macrophylla, Roxb. (Liliacees).
209. Tagiades obscurds, Mabille.

Dioscorea pentaphylla, Linn. (Dioscoreaces).
1 have no specimens of this species from Kanara.
210. Tagiades alica, Moore.

Messrs. Elwes and Edwards (l.c., p. 140), record this species from N. Canara, this being the only locality in South India given by them for it ; elsewhere they record it from Burma, the Andaman Isles, the Malay Peninsula, and Pulo Lant near Borneo. In my collection there is a good series of both sexes of this species from Kanara. It is probable that the T. obscurus, Mabille, recorded from Kanara, is wrongly identified. It has not been bred, unless, as is probable, the transformations recorded for T. obscurus really apply to this species.

> 211. Cupitha purreea, Moore.
> Terminalia Bellerica, Roxb. (Oombretacees).

Terminalia paniculata, Roth. (Combretaces).
Combretum ovalifolium, Roxb. (Combretaces).
This carions little batterfly has a wide distribation, being found in South India (Kanara and the Nilgiri Hills), in Orissa, the Eastern Himalayas, Assam, Burma, the Andaman Isles, Sumatra, Nias, Java, Bali, Borneo, Celebes, and the Philippine Isles.
> 212. Matapa arla, Moore.*

> Bambusa arundinacea, Willd. (Graminees).
> Dendrocalamus strictus, Noes (Graminere).
> Ochlandra stridula, Thwaitos (Araminess).
213. Gangara thyrgis, Fabricius. \dagger

Areca Catechu, Linn. (Palmese).
Caryota urens, Lian. (Palmess).
Phesnix sylvestric, Roxb. (Palmess).
Calamus pseudo-tenuis, Becc. and Hook. f. (Palmeit).
Cocos nucifera, Linn. (Palmes).
214. Padraona dara, Kollar.*

Bambusa arundınacea, Willd. (Gramines).
Oxytenanthera monosigma, Beddome (Graninees).
Ochlandra stridula, Thwaites (Graminees).
215. Lambrix salsala, Moore.

Grames (Graminess).
Bambusa arundinacea, Willd. (Graminess).
216. Baoris (Parnara) guttatus, Bremer and Grey. Oryea sativa, Limn. (Gramines).
Grasses (Graminess).
This is the Baoris bada, Moore, of the second Kanara list, p. 45, n. 204, placed by Messrs. Elwes and Edwards (1.c., p. 281) as a synonym of Parnara guttatus. Baoris (Parnara) philotas, de Nicéville, of the second list, p. 47, n. 207, is believed to be a synonym of this species by Mr. Bell, who says that starved larve of B. guttatus prodace B. philotas. See also Baoris (Parnara) bevani, Moore, No. 239, infra.

[^50]217. Suastus gremius, F'abricius.

Areca Catechu, Linn. (Palmeæ).
Caryota urens, Linn. (Palmes).
Phoenix sylvestris, Roxb. (Palmex).
Oalamus pseudo-tentuis, Becc. and Hook. f. (Pulimeæ).
Cocos uиcifera, Linn. (Palmeæ).
218. Pedestes submaculata, Staudinger.

Culamus psendo-tenuis, Becc. and Hook. f. (Palmeer).
'This butterfly appears in the second Kanara list, p. 47, n. 206, as Isma submaculata, Standinger. In Trans. Zool. Soc. Loud., vol. xiv, p. 230 (1897), Messrs. Elwes and Edwards place it in the genus Plastingia, in which it was originally described, but say that they have not seen a specimen of it. On page 193 they describe Pedestes naculicorvis as a new species from Pulo Lant, near Borneo. In my opinion this species s a synonym of P. submaculata. In my collection there are specimens of it from Kanara, Cachar, the Dannat Range of Middle Tenasserim in Burma, Perak in the Malay Peninsula, and Palo Laut. It was originally described from Palawan in the Philippines. In spite of the key to the species of the genus Pedestes given by Messrs. Elwes and Edwards on p. 193, I am unable to separate P. fuscicornis, described by those gentlemen also from Pulo Lant, from their P. maculicornis.

Egi. The egg is laid on the underside of the leaves. It is domeshaped, standing on Ω narrow band. It has sixteen "meridians" which start from the top of the band and ran towards the top of the dome; these meridians are thin and raised above the surface. The surface is very finely lined transversely to the meridians. The colour is greenish, with the meridians brown. As the egg found was empty, the larva having eaten its way out of the top and made a large hole, the fact as to whether the meridians meet at the top of the egg or not cannot be stated. Breadth 0.8 mm .

Labva. Thie head is semi-elliptical in sliape, slightly rough as to surface, somewhat shiny, very light yellow-brown in colour, with a dark browu band round the back (not visible from the front view) just reaching the jaws; a brown medial line splitting down the sides of the clypeus, and a medial brownish line, broadest in the middle of its length, on each lobe of the face, starting from the clypens and diverging from the medial line of the face and nearly reaching the vertex of the lobe; the jaws and the lower parts of the clypens dark brown; the head is much larger than the second segment. Body broadest at segment 5 , sub-cylindrical in shape; the last segment, ending semicircularly, is sloping and rather large, slightly corrugated on the dorsum towards the
posterior margin, and with a small, lateral, round, tubercular, light jellowbrown spot. All the segments are clearly distinguished. The spiracles are of the ordina'y size, rather round (actually slightly oval), light yellowish-brown in colour. Each segment has a good many colourless glassy-looking spots towards its front margin; these spots are smalt but are clearly visible under a lens. The surface of the body is finely frosted and dall, destitule of hairs except round the margin of segment 14. General colour of the larva blaish-greeny-white, beneath yellowishgreen. Total length 22 mm .

Pupa. Like that of Suastus gremius, Fabricius. Head as broad, if not broader, than at the shoulders, and is, together with the segment 2, very large for the pupa, and is slightly bowed. Thorax rather short, strong, convex, but only slightly hamped. Body of the same breadth from the shoulders to segment 8 and then tapering to the end; constricted between segments 2 and 3 ; the body is circular in transverse section from segment 3 to segment 13 . Spiracular expansion of segment 2 large, nearly flush with the thorax, semicircular in shape (the straight side facing forwards); dark red-brown in colour. Spiracles small, linear, dark red-brown. Surface of the body finely rugose. Eyes and oremaster covered with short, erect hairs; surface of pupa bearing short, erect hairs as seen under a lens, with slightly longer hairs on the posterior portion. Cremaster hexagonal, small, with next to no suspensory bairs, brown. The pupa has the head green with a shade of brown, the thorax is green, and the abdomen waxy yellow; the surface is covered with a white powder. The cell in which it is formed is tightly closed, and the papa is attached very slightly by the tail only.

Habits. The habits of the larva are sinilar to those of S. gremius, the cell being made tightiy, clothed with silk inside, and the edges eaten in crenalatious.' The larva eats above the cell towards the point of the leaf leaving the midrib, and pupates in the cell. Great quantities of old cells are found, pointing to the fact that the larver are very liable to the attack of enemies. The food-plants were always found in dark shady evergreen jungle. The pupa-cell is cut free by the larva before papation and falls to the ground, and no pupa is therefore ever found except among rubbish at the foot of the plant.
219. Halpe astigmata, Swinhoe.

This species has never been bred.
220. Halpe ceylonica, Moore.
Bambusit arundinacea, Willd. (Graminer).
Oxytenuithera momostigma, Beddome (Gramines).

This buttarfly is givan in ithe second Kanara list.as Halpe monsei, Watson, as well as \boldsymbol{H}. ceylonica, the former appears to me to be a syuopym of the latter. In describing \boldsymbol{H}. moorei, Watsou does not refer to H. ceylonica, exoept to give it in his list of the species of the genus as.a distinct speoies.
> 221. Halpe hanqrei, de Nicéville.

> Dendrocalımus strictus, Nees (Araminees).
242. Halpe hyrtacus, de Nicéville.

Oxytenanthera,monostigna, Beddome (Graminer).
Ochlandra stridula, Thwaites (Gramines).
Larva. The head of the larva is the same shape as those of the geuus Buoris; it is uearly round, slightly indented on the top, convex on the face, thick throagh, rugose as to the surface, and finely hairy all over, the hairs rather short; the clypens and aboat the jaws, the whole margin of the head as well as all the hinder part, and a central broad band-all very dark brown; the rest of the head dirty yellow. Body of the usual shape of Baoris, the anal segment rounded at the extremity; that segment covered all over with starslaped reddish-brown spots, from each of which springs a short seta. Spiraoles small, oval, a little darker than the colour of the body. Surface of the body covered with short, erect, fine, colourless hairs, which are rather longer on the anal margin than elsewhere. The colour of the larva is a transparent greenish dirty yellow, with a brown tinge on the hinder segments; a dorsal dark green line. The body is finely folded at the margins of the segments. Length 28 to 38 mm .

Pups. The pupa has the head bowed, square in frout, perfectly parallel-sided, much broader transversely to the length of the pupa than in the direction of that length, nearly as broad as the thorax at the shoulders ; there is a slight boss between the eyes, with elect, rather long, light hairs in front and aronud the eyes. Segment 2 uarrow, parallel-sided. Thorax ouly slightly humped, its front slope in the same line of ascent as the head and segment 2 , twice the diameter of segment 2 (in the sense of the papal height) at the apex, evenly conver, rounded at the shoulders; the apex is the highest and the shoulders the broadest part of the body. The transverse seetion of the body is circular from the shoulders to the anal end, which narrows off into the rather short and triangular cremaster; the cremaster has a rounded extremity, is perfectly flat beneath, nenily perfectly wedge-shaped, with feebly developed dorsal sustensor ridges, and a tuft of suspensory hairs
on the upperside of the rounded exdremity; the cremantey is hollowed out at each side at its base as in the papa of Bicraocs hampeomi, Ehwes and Edwards. Spirecles nardow, oval, small, of a darker yeherr colour than the body. The spiraoulare expansions of segment 2 large, kidneyshaped, with the round side backwards, the edge stightly raisediabove the body, strainer-shaped as to the hollow area, rugese on the surfiace, facing forwards and outwards, very conspicuous, dark brown. The surface of the body is covered thickly all over with semi-ereot, short, light hairs; the surface is irregularly and finely rugose. The colour of the pape is a brownish.red, liglit, dirty yellow, with a lateral' dark smadge along each side of the thorax, as well as some dark spets; each abdominal segment from 6 to 12 hsviag two transverse rows of small, dark spots. The papa is stout, very similar in shape to that of Telicota bambusse, Moore. The proboscis does not extend in the least beyond the wing-cases. It is suspended by the tail only. Length 22 mm., breadth 5.5 mm .

Habits. The habits of the larva are those of T. bambusse in as far as the cell-making is concerned. It is just as sluggish, or even more so, in its movernents; and does not exorete any cereons matter in the cell prior to changing to a papa.
> 223. Telicota bambusa, Moore.

> Bambusa arundinacea, Willd. (Gramines).
> Oxytenanthera monostigina, Beddome (Aiamines).
224. Baracos hampsoni, Elwes and Edwards.

A very long-leafed soft grass (Graminess).
This butterfly is given in the second Kanara list as \boldsymbol{B} soptentrionum, Wood-Mason and de Nicévelle, a species restricted by Messrs. Elwes and Edwards to Sikkim and the Shan hilis of Uppor Burma, but it is found also in Cachar, and in Middle Tenasserim of Lowor Burma. B. hampsoni was described from N. Canara, bat it oocurs also on the Nilgiri Hills.

225. Taraotrocrra ceramas, Hevition.

 Grasses (Araminess).226. Taractrocera mevios, Fabricing.

This butterfly has never been bred.
227. Zographetus ograia, Hewitsom.

This species also has not been bred.
228. Hyarotis adiastus, Cramer.

Phosnix sylvestris, Roxb. (Palmees).

Calamus pseudo-tenuis, Becc. and Hook. f. (Palmess).
Eac. The egg is dome-shaped, widest at the bottom, the base being narrowly flanged. There are about thirty-two very fiue, low meridian-like ridges not extending on to the top of the egg, reaching only to two-thirds of the height of the egg from the base; the top surface is fiuely frosted, all the surface is semi-satiny and frosted-looking. Colour dirty very light brown. The egg is always laid on the top of a leaf near the edge, and sometimes there are five or six eggs placed in a row.

Larva. The larva is of the type of Baoris oceia, Hewitson, with which it agrees in every way. The body is long and parallel-sided, flat beneath, convex over the dorsum, narrowing somewhat towards the head in segments 2 and 3 ; segment 12 somewhat dilated belind the spiracles; the anal segments sloping to a thin edge, which lies flat on the resting surface, and a broadly rounded extremity. Head large, broadly oval from the front view, face slightly convex, somewhat bilobed, with a narrow clypens, the surface pitted, dull, light brown-yellow in coloar, with n dark brown medial band over the vertex to the apex of the clypens; clypeus red-brown, with a dark medial line bordered with whitish; a few short hairs about the month. Spiracles oval, light yellow, with a fine brown border. Surface of the body dull, the segments well marked though not constricted in any way, and with some transverse lines; a fringe of straight, fine, colourless hairs round the margin of the anal segment, but none elsewhere. Colour blue-green-white, with a dorsal, dark indigo line from segment 3 to segment 11 ; segment 2 yellowish; an indistinct lateral white line. Length 33 mm ., breadth 4 mm .

Pupa. The pupa is also of the type of B. oceia. The thorax is slightly humped; the abdomen is depressed, being broader than high ; the process or snout between the eyes is long and sharp, tarned up very slightly at the extremity; the proboscis is free from the ends of the wings and reaches to the end of the cremaster; the cremaster is broad, thin, spatulate, and rather long, with the edges dorsally swollen. The spiracles of segment 2 are indicated by a kidney-shaped swelling with a frosted-looking surface. The other spiracles are oval, flush, and nearly white. The surface of the body is very finely corragated, except the frontal process which is rather coarsely ringed. The thorax has a dorsal double series of small tooth-like tubercles. The papa is bone-coloured, with a pinkish dorsal suffusion from segments 4 to 11 , a subdorsal blackish band, with a spot tonching it on the ontside in the
middle of each segment 3 to 11 ; a dorsal pink line, with a black dot on the margin of each segment on this dorsal line ; a dorsal, thin, black line on the cremaster, and a dorsal darkish line on the anterior process. The pupa is about the same breadth from the shoulders to segment 9 , and is highest at the thorax. Length 31 mm . over all, of which the frontal process is 4 mm ., and the cremaster is 3 mm ., breadth 5 mm ., height at segment 9 is $4 . \mathrm{mm}$., height at thorax 4.75 mm .

Hadits. The young larva on emerging from the egg makes a small semi-tube for itself on the underside of a leaf, covering the hollow with silk and stretching bands of silk across at intervals. Having grown somewhat the larva fastens one leaf on top of another and lives between them, eating the leaf lying under the top one. When about to papate the larva wanders, finally pupating on the underside of a leaf with or without a covering. The pupa is fixed to the leaf by the tail and by a body-band. All the sheaths, cells, houses, nests or shelters of the larva, by whatever name we choose to call them, are thickly and evenly lined with silk. The pupe are very often found on the dry dead leaves round the base of the palms (Phoenix sylvestris).
229. Ampittia dioscorides, Fabricius.

Oryza sativa, Linn. (Gramineæ).
Grasses (Gramineæ).
This is the Ampittia maro, Fabricius, of the second Kanara list, p. 54, but Dr. Chr. Aurivillius has recently shewn (Ent. Tids., vol. xviii, p. 150, n. 65 (1897) that 4. dioscorides is an older name for it.

230. A bromachus indistinctus, Moore.

Grasses (Gramines).
231. Padraona gola, Moore.

Soft grasses (Gramines).
232. Baoris (Parnara) conjoncta, Herrich-Schäffer.

Zea Mays, Linn.* (Graminess).
Coarse broad-leaved grasses (Gramines).
Mr. Bell says that this species is the Ohapra promnens [recte prominens, Moore=Baoris (Ohapra) sinensis, Mabille], of the first paper, p. 371, n. 82.
233. Baoris ocela, Hewitson.

Bambusa arundinacea, Willd. (Gramineæ).

- Given as Zea mais in the second Kanara~paper, p. 87 ,
J. II. 35

> Dendrocalamus strictus, Nees (Aramines). Ochlandra stridula, Thwaites (Gramineæ).

234. Baoris (Parnara) kumara, Moore.

Bambusa arundinacea, Willd. (Graminere).
Ochlandra stridula, Thwaites (Gramineæ).
In the first Kanara paper (p.370, n. 80) it is noted that this species feeds on rice, Oryza sativa, Linı., Natural Order Gramineæ, and that the figure of the larva ($\mathrm{pl} . \mathrm{F}, \mathrm{fig} .4$) is represented on a bambno leaf by mistake. Mr. Bell has only bred the larva on bamboos, and doubts that it feeds on rice or on any true grasses. Messrs. Elwes and Edwards (l.c., p. 276) record P. kumara in South India only from the Nilgiris, in North Indin only from Sikkim, and from Java and Borneo. In spite of the elaborate keys given by these gentlemen to distinguish the various species of the genus, I find it extremely difficult to differentiate many of the species given as distinct from coloration and markings only. I have not stadied the prehensores, which appear to be the only safe test by which they can be satisfactorily distinguished, and that test will apply to the males only. I possess no specimens of B. kumara from Kanara.

235. Baoris (Parnara) philippina, Herrich-Schäffer.
 Bamboo (Graminers).
 Recorded by Messrs. Elwes and Edwards (l.c., p. 276) from

 N. Canara (E. H. Aitken), but omitted from their tivo Kanara lists by Messrs. Davidson, Bell and Aitken. They have probably failed to identify it, placing it under B. kumara, Moore, to which species it is so closely allied that in spite of Messrs. Elwes and Edwards key to separate them, I am often in doubt as to which of the two species I should apportion certain specimens. B. philippina is said to have in the forewing Ω white spot in the submedian interspace touching the submedian nervure just beyond its middle, which B. kumara lacks. All my Kanarese specimens possess this spot. Many specimens have this spot very faint indeed, obsolescent in fact, so that one is in doubt as to which species these specimens belong.Larva. The larva has the head heart-shaped, but it is rather narrow at the top and slightly indented, the vertices of the lobes being rounded; the face is shing and pitted all over, without hairs except about the mouth where there are a few; the colour is white, with a broad, black band round the head, ending at the eyes, a black line down the centre of the face, splitting into tivo just before the apex of the clypeus, the two parts running parallel to the sides of the
olypens for a very short diatance, when they atop, and ane met by a brown line phrallel to the central one commenoing one-flaied the length of the head from the vertex, and ending where it meets the furcation of the central line; the sides of the olypens are hined with black, and there is a black line down the centre of the olypeus; the head is not large for the body. The colour of the head varies from that dencribed above to pure white without any markings. The body is more or less celindrical, lying with the ventram flat on the leaf; the neck is considerably narrower than the head; the anal segment is flattenad, roughened on top by pittings, it lies flat on the sarface of the leaf, and is rounded at the end; segment 12 is slightly broeder than segment 11, being swollen at the sides; the larva is very little broader and higher at segment 5 than anywhere else. Spiracles small, round, yellow. The surface of the larva is smooth, not shiny; the colonr is a pure, opaqne, blnish-oliite all over, with a slight yellowish tinge on the margins of the frout segments, which are finely folded. Length 42 mm .

Pupa. The pape is vory similar in shape to that of Baoris conjuncta, Herrieh-Sohafier, also in mode of saspension and in colour. The "beak" (long head-process) is stightly ourved downwards, with a blunt tip, and a small piece stuck on to the tap at the point with a slight peint divected back wards. The proboseis is free, reaching to the hinder margin of segment 9. The cremaster is long, thin, triangular, scolloped out on the top, transparent. The surface of the papa is shiny, with minute, erect, thick hairs covering it sparsely. The spiraoular marks of eagment 2 ave narrowly oval in shallow depressions. Spiracles linear, white ; the marks on segment 2 are the same colour as the body. Culour of body very tramparent darkish geoen, with a rather broad, double, dorsal, white line an the abdomen. Leagth 32 mas ., bread th 6 mm ., length of snout or boak alone 3 mm . The prapa is fastened by the tail and by a band round the body.

Habits. The larva lives in a more or less laxly-made cylindrical cell. It pupates free on the underside of a leaf, drewing the sides together slightly at either end of the loaf.

236. Bloris (Pathara) plbbela, de Niobville.

This is the only spocies in the genus which has in the male a tuft of long liairs towards the base of the forewing on the underside attnohed to the inner margin of the wing and turned andor and forwards. By this character alone it. is quite easy to distinguish the male. Messrs. Elwes and Edwards (lic., ; p. 274) reoord it from Sikkim, from Java on M. Paul Mabille's anthority, from Kina Baln mountain in Borneo,
and from Pulo Yant island near Borneo. In my collection are specimens . from Sikkim, and from Taunyoo in Upper Tenasserim of Burma. Its occurrence in Kanara is I think doubtful, and Mr. Bell tells me that he has no specimens of it in his collection. It has uever been bred, though Mr. Bell says that the larva feeds on bamboo in the second paper. The insect bred was not B plebeic.
237. Baoris (Parnara) canaraica, Moore. This species has never been bred.
238. Baoris (Parnara) colaca, Moore. Soft, small grasses (Gramines).
239. Bajris (Parmara) bevani, Moore.

Oryza sativa, Linn. (Gramineæ).
Recorded in the first Kanara paper, p: 370, n. 79, but omitted by Mr. Bell from the second paper. It is doubtless a wrong identification, the specimens referred to being B. guttatus, Bremer and Grey, n. 216 ante, though it may occur in Kanara, as Messrs. Elwes and Edwards (l.c., p. 283) record it from Bombay. I have no specimens of B. bevani from any part of South Indin. In Bombay Mr. Aitken says he has bred it on grass. It is doubtful if he knew the species when he wrote.
240. Baoris (Chapra) sinensis, Mabille.

Recorded as Chapra promnens [recte proniinens], Moore, in the first Kanara paper, (p. 371, n. 82), which is synonym of B. sinensis, the larva feeding on "Some species of Arum." The species is omitted altogether from the second paper. Mr. Bell says it is a wrong identification, and that the specimens so recorded were Baoris (Parnura) conjuncta, Herrich-Schäffer.
241. Baoris (Chapra) sobochracea, Moore.

Oryza sativa, Linn. (Graminese).
Grnsses (Gramineæ).
Mr. Bell thinks that this species and the following are one and the same, in which I am inclined to follow him, as I have never been able to separate them satisfactorily. The form with the underside grey, typical B. subochracea, is never found in Kanara in the rains, and is probably a dry-season form of B. mathias. Messrs. Elwes and Edwards (l.c., p. 275) keep them distinct. They say that the form of the male genitalis is different in the two species.
242. Baoris (Chapra) mathias,' ${ }^{\text {- Fabricius. }}$

Oryza sativa, Linn. (Gramineæ).
Grasses (Gruminess).
243. Udasprs folus, Cramer.

Curcuma Amada, Roxb.* (Scitaminer).
Kæmpferia pandurata, Roxb. (Scitamineæ).
Hedychium coronarium, Kœnig (Scitamineæ).
Amomum microstephunum, Baker (Scitamineæ).
244. Notocrypta feisthamelit, Boisduval.

Curcuma Amada, Roxb. (Scitamines).
Hedychium coronarium, Kœnig (Scitamineæ).
Amomum microstephanum, Baker (Scitamineæ).
In the second Kanara paper (p. 62) the larva of this species is said to feed on "Maranta." That genus of plants is not kept distinct by Sir J. D. Hooker, but appears in the synonymy of several genera of the Scitaminer in conjunction with various species of plants. Messrs. Davidson, Bell and Aitken give N. restricta, Moore, as a species distinct from N. feisthanzelii, and describe the transformations of both. From these descriptions the larvæ would appear to differ considerably in the two species, and feed on different plants, N. feisthamalii on Amomum, and N. restricta on Ourcuma. Further observations on the sabject are very desirable, as Messrs. Elwes and Edwards (l.c., p. 239) unite the two. Typically the imagines are quite distinct, bat intermediate examples are apparently common. Mr. Bell maintains stoutly that the two species are distinct.
245. Sancos pulligo, Mabille.

Anomum microstephanum, Baker (Scitamineæ).
Mr. Bell says that the larvo of Sancus pulligo and Notocrypta feisthamelii, Boisduval, can hardly be distinguished, but that the larvo of N. feisthamelii and N. restricta, Moore, cannot be, with care, mistaken the one for the other.

Butterflies from the Western Himalayas and Kashnir, with the foodplants of their larvos.

1. Vanessa cardoi, Linnæus.

Carduus sp. (Oompositæ).

* In the second Kanara paper, p. 62, the food-plant of this species is said to be Curcuma aromatica, Salisb., which is an incorrect identification.
J. II. 36

2. Vanessa caschmirensis, Kollar.

Urtica parviflora, Roxb. (Urticacere).
3. Vanessa xanthomelas, Wiener Verzeichniss.

Salix tetrasperma, Roxb. (Salicineæ).
4. Thecla sassanides, Kollar.

Indiyofera atropurpurea, Hamilt. (Leguminosa).
5. Hysudra selira, Moore.

Indigofera atropurpurea, Hamilt. (Legıminoss).

I may note that in the descriptions of larve above fourteen segments are always reckoued; all fourteen are very obvious in some larve, the head being the first, the anal flap the fourteenth; all fourteen somites are very distinct also in some pupæ, hardly distinguishable as regards 13 and 14 in others. Segment $2 / 3$, \&c., is the margin common to segment 2 and segment 3.
XV.-Note on the avian genus Harpactes, Swainson.-By Lionel de Niceville, Natural History Secretary.

In a footnote on p. 130 ante Colonel C. T. Bingham points out that the genus Harpactes of Swainson cannot be used for a genus of birds, being preoccupied. This was first pointed out by Cabanis and Heine in Mus. Hein., n. iv, pt. l, p. 154 (l863), and referred to by Mr. Charles W. Richmond in Proc. United States National Museum, vol. xvii, p. 602, footnote (1894) ; by Mr. Harry C. Oberholser in Proc. Acad. Nat. Sciences Philadelphia, 1899, p. 206; and in the Ibis, seventh series, vol. vi, p. 555 (1900). Messrs. Cabanis and Heine, Richmond, and Oberholser specify Pyrotrogon, Bonaparte, as the name by which these birds should be generically known, the typical species being Trogon ardens, Temminck.

INDEX SLIP.

ZOOLOGY.

N.

Masson, W. P.-Note on four Mammals from the neighbourhood of Darjeeling. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 89-90.
[Mammalia. Carnivora. Ursidæ.]
Ursus malayanus (Tree bear).
Ursus tibetanus (Ground bear).
Occurrence of, in the Darjeeling District.
[Mammalia. Rodentia. Hystricidæ.]
Atherura macrura (Asiatic brush-tailed porcupine).
Occurrence of, in the Darjeeling District.
[Mammalia. Ungulata. Bovidæ.]
Nemorbødus bubalina (goat-antelope or serow).
Cemas goral (goral).
Occurrence of, in the Darjeeling and Sikkim Districts.
Darjeeling and Sikkim Districts, occurrence of tree and ground bears, Asiatic brush-tailed porcupine, goat-antelope and goral.

MATHEMATICS.

A.

Dutt, Promothonath.-On a new method of treating the properties of the circle and analogous matters. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 91-97.
The circle.
New method of treating the properties of.

[^51]
CHEMISTRY.

Mukersi, P.-Note on a method of detecting free Phosphorus. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 97-101.
Phosphorus (free).
Method of detecting.

ZOOLOGY. N.

Waiton, H. J.-Note on the occurrence of Rhodospiza obsoleta (Licht.) in the Tochi Valley. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 101-102.
[Aves. Passeres. Fringillidæ.]
Rhodospiza obsoleta (Desert Rose-Finch).
Occurrence of, in the Tochi Valley.
Tochi Valley, occurrence of the Desert Rose-Finch.

ZOOLOGY.

N.

Bingram, C. T. and Thompson, H. N.-On the Birds collected and observed in the Southern Shan States of Upper Burma. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 102-142.
Birds, a collection of, from Southern Shan States.
Southern Shan States, a collection of birds from.

ZOOLOGY.

\mathbf{N}.
Finn, F.-On the form of Cormorant inhabiting the Crozette Islands. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, p. 143.
[Aves. Steganopodes. Phalacrocoracidæ.]
Phalacrocorax verrucosus? or
Phalacrocorax melanogenys (Blyth).
Occurrence of, in the Crozette Islands.
Crozette Islands, cormorant inhabiting the.

ZOOLOGY.
N.

Finn, F. and Tcrner, H. H.-On two rare Indian Pheasants. Journ. As. Soc. Beng 1 L, LXIX, Pt. ii, 1900, pp. 144-146.
[Aves. Gallinæ. Phasianidæ.]
Phasianus humiæ.
Gennæus d̨visoni?
Occurrence of, in the Chin Hills.
Chin Hills, occurrence of two rare Indian Pheasants.

ZOOLOGY.
N .
Finn, F.-Notes on the structure and function of the tracheal bulb in male Anatidæ. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 147-149.
[Aves. Anseres. Anatidæ.]
Nettopus coromandelianus.
Absence of tracheal bulb in the male p. 147
Aix galericulata, Cairina moschata \times Anas boschas, and Casarca ratila.

Presence of tracheal bulb in the male p. 148
Tracheal bulb.
Function of, in drakes p. 148
Difference in size of, influences the voice of drakes p. 149

ZOOLOGY.
N.

Nicetille, L. de.-Note on Calinaga, an aberrant genus of Asiatic Butterflies. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 150-155.
[Hexapoda. Rhopalocera. Nymphalidw.]
Calinaga.
Various positions in the Butterfly order.
Description of foreleg.
Geographical range of.
All species probably mimetic.

ZOOLOGY.
N.

Walton, H. J.-Notes on birds collected in Kumaon. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 155-168.
Birds, a collection of, from Kumaon.
Kumaon, a collection of birds from.

BOTANY.
M.

Prain, D.-Some neiv plants from Enstern India. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 168-174 [in part (see also separate slip King and Prain).]
Tiliacem, new, from Eastern India. Labiatæ, new, from Eastern India.

Grewia (Eugrewia) nagensium (p. 168).

Gomphostemma (Pogosiphon) inopinat um (p. 172).

Asclepiadaceæ, new, from Eastern	Liliaceæ, new, from Eastern India.
India.	Smilax (Eusmilax) Pottingeri
Ceropegia kachinensis (p. 170).	(p. 174).
Acanthacem, new, from Eastern	Aroideæ, new, from Eastern India.
India.	Cryptocoryne Cruddasiana
Cymnostachyum (Cryptophrag-	(p. 174).
niumi) Listeri (p. 171).	

n. spp.

Eastern India, new plants from

> BOTANY. M.
> King, Sir Georgr and Prain, D.-Some new plants from Eastern India. Journ. As. Soc. Bengal, LXIX, Pt. ii. 1900, pp. 168-174, [in part (see also separate slip, Prain)].
> Olacineæ, new, from Eastern India. Asclepiadaceæ, new, from Eastern
> Gomphandra serrata (p. 169). India.
> Combretaceæ, new, from Eastern Marsdenia (Eumarsdenia)
> India.
> Combretum kachinense (p. 169). Acanthacem, new, from Eastern India.
> Peristrophe longifolia (p. 171). Chloranthacem, new, from Eastern India.
> Chloranthas liachinensis (p. 173)

Eastern India, new plants from

BOTANY.
M.

Prain, D.-A list of the Asiatic species of Ormosia. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 175-186.

Ormosia-
Synonymy pp. 175-176
Key to the species pp. 177-179
Description of the species pp. 179-185.
Table of distribution of South-Eastern-Asiatic species p. 186

Leguminosæ, new, from China.
Ormosia Henryi, n. sp. (p. 180) ; O. yunnanensis, n. sp. (p. 183).
Leguminosm, new, from Kachin Hills.
Ornoosia inopinata, n. sp. (p. 181); O. inopinata, var. typica (nov.) (p.181); O. inopinata, var. dubia (nov.) (p. 181); O. laxa, n. sp. (p. 182).

Ormosia polita, n. n. for O. nitida, Prain nec Vogel (p. 184).
China and Kachin Hills, new plants from.

ZOOLOGY.
N.

Nictvide, L. de.-The Food-plants of the Butterflies of the Kanara District of the Bombay Presidency, with a revision of the species of Butterflies there occuring. Journ. As. Soc Bengal, LXIX, Pt. ii, 1900, pp. 187-277.
[Hexapoda. Rhopalocera.]
Food-plants, list of Butterflies in the Kanara District pp. 193-215 Butterflies, list of in the Kanara District ... pp. 215-277 Kanara District, list of Butterflies and their food-plants.

ZOOLOGY. N.

Nictille, L. de.-Butterflies from the Western Himałayas and Kashmir, with the food-plants of their larvæ. Journ. As. Soc. Bengal, LXIX, Pt. ii 1900, pp. 214-215, 277-278.
[Hexapoda. Rhopalocera.]
Food-plants of larvæ.
Of Butterflies of Western Himalayas and Kashmir.
Western Himalayas and Kashmir, butterflies and larvæ, food-plants.

ZOOLOGY.
N.

Nicefille, L. de.-Note on the avian genus Harpactes, Swainson. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, p. 278.
[Aves. Trogones. Trogonidæ.]
Harpactes, Swainson-
Superseded by Pyrotrogon, Bonaparte (vide authors quoted).
Pyrotrogon, Bonaparte-
Supersedes Harpactes, Swainson (vide authors quoted).

Digitized by GOOgle

INDEX SLIP.

PHYSIOLOGY.
Rogers, L.--The relationship of the water-supply, water-logging, and the distribution of Anopheles Mosquitos respectively, to the prevalence of Malaria north of Calcatta. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 457-476, and map.
(1) Water-supply and (2) water-logged areas.

Nature and extent and method of enquiries of '1) and (2) pp. 457-458
General results of Spleen percentage tabulated in (2) pp. 458-460
Variation in Spleen rate by wards in (2) ... pp. 460-473
Anopheles Mosquitos.
Distribution of pp. 473-474

Conclusions pp. 475-476
CHEMISTRY.
Ray, P. C.-Further Researches on Mercurous Nitrite and its Derivatives. Journ. As. Soc. Bengal, LXIX. Pt. ii, 1900, pp. 476-485.
Mercurous Nitrite.
Method of preparing-on a large scale ... pp. 476-477
." pp. 477-478
Interaction with Ethyl lodide pp. 478-480
," Nitro Ethane pp. 480-481
Mercurous and Mercuric Nitrites.
Interaction with Nitrites of silver and sodium ... pp. 481-484
Discussion of results p. 484,
Table of results of Analyses p. 485
CHEMISTRY.
Ray, P. C.-On Mercurous Iodide-A new method its preparation. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1940, pp. 486-488.
Mercurous Iodide.
Results of experiments p. 486
Geveral properties pp. 486-487
Result of Analysis pp. 487-488
BOTANY.
Gamble, J. S. and Prain, D.-Description of a new Himalayan genus of Orobanchaceæ. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 488-489.
Orobanchaceæ, new, from N. W. Himalayas.
Gleadovia (n. gen.) p. 488 ; G. ruborum (n. sp.) p. 489.
N. W. Himalayas, new plant from.

JOURNAL

OF THE

ASIATIC SOCIETY OF BENGAL.

Vol. LXIX. Part II.-NATURAL SCIENCE.

No. III.-1900.

> XV1.-Materials for a Carcinological Fauna of India. No. 6. The Brachyura Oatometopa, or Grapsoidea.-By A. Alcocs, M.B., C.M.Z.S., Superintendent of the Indian Musertm.

[Receired 25th Jane; Read 4th Jaly.]

In treating the Catometopes I have in the main followed the scheme of Milne Edwards (Annales des Soiences Naturelles for 1852 and 1853) as modified by Dana, and I may introduce this paper with a statement of the points at which it deviates from the former. of those classical works.

In the first place, following Dana and most subsequent authors, I have evicted the Telphusids. With them must also go Gecaroinucus, which is an undoubted Telphusoid, althongh it is persistently ranked with the Geocarcinides.

Again I have followed the lead of Dana in his treatment of the Gonoplaceea of Milne Edwards, the geners of which are distributed among the Ocypodides and the Sesarmine Arapsides, while Gonoplax itself is relegated to the Carcinoplacids.

This step necessitates a considerable enlargement of Milne Edwards' group of Carcinoplacinxe, and a reconstruction of his Ocypodine, and in carrying this out I have in the main followed Dana's admirable system.

The isolation of Myctiris as an independent family, which was first suggented by Dana, is here accented, but at the same time I fully agree with Milne Edwards eatimate of this singular form as a "satellite" of the Ocypodoide.
J. II. 37

In grouping the genera of the Grapside I have departed very little from the arrangement of Milne Edwards, who recognized-though his successors have ignored it-the independence of the Varuna group.

I have adopted Dana's family of Geocarcinide, but with some hesitation, for Milne Edwards' estimation of the group as a subfamily of Grapside has much to recommend it.

I gladly follow Milne Edwards in recognizing the Hymenosoma group as a tribu principale not distantly related to the Ocypodes and quite distinct from and independent of the Pinnoteres group.

As regards additions to the Catometopa as known to and recognized by Milne Edwards, I may mention the Rhizopinze (Stimpson, Miers), the Hexapèdiner, the Palicidæ (which include Cymopolia formerly classed with the Dorippidm), and the new family Ptenoplacidx.

From the system of Dana I would dissent only in separating the Hymenosoma-group from the Pinnoterids; in enlarging the Scopimerins (=Dotines) at the expense of the Ocypodides ; in splitting the Grapsines into two equal groups,-one round Grapsus, the other round Varuna; and in removing Gecarcinucus from the Geocarcinids.

The soheme of classification proposed by Miers seems to meto, tod often, disregard natural relations without facilitating the recognition of apecies by way of compensation.

The most conspicuous instance is the family Pinnoterides, in which we find Pinnoteres and its kindred included with such undoubted Ooypodoids as Dotilla and Scopimera, with Mictyris, with Hymenosoma and its allies, and finally with Hexapus whose affinities are quite clearly with the Rhizopinse.

Again by the exclusion of Scopimera and Dotilla and by the inclusion of the Gonoplacides, Miers family of Ooypodide becomes unnatural and incomplete.

I follow Miers in treating the Rhizopines as a subfamily of Carcinoplacidx.

Ortmann obviates some diffculties by separating Gonoplax and Ommatocarcinus from the Carcinoplacides as a distinct family, and by altogether removing the Hymenosomides from the Catometopes. By the lattor stop his Pinnoterides gain in natural value, as they further do by the restoration of Scopimera and Dotilla to their place among the

Ocypodoids; so that both his Pinnuteridx and Ocypodids are far more natural families than those of Miers. I am doubtful, however, whether Ortmann has assigned its full rank to Mictyris, or their proper place to the Heappodinse.

The Catometope crabs of the Indian fauna number about 140, of which 136 are noticed in the present paper. Of these, 31 are now to moience, and include 2 species of Libystes, 1 of Psopheticus, 2 of Litochira, 1 of Notonyx, 1 of Ceratoplax, 1 of Typhlocarcinus, 2 of Pinnoteres, 3 of Dotilla, 2 of Bcopimera, 1 of Clisiostoma, 1 of Tylodiplax, 1 of Elamena, 2 of Hymenicus, 2 of Ptychognathus, 1 of Pyxidognathus, 3 of Sesarma, 2 of Palicus (Cymopolia), and 1 of each of the following new genera, Typhlocarcinodes (Rhizopinæ), Lambdophallus (Hexapodinæ), and Ohasmocarcinops (Asthenognathinæ).

The new species are, for the most part, either little crabs that are liable to be overlooked, or inhabitants of depths which, though moderate, are inacoessible to ordinary collectors.

As heretofore, most of the new species come from the copious collections of the "Investigator" and will be duly figured in the Illustrations of the Zoology of the R.I.M.S. Investigator.

Tribe CATOMETOPA.

Quadrilatera, Latreille (pt.), Fam. Nat. du Regne Anim. p. 269.
Catomètopes, Milne Edwards (pt.), Hist. Nat. Crust. IL. p. 1.
Cancri (pt.), Ocypodes, Grapsi, Pinnotheridea, De Haan, Faun. Japon. Crust.
Ocypodidx, Milne Edwardm (pt.), Anu. Sci. Nat., Zool., (3) XVIII. 1852, pp. 128, 140.

Grapsoidea, Dana, U. S. Expl. Exp. Crust. pt. I. pp. 67, 306.
Catometopa, Miers, Ohallenger Brachyura, p. 216.
Catomotopa, Ortmann, Zool. Jahrb., Syst. VII. 1893-94, pp. 411, 688, play Majoidea Hymenosomidæ, p. 31 : and in Bronn's Thier Roich, V. ii. Arthropoda, pp. 1165, 1168, 1175.

The carapace is variable, but commonly and typically it is transverse, more or less quadrate, with large branchial and small and indistinct hepatic regions and a broad front. The front also is variable in form, but typically it is much deflexed.

The orbits, typically, occupy the whole or the greater part of the anterior border of the carapace on either side of the front. The typical fold of the antennules is transverse; but it may be oblique, or nearly vertical, and in a few cases there are no distinct fosse at all into which these appendages can fold.

The epistome, typically, is estramely short, bat occasionally it is
of considerable length. The buccal orifice is typically, bat by no means always, square cut.-

The palp of the external maxillipeds usually articulates either at the summit, or at or near the external angle, of the merus; but often, as in almost the whole family Gonoplacidse, it articulates distinctly at the antero-internal angle.

The genital ducts of the male wsually perforate the sterıum opposite the last pair of legs : if, as happens in the family Gonoplacids, they perforate the bases of the last pair of legs, they pass forvards to their destination in a groove in the stornum.

The abdomen of the male is very often narrow at its base aud so does not cover all the space between the last pair of legs.

The branchis are often fewer than 9-from 8 to 6 -on either side : their efferent channels open on either side of the palate.

The Catometopa may be divided into 9 families. One of these, the Gonoplacidse, so closely approaches the Cyclometope family Xanthids that such Xanthoid forms as Geryon and Oamptoplax have by some authors been included in it, while, on the other hand, some of its constituent genera, such as Gonoplax and Oarcinoplax, have been ranged among the Cyclometopes.

Three other families, namely, the Grapsidx, the Geocarcinid\&, and the Ocypodidæ, include the typical Catometopes, upon which our general conception of the group is founded.

The remaining five families are more or less aberrant, they are the Pinnoterids, the Mictyrids, the Hymenosomids, the Palicidss, and the Ptenoplacidse.

Of these aberrant families, the Pinnoterids are probably most nearly related to the Gonoplacidse, the Mictyridse to the Ocypodidse, and the Palicidss to the Grapsids.

The true position of the Hymenosomids appears to me to be still doubtful. Many authors place them near the Pinnoteridse and Mictyride, and I think that their most natural place is alongside the Mictyridse. Ortmann alone boldly removes them from the Catometope grade altogether and unites them with the Oxyrhyncha, which I think is a decided mistake.

There remains the family Ptenoplacidse, which includes the single species Ptenoplax notopus. This, though it has a superficial resemblance to Macrophthalmus, is remote from that genus in many important characters, and, though it has no look of Hesapus, yet shows an attractiou to Hexapus and Lambdophallus that can hardly be acoidental.

The 9 families may be characterized as follows, their compass in relation to the schemes of other authors will be noted in the sequel :-

Family Gonoplacids. Marine Catometopes closely resembling Cyclometopes. The palp of the external maxillipeds articulates at or near the antero-internal angle of the merus, never at the antero-external angle or at the middle of the anterior border : the exognath of the external maxillipeds is of normal size and is not concealed. The interantennular septum is a thin plate. The division of the orbit into two fosser is not accented.

Family Grapsids. Littoral (rock-haunting), or pelagic (drift-weed and timber-haunting), or estuarine and paludine, or fluviatile, or rarely terrene Catometopes. The palp of the external maxillipeds articulates either at the antero-external angle, or at the summit, or at the middle of the anterior border of the merus : the exognath is either abnormally slender or abnormally broad. The interantennular septum is very broad. The division of the orbit into two fosser is accented. [Front of great breadth : carapace usually quadrilateral, with the lateral borders either straight or very slightly arched, and the orbits at or very near the antero-lateral angles : the buccal cavern is square and there is generally a gap, which is often large and rhomboidal, between the external maxillipeds]. Male openings sternal.

Family Grocarcinide. Terrene Catometopes (Land-crabs). The palp of the external maxillipeds articulates either at the autero-external angle or at the middle of the anterior border of the merus (but is sometimes, though never in any Indian species, completely hidden behind the merus) : the exognath is slender and inconspicuous (sometimes more or less concealed) and sometimes carries no flagellum. The interantennular septrm is very broad and the antennular fosses are narrow. The front is of moderate breadth and always strongly deflezed: the carapace is more or less transversely oval, the anterohiteral borders being strongly arched and the fronto-orbital border: being cery much less than the greatest breadth of the carapace. In all the Indian forms there is a wide rhomboidal gap between the external maxillipeds. Male openings sternal.

Family Ocrpodide. Amphibious littoral and estuarine crabs, burrowing, and commonly gregarious. The palp of the external maxillipeds is coarse, and articulates at or near the antero-extemal angle of the merus : the exognath is generally slevder and often more or lems concealed. The interantenuular meptum is generally broad, but in one
subfamily (Macrophthalminæ) is a thin plate. The front is usually of no great breadth, and is often a narrow lobe more or less deflexed. The orbits occupy the whole anterior border of the carapace outside the front, and their outer wall (between the far onds of the upper and lower borders) is often defective. The buccal cavern is usually large and a little narrower in front than behind, the external maxillipeds are foliaceous and usually completely close it, but if they do not they never leave between them a wide rhomboidal space exposing the mandibles. The abdomen of the male is narrow. Male openings sternal.

Family Pinnoterides. Small crabs, usually living as commensals in the mantle-cavity of Bivalve Mollusks or Ascidians, in the cloaca of Holothuriaus, in worm-tabes, or in coral-stocks, and hence often exhibiting degeneration of some of the organs of special sense. The external maxillipeds vary : the merus, though often very large, is never quadrilateral, and never carries the palp distinctly at the anterointernal angle: the ischium is often small, and is sometimes absent or indistinguishably fused with the merus, in which case the merus lies with its long axis directed obliquely or almost transversely inwards: the exogunth is small and more or less concealed. The interantennular septum, when distinguishable, is a thin plate. [The front is narrow, the eyes and orbits very small, the corneæ sometimes obsolescent: the antennules and antennæ are usually very small and cramped. The buccal cavern is short and of great breadth, being commonly semicircular in outline. The male abdomen is very narrow]. Male openings sternal.

Family Mictrride. Amphibious Catometopes resembling the Ocypodids in babits. The buccal cavern is of enormons size and is campletely closed by the enormous foliaceous convex external maxillipeds, whose coarse palp articulates with the antero-external angle of the merus, and whose short slender exognath is entirely concealed and carries no flagellum. The interantennular septum is narrow. The orbits are represented by a small post-ocular spine, the eyes being quite unconcealed. [Carapace elongate-globose: front a narrow declivous lobe: the rudimentary antennular flagella fold nearly vertically, and are a good deal concealed by the front: the abdomen of the male resembles that of the female and covers the greater part of the sternum. No membranous spaces (tympana) on the meropodites of the legs or on the atornum]. Male openinge mbernal.

Family Hymenosomids. Small marine and estanrine Catometopes haring a curious superficial resemblance to some of the Oxyrhynich crabs of the Inachine subfamily, a resemblance heightened by the fact that the epistome is sometimes, nearly as long as broad. The palp of the external maxillipeds articulates near the antero-external angle of the merus, but as the antero-internal angle of the merus is sometimes truncated the true relations of the palp are often not quite clear : the exognath is slender and partly or entirely concealed. There are no orbits and the eyes are exposed and little retractile. [Carapace thin, flat, triangular or subcircular, not very well calcified, asually produced to form a horizontal rostrum. Antennular fosso shallow and ill defined. Antennal peduncle slender. Buccal cavern square, the ischium of the external maxillipeds well developed]. Male openings sternal.

Family Palicide. Small Catometopes having a sort of Dorippe appearance. The Indian members of the family are found among coraland shell-shingle, at a moderate depth, and have a kind of protective resemblance to an eroded flake of coral rock. The external maxillipeds close the buccal cavern ventrally but not anteriorly: their merus is a very small joint articulating with the retreating antero-external angle of the isclium, and carrying the palp at the middle of the oblique-lying anterior (or inner) border, their exognath is not concealed and is rather broad. The interantennular septum is a thin plate. The orbit has 2 or 3 deep gaps in the upper border. Front of moderate breadth, little or not at all deflexed : antennal flagella of good length: epistome absent: abdomen of male narrow. Compared with the other 3 pairs, the 4 th (last) pair of legs, which are dorsally situated, are rudimentary in all the Indian species. Male openings sternal: female openings placed far forward on the sternal segment corresponding with the first pair of ambulatory legs (2nd peræopods).

Family Ptenopladide. Represented by an aberrant Catometope found only in Indian Seas at a depth of 100 to 250 fathoms. The external maxillipeds are slender and sabpediform, not nearly covering the buccal catity: their palp articulates with the summit of the slender merns: their exognath is of normal size and form, and is not concealed. The interantennalar septum is a thin rudimentary plate. The orbits are very incomplete below. The front is a narrow, little deflexed lobe. No distinct antennular fosse. Antennal flagella of good length. No epistome. Abdomen of male narrow. Compared with the other 3 pairs, the Tast (fourth) pair of legs are rudimentury, being also placed close together dovsally: the last segment of the sternum is also rudimentary.

The male openings are in the bases of the last pair of legs but the ducts run forward in a sternal groove.

Most of these families can be further split into aubfamilies, as is shown in the following scheme :-

Family GONOPLACIDA, Dana.

Gonoplaciens, Milne Edwards (pt.), Hist. Nat. Crust. II. 56.
Gonoplacés Cancéroides plas Carcinoplacinse, Milise Fdwards, Ann. Soi. Nat. Zool. (8) XVIII. 1852, pp. 162, 164.

Gonoplacidæ, Dana, U. S. Expl. Exp. Crust. pt. I. pp. 308, 310.
Carcinoplacinse plas Gonoplacinz plas Hewapodine, Miers, Challenger Brachyura, pp. 222, 287, 275.

Carcinoplacini, Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 683.
Carcinoplacidæ plas Gonoplacidæ plas Hewapodinæ, Ortmann in Bronn's Thier Reich, tom. cit. pp. 1175, 1176, 1177.

This family may be divided iuto the 5 following subfamilies :-
Sabfamily I. Pseudoriombiline (Carcinoplacinse Miers, Carcinsplacids Ortmann). Carapace Xanthoid, the regions seldom well defined : front usually of good breadth and square cut, often little deflexed: eyes and orbits of normal size and form, the eyes well pigmented and the eyestalks normally movable except in certain deepsea genera: the antennules fold transversely : antennal flagella of fair length. Epistome well defined : buccal cavern square-cut and naually completely closed by the external maxillipeds, which have a subquadrate meras. The base of the male abdomen covers the whole space between the last pair of legs. Male openings not sternal.

Subfamily 1I. Gonoplacine (Gonoplacinse Miers, Gonoplacids Ortmann). The anterior border of the subquadrate carnpace is entirely occupied by the square-cut front and orbits, the front being either narrow or of fair breadth, and the orbits being long narrow trenches for the elongate eyestalks. In other respects similar to the Psendorhombilinse.

Sabfamily III. Prionoplacine (not represented in India). Differs from Pseudorhombilinæ only in the form of the male abdomen, which is not broad enough at base to cover all the space between the last pair of legs.

Sabfamily IV. Rhizopine (Rhizoping Miers, Ortmann). With the exception of one species (Notonyx nitidus) the eyestalks are fixed, and very often the "cornea" is minate or obsolete: the lower border of the orbit has a tendency to run downwards towards the epistome. The carapace asually has its antero-lateral corners cut away and rounded off : the front may be square-cat and broad, but is more often narrow and more or less distinctly bilobed and deflexed. The antennules may be of fair size and transversely folded, but more often, owing to the narrowness of the front, they are cramped, and fold obliquely : sometimes they cannot be folded in their fosse at all. Antennal flagella usually short. The epistome may either be well defined and prominent, or ill defined and sanken. The buccal cavern may be squarish, bat it often is decressed in breadth anteriorly : the external maxillipeds have a square merus and may completely close the buccal cavern, or there may be a gap between them. The male abdomen does not nearly cover the space between the last pair of ambulatory legs. Male openings sternal.

Subfamily V. Hexapodine (Pinnoteridæ-Hexapodinæ Miers, Ortmann). Only three pairs of legs besides the chelipeds, the last segment of the sternum also aborted. Carapace much broader than long with the antero-lateral corners cut away and rounded off. Front narrow : eyes, orbits and antennæ small : the antennules fold transversely. Epistome well defined : buccal cavern with the sides a little anteriorly-convergent, or not, nearly closed by the external maxillipeds, whose meras is either quadrate or has the antero-external angle rounded off. The male abdomen does not nearly fill the space between the last pair of ambulatory legs. Male openings sternal.

Family PINNOTERID压, Edw.
Pinnotheridx, De Haan (part), Faun. Japon., Crust., pp. 5,'34.
Pinnothériens, Milne Edwards (part), Hist. Nat. Crust. II. 28.
Pinnotherinx, Milne Edwards, Ann. Sci. Nat. Zool. (3) XVIII. 1852, p. 188, and XX. 1853, p. 216 : Dana, U. S. Expl. Exp., Crust. pt. I. pp. 378, 879: Miers, Challenger Brachyura, p. 274 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 691 ; and in Bronn's Thier Reich, tom. cit. p. 1177.

I propose, with some diffidence, as I have not examined enough of the forms included, to divide this family into 4 subfamilies :-

Subfamily I. Pinnoterine. Ischium of the external maxillipeds either rudimentary, or indistinguishably fused with the merus to form a single piece which is usually oblique, sometimes transverse. Usually the carapace is not transverse and the palp of the external maxillipeds not so large as the merus-ischium.
J. II. 38

Subfamily II. Pinnothereline. Ischium of the external maxillipeds distinct and independent, but smaller than the merus, the later joint little oblique. Usually the carapace is broadly transverse, and often the palp of the external maxillipeds is the largest part of these appendages.

Subfamily III. Xenopbthalmine. Ischiam of the external maxillipeds distinct, as large as or larger than the merus, the latter joint little oblique, the palp of ordinary size. The orbits are narrow chinks situated dorsally with their long axis at right angles to the anterior border of the carapace.

Subfamily IV. Asthenognathine (Asthenognathidæ Stimpson). Fxternal maxillipeds weak and slender, not nearly meeting across the buccal carern, the ischinm distinct and larger than the merns, the palp of ordinary size. Eyes in the normal position.

Family GRAPSIDA, Dana.
Grapsoidiens, Milne Edwards, Hist. Nat. Crust. II. 68.
Grapsinæ, Milne Edwards, Ann. Sci. Nat., Zool., (3) XFIII, p. 136 nnd XX. p. 163.

Grapsidæ, Dana, U. S. Expl. Exp., Crast. p. 329 : Miers, Challenger Braohyara, p. 252 : Ortmann, Zool. Jahrb., Syst., VlI. 1893-94, p. 699, and in Bronn's Thier Reich, tom. cit. p. 1177.

This family can be divided into four well characterized subfamilies as follows:-

Subfamily I. Grapsine (Grapsacea, Edw., Grapsine in part, Dana, Kingsley, Miers, Ortmann). Front strongly deflexed : the lower border of the orbit rans downwards towards the buccal cavern : antennal flagellum very short: the external maxillipeds leave a wide rhomboidal gap between them, they are not traversed by any oblique hairy crest, their palp articulates at the antero-external angle of the meras, and their exognath is very slender and is exposed throughout. The male abdomen fills all the space between the last pair of ambulatory legs.

Subfamily II. Varunine (Varunacea and Cyclograpsacea part, Milne Edwards; Grapsinæ in part, Dana, Kingsley, Miers, Ortmanu). Front moderately or little deflexed, sometimes sublaminar: the suborbital crest, which supplements the defective lower border of the orbit, is rather distant from the orbit and usually runs nearly in a line with the anterior border of the epistome: antenual flagellum usually of good length: the external maxillipeds do not often gape widely, though usually there is something of a gap, they are not traversed by any oblique hairy crest, their palp articulates with the middle of the
anterior border of the merus, and their exognath is generally broad and is exposed throughout. The male abdomen, though not narrow, rarely covers all the space between the last pair of ambulatory legs.

Subfamily III. Sesarmine. (Sesarmacea and Cyclograpsacea part, Milne Edwards; Sesarminæ, Dana, Kingsley, Miers, Ortmann). Front strongly deflexed : the lower border of the orbit commonly runs downwards towards the angle of the buccal cavern : the external maxillipeds leave a wide rhomboidal gap between them, an oblique hairy crest traverses them from a point near the antero-external angle of the ischium to a point near the antero-internal angle of the merus, their palp articulates either at the summit or near the antero-external angle of the merus, and their exognath is slender and either partly or almost entirely concealed. The male abdomen either fills or does not quite fill all the space between the last pair of ambnlatory legs. Antennal flagella variable.

Subfamily IV. Plagusine. (Plagusiacea, Milne Edwards; Plagusiinæ, Dana, Kingsley, Miers, Ortmann). The front is cut into lobes or teeth by the antennular fossm, which are visible in a dorsal view as deep clefts: the lower border of the orbit curves down into line with the prominent anterior border of the baccal cavern: the external maxillipeds do not completely close the buccal cavern but they do not leave a wide rhomboidal gap, they are not traversed by any oblique hairy crest, their palp articulates near the antero-external angle of the meras, and their slender exposed exognath has no flagellum. The antennal flagella are short. The male abdomen fills all the space between the last pair of legs.

Family GEOCARCINIDAE, Dana.

Gécarciniens, Milne Edwards, Hist. Nat. Crust. II. 16.
Gecarcinacea, Milne Edwards (pt.), Ann. Sci. Nat., Zool., (3) XX. 1853, p. 200.
Gecarcinidx, Dana (pt.), U. S. Expl. Exp. Crust. pt. I. p. 374.
Geocarcinidx, Miers, Challenger Brachyura, p. 216.
Gecarcinidæ, Ortmann (pt.), Zool. Jahrb. Syst. VII. 1893-94, pp. 699, 732, and in Bronn's Thier Reich, tom. cit. p. 1178.

I think it inadvisable to subdivide this small group, which Milue Edwards, with more jastice, regarded as itself only a subfamily of the Grapsidæ.

Gecarcinucus is a Telphusoid and should not be referred here. lipigrapous and Grapsodes, if they are distinot from one another, belong bere rather than to the Grapsids.

Family PaLICID届 (vel Cymopolids).
This little and aberrant family is probably best treated as an appendage to the Grapsidx.

Family OCYPODIDA, Ortmann (pt.).

Ocypodiens, Milne Edwards, Hist. Nat. Crust. II. p. 39.
Ocypodinæ, Milne Edwards, Ann. Sci. Nat. Zool. (3) XVIII. 1852, p. 140, plus Gonoplacés Vigils (pt.), p. 155.

Macrophthalmidæ, Dana, U. S. Expl. Exp. Crust. pt. I. pp. 308, 312.
Ocypodinæ, Miers (pt.), Challenger Brachyura, p. 236, and Myctirinæ (pt.), p. 275.
Ocypodidæ, Ortmann (pt.), Zool. Jahrb., Syst., VII. 1893-94, pp. 700, 741; and in Bronn's Thier Reich, tom. cit., p. 1179.

In the treatment of this family nothing can be added to the scheme of Dana, where they are divided into 3 sub-families as follows :-

Subfamily I. Ocypodine (Ocypodiacés Ordinaires Edw., Ocypodinæ Dana (pt.), Miers (pt.), Ortmann). Carapace deep, subquadrilateral, the regions seldom well defined: front narrow deflexed, commonly a mere lobe between the long eyestalks: antennular flagellum small, folding obliquely or almost vertically, the interantennular septam broad: the external maxillipeds completely close the buccal cavern, their exognath is inconspicuons but is not, or not entirely, concealed, and may either have, or be destitute of, a flagellum : chelipeds remarkably unequal either in both sexes or in the male only. There is an orifice or recess, the edge of which is thickly fringed with hair, between the bases of the $2 n d$ and $3 r d$ pairs of true legs.

Subfamily II. Scopimerine (Ocypodiacés Globulaires Edw., Dotinæ Dana, Myctirinæ (pt.) Miers, Ortmann). Carapace very deep, cuboidal or globose : front narrow deflexed, commonly a mere lobe : antennular flagellum rudimentary, folding nearly vertically and hidden beneath the front, interantennular septum broad : buccal cavity large, sometimes enormous, completely closed by the external maxillipeds which are commonly very prominent and have small linear concealed exognaths with or without a flagellum : chelipeds equal or subequal in both sexes. Orbits shallow. Curious membranous spaces known as "tympana" exist on the meropodites of the legs and often of the chelipeds also; and sometimes on some of the segments of the sternum. No hairy recesses between the bases of the 2 nd and 3 rd pairs of true legs.

Subfamily III. Macrophthalmine. (Gonoplacés Vigils pt. Edw., Macrophthalminæ Dana, Miers, Ortmann). Carapace usually quadrilateral, broader than long (sometimes more than twice as broad as long),
flattish and not very deep, the regions usually well defined: front variable, but never very broad : antennules with a well developed flagellum that folds transversely, interantennular septum very narrow: eyestalks nsually elongate : the external maxillipeds do not always meet across the buccal cavern, though the gap between them is never very wide, their exognath is not, or not entirely, concealed and has a flagellum : chelipeds usually subequal. No special recess between the bases of any of the legs.

Family MICTYRID \mathcal{E}, Dana

Pinnothériens, Milne Edwards (pt.), Hist. Nat. Crust. II. 39. Myctiroidea, Milne Edwards, Ann. Sci. Nat., Zool., (8) XVIII. 1852, p. 154. Mictyridæ, Dana, U. S. Expl. Exp., Crust. pt. I, pp. 309, 389.
Pinnotheridx-Myctirinx, Miers (pt.), Challenger Brachyara, p. 275; Ortmann (pt.) in Bronn's Thier Reich, tom. cit., p. 1179.

Ocypodidæ-Myctirinæ, Ortmann (pt.), Zool. Jabrb., Syst. VII. 1893.94, pp. 742, 747.

There can be little question that Milne Edwards was right in reckoning Mictyris as a "satellite" of the Ocypodidze, or that Dana's plan of separating them as a distinct family is fully justified. The affinities which several authors find between Miclyris and the Pinnoteridm are by no means easy to recognize.

Framily HYMENOSOMID \mathbb{A}, Ortmann.

Pinnothériens, Milne Edwards (pt.), Hist. Nat. Crust. II. 38.
Hymenosomine, Milne Edwards, Ann. Sci. Nat., Zool. (3) XX. 1858, p. 221.
Pinnotheridæ-Hymenicinæ, Dana, U. S. Expl. Exp., Crust. pt. I. pp. 879, 884.
Pinnotheridæ-Hymenosominæ, Miers, Challenger Brachyara, p. 275.
Majoidea-Hymenosomidæ, Ortmann, in Bronn's Thier Reich, tom. cit., p. 1168.
Three types seem to be distinguishable in this family: in one (e.g. Hymenosoma) there is no epistome and the external maxillipeds almost encroach on the bases of the antennules, which appendages are not concealed by the front; in the second (e.g. Halicarcinus) there is an epistome of considerable length, bat the antennules are still unconcealed by the front; in the third (e.g. Hymenicus) there is a long epistome and the antenuales are quite concealed by the front.

Family PTENOPLACIDA.

This family has no very close connesions with any of the others although it is an undoubted Catometope.

The following is a list of all the Catometope genera known to me arranged according to the foregoing scheme. As in previous papers, the genera known to me by autopsy are marked with an asterisk, and all the Indian genera are printed in roman type.

Family GONOPLACID $\mathrm{E}_{\text {, }}$ Drna.
Subfamily I. Pseudorhombilinat, nov.
? Brachygrapsus, J. S. Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 203.

Bathyplax, A. Milne-Edwards, Bull. Mus. Comp. Zool., VIII, 1880 81, p. 16 : Miers, Cballenger Brachyura, p. 230.
? Camptandrium, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 106.

* Carcinoplax (=Cartonotus).
* Catoptrus ($=$ Goniocaphyra).
- ? Cryptocceloma, Miers, Zool. H. M. S. Alert, p. 227.
* Eucrate.

Freyvillea, A. Milne Edwards, Bull. Mus. Comp. Zool. VIII, 188081; p. 15.

Heteroplax, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 94.

* Libystes.
* Litochira.
* Pilamnoplax.
* ? Platypilumnus.
* Pseadorhombila.
* Psopheticus.

Subfamily II. Prionoplacina, nov.
Eucratoplax, A. Milne Edwards, Bull. Mns. Comp. Zool. VIII, 1880-81, p. 17.

Eucratopsis, Smith, Amer. Journ. Sci. XLVIII, 1869, p. 391, and Trans. Connect. Acad. II. 1871-73, p. 35.

Euryplax, Stimpson, Ann. Lyc. Nat. Hist., New York, VII, 1862, p. 60.

Glyptoplax, Smith, Trans. Connect. Acad. II, 1871-73, p. 164.
Oediplax, Mary J. Rathbun, P. U. S. Nat. Mus. XVI, 1893, p. 241.
Panoplax, Stimpson, Bull. Mus. Comp. Zool. II, 1870-71, p. 151.
Prionoplax, Milne Edwards, Ann. Sci. Nat., Zool., (3) XVIII, 1852, p. 163.

Speocarcinus, Stimpson, Ann. Lyc. Nat. Hist., York, VII, 1862, p. 58.

Subfamily •III. Gonoplacine, Miers.

* Gonoplax, Lench, Trans. Linn. Soc. XI, 1815, p. 323: Miers, Challenger Brachyura, p. 245.

Ommatocarcinus, White, in Voy. H. M. S. Rattlesuake, II, p. 393; Miers, Challenger Brachyara, p. 246.

Subfamily 1V. Rhizopine, Stimpson, Miers.

* Camatopsis.
* Ceratoplax.
? Chasmocarcinus, Mary J. Rathban, Ball. Nat. Hist. Iowa, ' 1898,', p. 284.
* Hephthopelta.
* Notonyx.

Rhizopa, Stimpson, Proc. Ac. Nat. Sci. Philąd. 1858, p. 95.

* Scolopidia (=Hypophthalmus).
* Typhlocarcinus.
* Typhlocarcinodes.
* Xenoplithalmodes:

Subfamily V. Hexapodine, Miers.
Amorphopus, Bell, Journ. Linn. Soc., Zool., III, 1859, p. 27.

* Hexapus, De.Haan, Fann. Japon. Crust., p. 35.
* Lambdophallus.

Thaumastoplax, Miers, Ann. Mag. Nat. Hist. (5) VIII, 1881, p. 261.

Family PINNOTERIDAE, Edw.
: $\therefore \quad \therefore$ i? Subfamily I. Pinnoterine, not.
Cryptophrys, Mary J. Rathbun, P. U. S. Nat. Mus. XVI, $1893_{;}$ p. 250.

Dissodactylus, S. I. Smith, Trans. Connect. Acad. II, 1871-73, p. 172.
Durckheimia, de Man, Zool. Jahrb., Syst., 1889, p. 442.
Fabia, Dana, Proc. Ac. Nat. Sci. Philad. 1851, p. 253, and U. S. Expl. Exp., Crust. pt. I. p. 382.
? Holothuriophilus, Nanck, Zeits. Wiss. Zool. XXXIV, 1880, pp. 24, 66.
$\mathrm{O}_{\mathrm{s} \text { tracoteres, }}$ Milne Edwnrds, Ann. Sci. Nat., Zool., (3) XX, 1853, p. 219°.
? Parapinnixa, Holmes, Proc. Calif. Acad. IV, 1893-94, pp. 565, 587.

Pinnaxodes, Heller, Novara Crust., p. 67.

* Pinnoteres.
? Scleroplax, Mary J. Rathbun, P. U. S. Nat. Mas. XVI, 1893, p. 250.
* Xanthasia.

P Subfamily II. Pinnothereline, nov.
? Malacosoma, de Man, Notes Leyden Mus. I, 1879, p. 67.
Opisthopus, Mary J. Rathbun, P. U. S. Nat. Mus. XVI, 1893, p. 251.

Pinnixa, White, Ann. Mag. Nat. Hist. XVIII. 1846, p. 177 ($=$ Tubicola, Lockington, Proc. Calif. Acad. VII. 1876, p. 55).

Pinnotherelia, Milne Edwards and Lacas, in Voy. Amér. Mérid., Crust. p. 24 (1843).

Pseudopinnixa, Ortmann (nec Holmes), Zool. Jalirb., Syst. VII, 1894, p. 694.
*Tetrias.
? Tritodynamia, Ortmann, Zool. Jahrb., Syst. VII, 1194, p. 692.
? Subfamily III. Xenophtalmine, nov.

* Xenophthalmus.
? Subfamily IV. Astrinognathine, Stimpson.
Asthenognathus, Stimpson, Proc. Acad. Nat. Sci. Philad. 1858, p. 107. * Chasmocarcinops.

Family OCYPODIDA, Ortmann, emend.
Subfamily I. Ocrpodine, Dana.
Acanthoplax, Milne Edwards, Ann. Sci. Nat. Zool. (3) XVIII, 1852, p. 151.

* Gelasimus.
*Heloecius, Dana, Amer. Journ. Sci., (2) XII, 1851, p. 286, and U. S. Expl. Exp., Crust. pt. I. p. 319.
* Ocypoda.

Subfamily II. Macrophthalmina, Dana.

* Clistostoma.

Chænostoma, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 97.
Euplax, Milne Edwards, Ann. Sci. Nat., Zool., (3) XVIII, 1852, p. 160 ; Miers, Challenger Brachyara, p. 251.

Hemiplax, Heller, Novara Crust. p. 40: Miers, Challenger Brachyura, p. 250.
*Macrophthalmus.
Paraclistostoma, de Man, Zool. Jahrb., Syst., VIII, 1895, p. 580.
*Tylodiplax.
Subfamily III. Scopimerine.
*Dotilla ($=$ Doto, De Haan).
Ilyoplax, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 98.
*Scopimera.
*T'smpanomerus (= Dinxippe, de Man).

Family MICTYRID压, Dana.
*Mict.yris.

Family HYMENOSOMIDA, Ortmnnn.

*Flamene.
?? Flamennpsis, A. Milue Edwards, Nonv. Archiv. du Mus. IX, 1873, p. 324.
*Halicarcinus, White, Ann. Mag. Nat. Hist. XVIII, 1846, p. 178: Miers, Challenger Brachyura, p. 280 ($=$ Liriopea, Gay, Hist. Fis. Chile, pt. III. Zool. p. 158.
*Hymenicas
*Hymenosoma, Leach, Milne Edwards, Hist. Nat. Crust. II, 85: Miers, Challenger Brachyara, p. 279.

Rhynchoplax, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 109.
*Trigonoplnx.
Family GRAPSIDA, Dana.
Subfamily I. Grapsine, Dana (pt.).
*P? EP Eigrapsus.
*Geograpsus.
*Goniopsis, De Haan, Faun. Japon. Crust., p. 33 (pt.) : Miers, Challenger Brachyura, p. 266.
*Grapsus.
*Leptograpsus, Milne Fdwards, Ann. Sci. Nat., Zool., (3) XX, 1853, p. 171 : Miers, Challenger Brnclynura, p. 257 (sub-genus of Grapsus).
*Metopograpsus.
Orthograpsus, Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 194 (sub-genus of Grapsus).

- J. II. 39
*Pachygrapsus.
Perigrapsus, Heller, Verh. zool.-bot. Ges. Wien, XII, 1862, p. 522, and Novara Crust. p. 48.

Subfamily II. Vardnine, nov.

? Acmæopleura, Stimpson, Proc. Ac. Nat. Sci. Philad., 1858, p. 105.
${ }^{*}$ Brachynotus, De Haan, Faun. Japon., Crast., p. 34, 1835 : Miers, Challenger Brachyura, p. 264 ($=$ Heterograpsus, Lucas, Expl. Sci. Algerie, Anim. Artic. I, p. 18, $1849:=$ Hemigrapsus, Dana, Amer. Journ. Sci. (2) XII, 1851, p. 288, and U. S. Expl. Exp., Crust., pt. I. p. 348).
*Cyrtograpsus, Dana, Amer. Joarn. Sci. (2) XII, 1851, p. 288, aud U. S. Expl. Exp., Crust., pt. I, p. 351.

* Eriochir, De Haan, Faun. Japon. Crust. p. 32.

Euchirograpsus, A. Milne Edwards, Bull. Mus. Comp. Zool., VIII, 1880-81, p. 18 : and Milne Edwards and Bouvier "Hirondelle" (Monaco) Crast., Brachyures et Anomares, p. 46.

Glyptograpsus, S. I. Smith, Trans. Connect. Acad. II, 1871-73, p. 153.
*Planes, Leach, Malac. Pod. Brit., Expl. of pl. xxvii, figs. 1-3, 1815 (= Nautilograpsus, Milne Edwards, Hist. Nat. Crust. II, 89, 1837.)

Platychirograpsus, de Man, Zool. Anz. 1896, p. 292, and Mitteil. Nnt. Mas. Hambarg, XIII, 1896, p. 95.

Platygrapsus, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 104 : Miers, Challenger Brachyara, p. 263 (=Platynotus, De Haan, Faun. Japon., Crust., p. 34).
*Pseudograpsus, Milne Edwards, Hist. Nat. Crust. II, 81 : Miers, Challenger Brachyura, p. 261 (=Pachystomum, Nauck, Zeits. Wiss. Zool. XXXIV, 1880, p. 67).
*Ptychognathus (=Gnathograpsus, A. M. Edw. = Coelochirus, Nanck).
*Pyxidognathus.
Utica, White, P. Z. S. 1847, p. 85, and Ann. Mag. Nat. Hist., XX, 1847, p. 206.
*Varana ($=$ Trichopus, De Haan).
Subfamily III. Sebarmine, Dana.
*Aratur, Milne Edwards, Ann. Sci. Nat., Zool., (3) XX, 1853, p. 187.
*Chasmagnathus, De Harn, Faun. Japon., Crust., p. 27 (= Paragrapsur, Milne Edwards, Ann. Sci. Nat., Zool., (3) XX, 1853, p. 195).
*Clistoccoloma.
*Cyclograpsus, Milne Edwards, Hist. Nat. Crust., II, 77, 1837 (= Gnathochasmus, MacLeay, in Smith's III. Ann. S. Afr. p. 65, 1838).
*Helice, De Haan, Fann. Japon., Crust, p. 28: Miers, Challenger Brachyura, p. 268.
*Metaplax ($=$ Rhaconotus, Gerst.).
*Metasesarma.
Metoparlias, Mary J. Rathbun, P. U. S. Nat. Mas. XIX, 1897, p. 144.
*Sarmatium (= Metagrapsus, Edw.).
*Sesarma (= Holometopus, Edw.).
Subfamily IV. Plagosinee, Dana.
*Liolophas ($=$ Acanthopus, De Haan).
*Plagusia.
Family GEOCARCINIDA, Dana.
*Cardiosoma ($=$ Discoplax, A. M. Edw.).
*Epigrapsus.
*Gecarcinus, Leach, Trans. Linn. Soc. XI, 1815, p. 322: Miers, Challenger Brachyura, p. 217.
*Pelocarcinus ($=$ Gecarcoidea, Edw., = Hylæocarcinus, W.-M., = Limnocarcinus, de Man).

Uca, Latr., Encycl. Méthod. X, p. 685 : Milne Edwards, Hist. Nat. Crust. II, 21.

Family PALICIDA, Rathbun (name only).
*Palicus (=Cymopolia).
*Crossotonotus, A. Milne Edwards, Nouv. Archiv. du Mus. IX, 1873, p. 282, and Journ. Mus. Godeffroy, I, 1873, p. 258.

Family PTENOPLACIDE, Alcock.
*Ptenoplax.

> Family I. GONOPLACIDAE, Dana.
> Subfamily i. Pseodorhombiline, Alcock.
> Key to the Indian Genera.
I. Front with the edge cut straight and square, never curved, often prominent:-

1. The fronto-orbital border, though extensive, is much less than the grentest breadth of the carapace, so that the autero-laterul borders of the carapace have
a distinctly Cancroid arch : the carapace is usaally much broader than long:-
i. Dactyli of last pair of legs styliform \qquad
ii. Dactyli of last pair of legs compressed and ciliated:-
a. Antero-external angle of merus of external maxillipeds not particalarly produced:-
a. Carapace transversely quadrilateral, its antero-lateral borders with few teeth \qquad ..
B. Carapace transversely elliptical, its antero-lateral borders with 5 or 6 teeth
b. Antero-external angle of merus of exterual maxillipeds strongly produced out. wards: last pair of legs sometimes paddle-like.
2. The fronto-orbital border is not so very much less than the greatest breadth of the carapace in extent, so that the antero-lateral borders of the carapace are either slightly arched or nearly straight : the carapace is broader than long but is not conspicuously transverse :-
i. The antennal flagellum stands loosely in orbital hiatus :-
a. Carapace deepish, rather markedly trans. verse : the meri of the legs with a spine or spines on the anterior border...

> b. Carapace shallow, depressed, and flat, little broader than long :-
a. Legs spiny
b. Legs nnarmed.
ii. A process of the basal antenna-joint completely fills up and closes the orbital hiatus, entirely excluding the antennal flagellum \qquad
1I. Frout with the edge slightly but distinctly curved, never cut straight and square; carapace and appendages in all the Indian species tomentose and hairy

Catoptrus.

Platypilcmets. Pilumnoplax.

Eucrats.
Psecdorhombila.

Carcinoplax.

Libystis.

Psopheticus.

Litochira.

Elcrate, De Haan.

ETucrate, De Haan, Fuuu. Jnpon. Crust. p. 36 : de Man, Journ. Linn. Soc., Zool., 1887-88, p. 88 : Ortmann, Zool. Jahrb., Syst. VII. 1893.94, p. 685.

Heteroplax, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858 (1859) p. 94.
Carapace deepish, subquadrilateral, a little broader than long, smooth and with little or no distinction of regions, convex fore and aft, very slightly so from side to side.

The extent of the fronto-orbital border is not much less than the greatest breadth of the carapace, the antero-lateral borders therefore, which are toothed, are short and but slightly arched. Front square-cut and straight, well delimited from the well-defined supra-orbital angles, usually notched or grooved in the middle line, about a third the breadth of the carapace.

Upper border of orbit with two distinct sutares. The orbital hiatus is compactly filled and closed by a process of the basal antenna-joint, so that the antennal flagellum, which is of good length, lies entirely outside the hiatus. The antennules fold transversely.

Buccal cavern square, completely closed by the exterunl maxillipeds, the flagellum of which articulates with the inner angle of the merus. Efferent branchial channels of palate well defined.

Chelipeds subequal, much more massive and shorter, or not much longer, than the legs.

Legs slender, unarmed; the propodite and dactslus of the last pair are compressed and are usually, but not always, somewhat broadened.

In both sexes all seven abdominal segments are distinct, and in the male the third segment covers the whole width of the sternum between the bases of the last pair of legs.

Distribution: Indo-Paçific (Indian, Australian and Japauese).
Following de Man and Ortmann, I restrict the genus Eucrate to those species in which the orbital hiatus is completely stopped-up by a process of the basal antenna-joint.

Key to the Indian species of the genus Encrate.

1. Antero-lateral borders of the carapace cut into four teeth (including the outer orbital angle) all of which are distinot: daotylus of last pair of legs distinctly palmulate : front grooved or notched in the middle line :-
2. Carapace nearly smooth.
E. crenatu.
3. Carapace with some short transverse ridges in its antero-lateral part
E. crenata var. uffinis.
II. Antero-lateral borders cut into four teeth (including the orbital angle) of which the 2 nd and 4th are hardly distinguishable: front with the median notch almost obsolete : dactylus of last pair of legs palmulnte
E. crenala var. denlata.
III. Antero-lateral borders cut jnto three teeth (inclading the orbital angle) : dactylus of last pair of legs almost styliform
E. semdentutu.

\author{

1. Eucrate crenata, De Haan.
}

Cancer (Eucrate) crenatus, De Haan, Faun. Japon. Crust. p. 51, pl. xp. fig. 1.
Eucrate crenata, Ortmann, Zwol. Jahrb., Syst., VII. 1898-94, p. 688.
? Pilumnoplaw sulcatifrons, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858 (1859), p. 93 : Tozzetti, 'Magenta' Crust. p. 102, pl. vii. fig. 2.

Carapace smooth, its length about five-sixths of its breadth. Front not quite a third the breadth of the carapace, notched and groved in the middle line. Major diameter of orbit about balf the width of the front.

Autero-lateral borders of carapace cat into 4 bluntish teeth, the middle two of which are the largest: a short ridge rans on to the dorsum of the carapace from the last tooth.

Chelipeds less than twice the length of the carapace, not much longer than the legs, especially in the female: one or two teeth at the far end of the upper border of the arm, and one at the inner angle of the wrist: hand rather short and squat, the fingers, which are stout, are a little longer than the palm : there is a characteristic patch of fur at the far end of the upper surface of the wrist.

Legs smooth, the last 3 joints more or less ciliated: in the 4th (last) pair the propodite and dactylus are broader and more compressed than in the other legs.

In the Indian Museum are 3 specimens from the Andamans and 1 from Madras (besides 3 from Hongkong).

The carapace of the largest specimen is 10 millim. long and 12 millim. broad:

2. Eucrate crenata var. affinis, Haswell.

Eucrate afinis, Haswell, P. L. S., N. S. Wales, VI. 1881-82, p. 547 and Cat. Austral. Crust. p. 86 : de Man, Journ. Linn. Soc., Zool. XXII. 1887.88, p. 89, pl. ₹. Ag. 5.
? Pseudorhombila sulcatifrons, var. australiensis, Miers, Zool. H. M. S. Alert, p. 242, pl. xxiv. fig. c.

Differs from typical E. crenata, specimens of the same sex and of approximately the same size compared, only in the following characters:-
(1) the carapace is more sculptured, for besides the short transverse ridge on the dorsum of the carapace that runs from the last tooth of either antero-lateral border, there are similar ridges ranning (a) from the 2nd tooth of either antero-lateral border, parallel with the orbit, and (b) parallel with the front, near the anterior limit of the gastric region; there is also a beaded ridge running parallel with either postero-lateral border :
(2) the patoh of fur on the wrist may be smaller :

A single specimen from Mergni (Anderson collection) has the carapace 12 millim. long and 15 millim. broad.

In a large series of specimens these distinctions would probably fail.

3. Eucrate crenata var. dentata.

? Heteroplas dentatus, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, (1859), p. 94 : A. O. Walker, Journ. Linn. Soc. Zool. XX. 1886-1890, p. 110.

Differs from the typical E. crenata, only in the following parti-culars:-
(1) the front is entire, the median notch being inconspicuous or absent:
(2) the onter orbital angle and the third tooth of the antero-lateral border are large and acute, while the 2 nd and 4th teeth are quite inconspicuons.

In the Indian Maseum are two small specimens, one from Palk Strait (the other from Hongkong).

4. Eucrate sexdentata, Haswell.

Eucrate sexdentata, Haswell, P. L. S., N. S. Wales, VI. 1881-82, p. 548, and Cat. Anstral. Crast. p. 86.
? Psoudorhombila vestita var. sexdentata, Miers, Zool. 'Alert,' p. 240, pl. xxiv. fig. B, and Challenger Brachyara, p. 229.

Differs from E. crenata in the following particulars:-
(1) the only ridges on the carapace are two exceeding faint ones running parallel with the postero-lateral borders :
(2) the antero-lateral borders are cut into 3 teeth, of which the last is spine-like :
(3) the median emargination of the front is much less distinct:
(4) the chelipeds are about $1 \frac{8}{4}$ times the length of the carapace and are decidedly shorter than the legs: there is only one distinct tooth near the far end of the upper border of the arm : the tooth at the inner angle of the wrist is very large and acute:
(5) the propodite and dactylns of the last pair of legs are not broader than those of the other legs.

In the Indian Mnsenm is a single male from the Gulf of Martaban, 20 fms . The carapace is 11.5 millim. long and 13.5 millim. broad.

Carcinoplax, Edw.

Carcinoplay, Milne Edwards, Hist. Nat. Crust. II. 60, and Ann. Sci. Nat., Zool., (3) XVIII. 1858, p. 164: Ortmann, Zool. Jahrb., Syst., \&c., VII. 1898-94, p. 685. Curtonotus, De Haan, Faan. Japon. Crust., p. 20 (nom. preocc.).
The chief differences between this genas and Eucrate are that (1)
the carapace is very much broader, and its antero-lateral borders are mach more arched, the fronto-orbital border being relatively mach less extensive; (2) the supra-orbital angles are alwost merged in the front, and the median notch of the front is almost obsolete; and (3) the orbital hiatus is not stopped up by any process of the basal antenna-joint.

Carapace deepish, subquadrilateral, usually much broader than long, smooth and with little or no distinction of regions, convex fore and aft, very slightly so from side to side.

The extent of the fronto-orbital border is much less than trothirds the greatest breadth of the carapace, and the antero-lateral borders, which are toothed, are well arched. Front square-cut and straight, faintly notched or longitadinally grooved in the middle line, not very distinctly demarcated from the supra-orbital angles, from a third to a fourth, or less, the width of the carapace.

The upper border of the orbit is sinnous and may, or may not, be marked by a single faint suture line. The basal anteuna joint is short and the antennal flagellum stands loosely in the open orbital liatus. The antennules fold transversely.

Buccal cavern, palate, and exterual maxillipeds as in Eucrate.
Chelipeds subequal, much more massive and sometimes, in the adalt, much longer than the legs.

Legs slender, unarmed; in the last pair the propodite and dactylns are compressed and decidedly broadened for awimming.

In both sexes all seven abdominal segments are distinct, and in the male the third segment covers the whole width of the sternum between the bases of the last pair of legs.

Distribution: Indo-Pacific (Indian, Japanese, Californian).
I exclude from the genus Carcinoplax those species, e.g., setosa and integra, which have the edge of the front turned down and arched: these it seems to me are better associated with Litochira.

Key to the Indian species of the genus Carcinoplax.
I. The long diameter of the orbit is nearly three-fourths the width of the inter-orbital space : a spine or tooth at the outer angle of the wrist. Chelipeds in the adalt male very much longer than the legs C. longimanus.
II. The long diameter of the orblt is about half the width of the inter-orbital space: no spine or tooth at the outer angle of the wrist. Chelipeds rather shorter than the legs C. longipes.
5. Carcinoplax longimanus, De Haan.

Cancer (Curtonotus) longimanus, De Haan, Fann. Japon. Crast. p. 50, pl. vi. fig. 1.
Carcinoplaw longimanus, Milne Edwards, Ann. Sci. Nat. \%ool. (3) XVIII. 1852, p. 161 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 688.

Carapace, length a little more than two-thirds its breadth, its surface (like that of the chelipeds) finely frosted : in the young the hepatic are obscurely delimited from the branchial and gastric regions and are very slightly tumescent.

Front proper about two-ninths the greatest breadth of the carnpace, rery faintly notched in the middle line, its free edge longitudinally groosed.

Orbits shallow, their major diameter more than tro-thirds the width of the front: borders of orbit finely beaded, the upper border sinuons but entire.

Antero-lateral borders of carnpace not much more than half the length of the postero-lateral, well arched, armed with 3 teeth or tubercles (including the outer orbital angle) which become much worn away in adults.

Chelipeds sabequal, massive, varying in length with incrense in nge-from 2 or $2 \frac{1}{2}$ times the length of the carapace in females and young males to 4 times and more the length of the carapace in old males, the palm being the principal joint in which the lengthening takes place. There is Ω spine or tooth in the distal half of the upper surface of the arm, and one at either angle (inner and outer) of the wrist: a blunt crest, ending in a blunt tooth, traverses the inner surface of the palm.

The legs are long : the 3rd pair, which are slightly the longest, are a little more than twice the length of the carapace. The last two joints-as also the anterior border of the carpns-of all the legs are plamose.

In the Indiau Museum are 2 specimons from the Gulf of Martaban and the Andaman Sea 53 and 60 fathoms, (besides a large male from Japan).

In spirit the colour is a light reddish ochre, the fingers uncoloured.

6. Oarcinoplax longipes (Wood-Mason).

Nectopanope longipes, Wood-Mason, Ann. Mag. Nat. Hist., March, 1891, p. 262 : Alcock and Anderson, Ill. Zool. Investigator, Crust. pl. xiv. fig. 7.

Carcinoplay longipes, Alcock, Investigator Deep-Sen Brachyara, p. 71.
Carapace, length more than three-quarters its breadth, the regions barely indicated.
J. II. 40

Front proper about a third the greatest breadth of the carapace, remarkably prominent, as faintly as possible notched in the middle line.

Orbits shallow, their upper border sinuous but entire, their major diameter about half the width of the front. Eyes small.

Antero-lateral borders of carapace not two-thirds the length of the postero-lateral, moderately arched, armed with two pro-curved spinelike teeth, and with a small blunt denticle just behind the ill-defined orbital angle.

Chelipeds twice the length of the carapace; the arm has a denticle beyond the middle of the upper border, and there is a strong spinewith sometimes a secondary spinule at its base-at the inner angle only of the wrist.

The legs are long and have the dactylus well plumed and the 2 preceding joints more scantily hairy : the third pair, which are slightly the longest, are nearly $2 \frac{1}{\mathrm{~g}}$ times the length of the carapace : though the terminal joints of the fourth (last) pair are compressed they are not so subfoliaceous as those of C. longimanus.

In the Indian Museum are 20 specimens from the Andamans 220 to 290 fathoms and off Travancore, 430 fathoms.

In the largest specimen the carapace is 14 millim. long and 17 millim. broad.

In spirit the colour is white with a faint pink tinge, the fingers blackish-brown.

7. Pseddorhombila, Edf.

Pseudorhombila, Milne Edwards, Hist. Nat. Crust. II. 59, and Ann. Sci. Nat., Zool., (8) XVIII. 1852, p. 164.

The only particulars in which Pseudorhombila differs from Carcinopla. are that the regions of the carapace are better defined, that the square-cut front is more distinctly bilobed, that the supra-orbital border has two distinct sutures, and that the dactyli of the last pair of legs are styliform.

The only specimen in the Indian Museum that is perhaps referable to this genus is too small and too much damaged for description : it is from the Andamans.

Libystre, A. M. Edf.

Libystes, A. Milne Edwards, Ann. Soc. Entom. France, (4) VII. 1867, p. 285, and Nonv. Arohiv. du Mus. IV. 1868, p. 84.

This genus unites Oarcinoplax with Oatoptrus. It chiefly diffors
from Carcinoplax in having (1) a much shorter and broader carapace, (2) a much shorter and broader buccal cavern, with external maxillipeds that have the antero-external angle of the merus remarkably produced outwards, and (3) the 3rd to 5th abdominal terga of the male fused together. From Catoptrus it chiefly differs (1) in having the carapace more subquadrilateral than elliptical, and (2) in the curious Amphitritelike form of the external maxillipeds.

Carapace deepish, subquadrilateral or subelliptical, vastly broader than long, with little or no distinction of regions, convex fore and aft, slightly so from side to side.

The extent of the fronto-orbital border is vastly less than the greatest breadth of the carapace, so that the antero-lateral borders, which may be toothed or entire, have a Cancroid-like curve. Front square-cut and quite straight, not well separated from the supra-orbital angles, slightly notched in the middle line, a third or less the greatest breadth of the carapace.

Orbits shallow, their upper border entire. The basal antenna-joint is short, and the antennal flageltum stands loosely in the orbital hiatus. The antennules fold transversely.

Buccal cavern square-cut, much broader than long; the efferent branchial canals of the palate very well defined. The merus of the external maxillipeds is short and broad and has the external angle much produced, as in many species of Neptunus.

Chelipeds subequal, much more massive and longer than the legs; the hands however, which are somewhat tumid, are unequal in the adult.

Legs slender, unarmed: in the Indian species the last pair are almost as paddle-like as those of the typical swimming-crabs of the Portunid family.

In the male the abdomen covers the whole width of the sternum between the last pair of legs, and the 3rd-5th abdominal terga are fused together.

The sternal canals of the male are more perfect than in any other Gonaplacoid known to me.

Key to the Indian species of Libystes.

I. Antero-lateral borders of the carapace serrated almost exaotly like those of Catoptrus nitidus L. Edwardsi.
II. Antero-lateral borders of the carapace entire L. Alphonsi.

Distribution : Indo-Pacific (Madagascar to Sandwich Is.).

8. Libystes Edvardsi, n. sp.

Carapace, length about four-sevenths of the breadth, finely pitted under lens, somewhat granular near the antero-lateral borders: an angular eminence near either posterior angle and a slight concavity of the postero-lateral part of the lateral epibranchial regions give the carapace a somewhat quadrilateral cast.

Front a good deal less than a third the breadth of the carapace, perfectly straight, faiutly notched in the middle line. Eyes small.

Antero-lateral borders of the carapace with 5 or 6 granular denticles followed by a sharp procurved spine.

The chelipeds have the hands unequal in the adult. They are more than three times the length of the carapace and are smooth and unarmed. The fingers are slender and hooked at tip, especially in the smaller hand: they are a good deal longer than the palm in the smaller hand, and about as long as the palm in the larger hand. On the immobile finger of the smaller hand there are several irregular enlarged teeth. [In the young, as in Catoptrus, the hauds are nearly equal, and the fingers of both hands are equally long and slender].

The legs are slender and the longest pair nre not mach more than twice the length of the carapace. The last 3 joints of the last pair form typical swimming paddles.

An apparently adult specimen from the Persiau Gulf and 3 joung from the Andamans are in the Indian Museum.

The carapace of the large specimen is 8 millim. long and 14 millim. broad.

9. Libystes Alphonsi, n. sp.

Differs from L. Edwardsi in the following particulars :-
(1) the carapace, though of the same proportions, is more quadrilateral and more convex fore and aft, and the eminences at the posterior angles are wanting:
(2) the antero-lateral borders of the carapace are smooth and entire:
(3) the front is more deflexed and more distinctly divided in the middle line:
(4) the chelipeds (in the joung) are about $2 \frac{1}{2}$ times the length of the carapace and are nearly equal and similar: the fingers are hardly as long as the palm :
(5) The last 3 joints of the last pair of legs are much broadened and compressed, but are not such unmistakeable paddles as those of L. Eduardsi.

In the Indian Museum is a single specimen from the Andamans: its carapace is 4 millim. long and 7 millim. broad.

This species differs bat little, except in the sub-quadrilateral shape of the thorax, from the Libystes nitidus described and figared by M. A. Milne-Edwards.

Catoptrus, A. M. Ediv.

Catoptrus, A. Milne Edwards, Ann. Sci. Nat. Zool. (5) XIII. 1870, p. 82 : Ortmann, Zool. Jahrb., Syst. VII. 1893-94, p. 685.

Goniocaphyra, de Man, Archiv fur Nntarges. LIII. 1887, i. p. 339.
Curapace transversely elongate-elliptical, without distinction of regions, moderately convex in both directions.

The extent of the fronto-orbital border is vastly less than the greatest breadth of the carapace, the antero-lateral borders, which are serrated, are therefore well carved. Front straight, slightly notched in the middle line, not distinctly separated from the supra-orbital angles, less than a third the greatest breadth of the cainpace.

Orbits shallow, their apper border entire. The nntennal flagellum, which is of good length, stands in the orbital hiatus. The antennules fold transversely.

Buccal cavern, palate, and external maxillipeds as in Eucrate.
Chelipeds much as in Libystes. Legs as in Libystes, except that the last pair, thongh they have the dactylus compressed and ciliated, are never paddle-like.

Abdomen as in Libystes.
-. Distribution: Indo-Pacific (Manritius to Samos).
Catoptrus really differs from Libystes only in the form of the merus of the exterval maxillipeds and of the last pair of legs, which are not paddle-like as they are in one species of Libystes.

10. Catoptrus nitidus, A. M. Edw.

Catoptrus nitidus, A. Milne Edwards, Ann. Sci. Nat., Zool., (5) XIII. 1870, p. 82 : de Man, Notes Leyden Mus. XII. 1890, p. 67 : Ortmavn, Zool. Jahrb., Sget., VII. 1898-94, p. 687.

Goniocaphyra truncatifrons, de Man, Archiv far Nat. LIII. 1887, p. 339, pl. xiv. fig. 1, and Notes Leyden Mns. XII. 1890, p. 67.

Goniocaphyra sp., Zehntner, Rev. Suisse Zool. II. 1894, p. 163, pl. viii. fig. 12, 12a.

Carapace, length less than two-lhirds its breadth, perfectly smooth and shining except for some fine granulation near the antero-lateral borders.

Front about a third the greatest breadth of the carapace, faintly notched and grooved in the middle line.

Antero-lateral borders cut into five teeth followed by a procurved spine.

Meras of external maxillipeds having the external angle very slightly produced.

Chelipeds unequal, much longer and more massive than the legs, the larger one about three times the length of the carapace: they are smooth and unarmed, except that the anterior border of the arm is finely serrulate and that one of the servations at either the near or far end (inrely at both) is eularged to form a spine. In the smaller cheliped the fingers are slender hooked and finely toothed, and are rather longer than the slightly swollen palm : in the larger cheliped they are stouter and more coarsely toothed and are shorter than the swollen palm.

Legs slender, the longest pair are hardly more than twice the length of the carapace; the dactylus of all, though compressed, is slender.

In the Indian Museum are 16 specimens from off Ceylon 34 fathoms (besides 3 from Mauritins and 2 from Samoa).

In the largest specimen (from Mauritius) the carapace is 9.5 millin. loug and $14: 5$ millim. broad. The Indian specimens, though they include egg-ladeu females, are much smaller.

Psophrticos, Wood-Mason.

Psopheticus, Wood-Mason, Admin. Rep. Marine Survey of India, 1890.91, p. 20 (name only) : Alcock, Investigator Deep-Sea Brachyora, p. 72.

Psopheticus in several respects connects Oarcinoplax and Pseudorhombila with Eucrate, and hence serves to emphasize the opinion of Miers as to the closeness of the ties that connect the three latter genera.

As in Pseudorhombila and Carcinoplax, the carapace is much broader than long and the orbital hiatus is open. As in Pseudorhombila, the dactylus of the last pair of legs is styliform. As in Eucrate, the fronto-orbital border occupies almost all the breadth of the carapace.

Carapace deepish, quadrilateral or subquadrilateral, a good deal broader than long, with the regions hardly defined, moderately convex fore and aft, flat from side to side.

Fronto-orbital border little, if at all, less than the greatest breadth of the carapace, the antero-lateral borders of the carapace thereforewhich are short-are either very slightly arched or are in the same
straight line with the postero-lateral borders. Front square-cut, straight, prominent, entire, not well delimited from the supra-orbital angles, a third the breadth of the carapace, or a little less.

Upper border of orbit very sinnous and with a single faint short suture line. The antennal flagellum, which is of good length, stands loosely in the orbital hiatus. The autennules fold transversely.

Mouth and external maxillipeds as in Eucrate.
Chelipeds much stouter than the legs. The legs end in a slender styliform dactylus, and have one or many spines on the anterior border of the merus.

In both sexes the abdomen consists of seven separate segments, and in the male the third segment covers the whole width of the sternnm between the last pair of legs.

Distribution: Andaman Sea.
Key to the (Indian) species of Psopheticus.
I. Carapace qnite quadrilateral, the fronto-orbital border being equal to the greatest breadth of the carapace: meropodites of legs with namerons spines P. striduluns.
II. Carapace subquadrilateral, the fronto-orbital border being aboat three-fourths its greatest breadth : meropodites of legs with a single spine P. insignis.

11. Psopheticus stridulans, Wood-Mason.

Psopheticus stridulans, Wood-Mason, Illustrations of the Zoology of the Investigator, Crustacea, pl. v, fig. 1. (1892) : Alcock, Ann. Mag. Nat. Hist., May 1894, p. 402 ; and Investigator Deep-Sea Brachyura, p. 78.

Carapace quite quadrilateral, three-fourths as long as broad, smooth and polished, crossed transversely in its posterior half by a broad groove which is continued obliquely across the pterygostomian regions to the angles of the mouth.

Owing to the large size of the eye and orbit, the extent of the frontoorbital horder is equal to the greatest breadth of the carapace.

A thin sharp prominent tooth at the outer orbital angle, and an obliquely-prominent spine at the junction of the antero-lateral and postero-lateral borders.

The subocular and subhepatic regions are infiated, and together form a granular eminence against which a strong spine on the upper border of the arm can be brought to play, producing a sound. Hence the names Psopheticus and stridulans.

The major diameter of the reniform eye is between Ω sixth and a seventh the breadth of the carapace; though the orbit does not conceal the eje its edges are well and cleanly cat.

The chelipeds in the adult male are n little more, in the adult female a little less, than twice the length of the carapace, but are slightly shorter than the legs: they are smooth and polished, as also are the legs. The arm h.s a strong upstanding claw-like tooth near the middle of its upper border, one or two spinales near the far end of the onter border, and a spinule near the far end of the inner border : the wrist has both the inner and the onter angles apiniform.

The third pair of lega, which are slightly the longest of the four, are rather more than two-nind-a-half times the length of the carapace. In all, the anterior edge of the meropodites is armed with spines and the same edge of the carpopodites with spinules-these being least numerous and least distinct in the case of the first pnir.

Colours in glycerine : chelipeds and legs rather dusky red ; carapace dusky red behind the transverse groove-which forms a very sharplydefine. red hand-livid red, or almost violet, in front of it ; eyestalks nlmost parple, ejes purplish-black. Eggs in life magenta.

The carapace of the largest male is $\mathbf{1 5}$ millim. long and 20 millim. broad.

Only known, so far, from the Andaman Ser : 2 males and a female from 173 fms., 2 males and a female (Types of the species and genus) from $183-220$ fms, 7 females (3 with eggs) from 185 fins., a male and 4 females from $370-419 \mathrm{fms}$.

12. Psophetious insignis, n. sp.

: Carapace subquadrilateral, the antero-lateral borders being slightly arched, about three-fourths as long as broad, smooth, crossed transversely by two very low and indistinct ridges-one (convex forwards) between the lateral epibranchial spines, the other at the level of the post-cardiac region. The extent of the fronto-orbital border is about three-fourths the greatest breadth of the enrapnce.

There is a bluntish tooth at the outer orbital angle, and an obliquely prominent spine at the junction of the antero-lateral and postero-lateral borders, the edre of the carapace between the two being granular.

Eye small, salglobular, its dinmeter being hardly a tenth the greatest lireadth of the carapace.

Chelipeds more than $2 \frac{1}{2}$ times as long as the carapace nnd decidedly longer than the legs: they are unarmed except for a small tooth or spinule at the outer angle of the wrist.

The meropodites of the legs have the anterior border shniply granular, and in the case of the last three pair of legs there is a spine near the far end of this border. The longest pair of legs are hardly $2 \frac{1}{3}$ times as long as the carapace.

Two specimens, from the Gulf of Martaban, 60 and 67 fms.
The carapace of the largest is $\mathbf{1 3}$ millim. long and 19 millim. broad.
Colours in glycerine, reddish : in the middle of the carapace is a large deep-red shield with a milk-white edge and centre.

Thiis sprecies closely connects Psopheticus with Carcinopla.e.

Pilicmnoplay, Stimpson restr.
 Pilımnoplız, Stimpson, Proc. Ac Nat. Sci. Philad. 1858 (1859) p. 93 : Miers, Chnllenger Brachynra, p. 225: Alcock, Investigator Deep Sea Brachyinra, p. 74.
 Carapnce depressed, flat, n little broader than long, the regions very faintly indicated. Fronto-orbital border twothirds, or more, the greatest breadth of the carapace: the antero-lateval bordera, which are toothed, are slightly arched or obliqne. Front square-cat, straight, rather prominent, more or less confluent with the supra-orbital angles, often uotclied or grooved in the middle line.
 Supra-orbital border often with two fissures. The natennal flagellum, which is of good length, stands in the orbital hiatus. The antenuules fold transversely, or nearly so.
 Mouth and mouth-parts as in Eucrate.
 Chelipeds either sabequal or nnequal, mach more massive than the

 legs. Legs alender, their dactyli compressed.The abdomen in both sexes is seven-jointed: in the male the 3rd segment covers the whole width of the sternum between the linst pair of legs.

Distribution: Tropical and S. Atlantic (deep sea), Arabian Sea (deep), Japan, Fiji.

The species of Pilumnoplax are characterized by the flat, depressed oarapace, which is also comparatively narrow and, owing to the prominence of the perfectly straight front, is subhexagonal in shape.

13. Pilumnoplax americana, Rathbun.

-. Tilumnoplas americanus, Mnry J. Rathban, Bull. Lab. Nat. Hiet. Iowa, 1898, p. 288, pl. vii figa. 1, 2.

Pilumnoplax Sinclairi, Alcock, Investigator Deep Sea Brachyura, p. 74, pl. iii. fig. 1.

Carapace subquadrilateral, much depressed, a little more than three-quarters as broad as long, very finely frosted, perfectly bare, the regions fairly indicated.

Front horizontal, slightly prominent, square cat, grooved but not distinotly notchod in the middle, more than a third the greatest breadth J. in. 41
of the carapace; its free edge is turned vertically downwards and rather deeply grooved from side to side.

The antero-lateral borders are not much more than half the length of the postero-lateral: they are thin and sharp, and are cut into three teeth, of which the first is broad and bicuspid and the other two are acate. On the postero-lateral borders, jast behind the janction with the antero-lateral, is a denticle.

The eses are small but well-formed, and are freely movable. The orbits conceal the retracted eyes to dorsal view : their upper margin is fissured near the middle, and the lower margin is slightly excavated just below the outer angle: the inner angle of the lower margin is not prominent, though dentiform.

The chelipeds in both sexes are very unequal, the larger one being not quite twice as long as the carapace; their surface, under the lens, is finely frosted : the inner angle of the wrist is strongly pronounced and is capped by a pair of acute teeth.

Legs moderately stont, unarmed, smooth, almost bairless: the third pair, which are somewhat the longest, are about two-and-a-halftimes the length of the carapace. The dactyli are compressed-styliform.

Colours in spirit french-grey, fingers much darker grey.
A single female specimen, from of the Travancore coast 430 fms., has the carapace 13 millim. long and 16 millim. broad.

This species is closely related to Pilumnoplax heterochir (Stader) Miers, but is distingaished from it by the entire and more prominent front, by the absence of transverse markings on the carapace, by the longer legs, and by the smoothness of the chelipeds and legs.

From Pilumnoplax abyssicola Miers, which it also closely resembles, it is distinguished by the smooth carapace (to the naked eye), by the tarned-down milled edge of the front, by the spinule on the posterolateral border, by the fissured apper-margin of the orbit, and by the double spine at the inner angle of the wrist.

Distribution: Off Atlantic coasts of North America (Florida and Georgia) 440 and 70 to abont 200 fms. Off Travancore coast 430 fms.

A single specimen from the latter locality is in the Indian Museum collection.
[Platypilumnos, Wood-Mason.
Platypilumnus, Wood-@ason MS., Alcock, Ann. Mag. Nat. Hist., May, 1894, p. 401 : Joarn. Asiatic Soc. Bengnl, Vol. LXVII. pt. 2, 1898, p. 232 : Investigator Deep Sea Braohyura, p. 62.

This genus, like so many of the preceding, has strong affinities with
the Xanthids: it may"prove to belong to that family, where I have already, with reserve, placed it.

I may here, however, state that it closely resembles Pilumioplax, having a flat, depressed, slightly transverse carapace. It differs from Pilumnoplax in the following particulars:-
(1) the front is more prominent, so that the carapace is more decidedly hexagonal :
(2) the fronto-orbital boider is sharply serrated and the chelipeds and legs are profusely sping :
(3) the external maxillipeds do not completely close the buccal cavern, but leave a wide gap between their anterior margin and the edge of the epistome :
(4) the dactyli of the legs are styliform.

Distribution: Andaman Sea.]
[Platypilumnus gracilipes, Wood-Mason.
Plutypilumnus gracilipes, Wood-Mason MS., Alcock, Ann. Mag. Nat. Hist., Muy, 1894, p. 401 : Ill. Zool. Iuvestigator, Crust., pl. xiv. fig. 6: J.A.S.B. Vol. LXVII, pt. 2, 1898, p. 232 : Iuvestigator Deep Sea Brachyura, p. 63.

A description of the female (which is the only sex known) has been already given in this Journal (loc. cit.)].

Litochira, Kinahan.

Litochira, Kinahan, Journ. Roy. Soc. Dublin, I. 1858, p. 121 : Miers, Challenger Brachyura, p. 281.
? Brachygrapsus, Kingsley, Proc. Ac. Nat. Sci. Philad. 1880 (1881) p. 203.
Carapace and appendages in all the Indian species thickly tomentose and hairy.

Carapace deepish, either subquadrilateral and a good deal broader than long, or almost square, smooth, with little or no distinction of regions, flat, but declivous anteriorly. Fronto-orbital border not much less than, if not equal to, the greatest breadth of the carapace: anterolateral borders short and if arched at all, very slightly so, and usually, but not always, with 2 or 3 teeth or spines.

Front not well delimited from the supra-orbital angles, its free edge deflexed and somewhat arched, never square-cut and laminar; more or less distinctly bilobed.

Upper border of orbit entire. The antennal flagellam, which is of good length, stands in the orbital hiatus. The antennales fold trausversely, or nearly so.

Mouth and external maxillipeds as in Eucrate, \&c.

Chalipeds subequal, more massive and usually shortar than thio legs. The legs, including the dnctyli, are compressed.

The abdomen of the male occupies the whole width of the sternum between the last pair of legs : in both saxes it conaists of 7 segreente.

I restrict the genus Litochira to those species which have the edge of the frout turapd down and distinctly arched as is shown in Kipshan's figure. These species fall into two groups, in one of whic̣ the carapeoe if a good deal broader than long, as in Kinahan's type, while in the other it is nearly square. Perhaps these twog groups shauld be sepaxarted, though I do not recompend this coarso.

Distribution : S. Atlantic and Iudo-Pacific (Cape to Australia).
Key to the Indian species of Litochira.
I. Length of carapace about two-thirds the greatest breadth of the carapace and equal to the extent of the fronto-orbital border; the antero-lateral borders dietinctly arched :-

1. Antero-lateral borders of the carapace with three trancated teeth, exclusive of the orbital angle ..
2. Antero-lateral borders with two distinct, though blunt, teeth
L. angustifions.
3. Antero-]ateral borders with hardly any trace of lobulation-almost entire
L. setosa.
I. integra.
II. Carapace more nearly square, the fronto-orbital border almost equal to its greatest breadth, so that the anterolateral borders are almost in the same straight line with the postero-lateral borders or a very little curved:-
4. Antero-lateral borders with two spines and one at the orbital angle: lega uuarmed
L. Beaumontii.
5. Antero-lateral borders with two spines : no spine at the orbital angle : meropodites of the legs with some spines L. quadrispinosa.

14. Litochira integra (Miers).

Carcinoplax integra, Miers, Zool. H. M. S. Alert, p. 513, pl. xlviii, fig. C : de Man, Journ. Linn. Soc., Zool., XXII, 1887-88, p. 93.

Length of the carapace alout two-thirds its breadth and equal to the extent of the fronto-orbital border.

Antero-lateral borders arched, without spines, though whem coma pletely denuded they are granular and show faint but quite diatingaish. able traces of division into two lobules besides the orbital angle.

Chelipeds less than twice the leugth of the carapace and shatos than the legs, unarmed except for an iudistinnt blunt tooth near the
tend of the upper border of the arm : inner angle of wrist dentiform. Lese, nparmed.

A single female fron Mergui: its carnpace is 6 millint lang anch 9 millim. broad.
15. Litochira satosa (A. M. Edw.).

Carcinoplae setosa, A. Milne Edwarde, Nouv. Archiv. du Mus. IX. 1853, pi 267, pl. xii. fig. 2 : de Man, Archiv f. Natarges. LIII. 1887, i. p. 349, and Jeutn. Linni Soc., Zool., XXII. 1887-88, p. 93.

The only essential difference between this species and the preceding is that the carapace here is a little more depressed and that the anterolateral borders are cut into 2 blunt teeth besides the blant orbital angle. The size is aboat the same.

In the Indian Museum are 16 specimens, from the Andamans and Mergai.

16. Litochira angustifrons, n. sp.

Carapace, length a little more than two-thirds the breadth. Frontoorbital border nearly five-ninths the breadth of the carapace in extent. Anterolateral borders arched, cat into 4 teeth (including the outer orbital angle) the edges and dorsal surface of which are granular: the first 3 teeth are sharply trancated, the fourth is subacate.

Chelipeds, in the adult male, nearly twice the length of the carapace and hardly shorter than the legs; in the female much less than twice the length of the carapace and markedly shorter than the legs. There is a labnle near the far eud of the upper border of the arm, and the inmes angle of the wrist is subacute.

Two specimens, from Bombay and Karachi. The carapaee of the larger is 13 millim. long and 18 millim. broad.

This species appears to be closely related to Pilumnoplax cilialus Stimpson.

17. Litochira Beaumontii, n. sp.

Carapace, length more than two-thirds the greatest bweadrls, nearly square. The extent of the fronto-orbital border is hardty leas their that beadth of the carapace. The anterodateral borders are hardly ayched and:are armed with 3 sharp spinules-including one at the ontop orbitab, angle.

The chelipeds are mnch shorter than the legs and, like tham, apes unermed, except that the inner angle of the wrist is dentiformr. The
 carapace.

In the Indian Maseum are 4 specimens, from the Andamans and from off Ceylon 34 fms. The carapace of the type specimen is 5 millim. long and 7 millim. broad.

Colour in spirit, uniform yellow.

18. Litochira quadrispinosa, Zelntner.

Litochira quadriepinosa, Zehntner, Rev. Suisse de Zool. 1I. 1894, p. 171, pl. viii. figs. 11, $11 b$.

Differs from L. Beaumontii in the following particulars ouly :-
(1) the carapace is still more nearly square:
(2) there are 2 spines on the antero-lateral borders but none at the outer orbital angles :
(3). the inner border of the ischium and arm of the chelipeds is serrated, and the meropodites of the legs are armed with spines.
(4) the colouration is yellow, with a large purplish-brown horseshoe behind the front, and with sinuous markings of the same colour on the lateral subfrontal and suborbital regions of the carapace: the greater part of the antennal flagella is of the same purplish-brown colour.

In the Indian Maseum is a single specimen from the Andamans: the carapace is 4 millim. long and 5 millim. broad.

Subfamily ii. Gonoplacine.

19. Gonoplax, Leach.

Gonoplax, Leach, Trans. Linn. Soc. XI. 1815, pp. 309, 383, and Malac. Pod. Brit. : Desmarest, Consid. Gen. Crust. p. 124, and Dict. Soi. Nat. XXVIII. p. 843 : De Haan, Faun. Japon. Crust., p. 19 : Milne Edwards, Hist. Nat. Crust. II. 60, and Ann. Sci. Nat. Zool. (8) XVIlI. 1852, p. 162 : Dana, U. S. Expl. Exp. Crust. pt. I. p. 310 : Bell, Brit. Stalk-eyed Crust. p. 129 : Heller, Crust. Sudl. Europ. p. 102 : Miers, Challenger Brachyura, p. 245.

Rhombilia, Lamarck (part), Hist. Nat. Anim. sans Vert. (2) V. p. 466 : Latreille, Encyc. Méthod. X. p. 298.

Carapace subquadrilateral, with the antero-lateral angles acute and the lateral borders posteriorly convergent, a good deal broader than long, moderately convex, the regions bat faintly indicated.

The front and orbits occapy the whole anterior border of the carapace: the front is square cut, laminar, and obliquely deflexed, and takes up between a third and a fourth of the anterior border of the carapace, the rest being taken up by the trench-like orbits.

Eyestalks long and slender: the antennules fold quite transversely beneath the fiont : the antennex have a short basal joint and a slender fagollum of good leugth, standing in the orbital hiatus.

The buccal cavern is square and is well separated from the prominent epistome: the efferent branchial channels are not well defined. The external maxillipeds completely close the buccal cavern: their meras is square and carries the flagellam at the antero-internal angle.

Chelipeds in both sexes much more massive, and in the male rery mach longer, than the legs, which are long and slender.

The abdomen in both sexes consists of 7 separate segments : in the male the 3rd segment nearly batt not quite covers the sternum between the last pair of legs.

Distribution: North-Eastern Atlantic consts, Mediterranean basin ; Persian Gulf; East Indian Archipelago.

In the Indian Museum there is a young femnle, lately received by myself from the Persian Gulf, of a species of Gonoplax. Apart from the shortness of the chelipeds it differs from G. angulata, of which we have several good specimens from Earope, only in wanting the terminal spine to the upper border of the meropodites of the legs.

Sabfamilies iii. \& iv. Rhizopine \& Hexapodinc.
Key to the Indian Genera.
A. Four pairs of legs, besides the chelipeds (Rhizopina) : -
I. The antennulary flagella can be completely retracted within the antennulary fosse :-

1. The epistome is of good length fore and aft, it is not in any way confused with the palate but is commonls prominent and almost vertical :-
i. Eyes well formed, rarely deficient in pigment:-
a. Eyyes in all respects perfect : front straight, entire, from two.fifths to half the greatest breadth of the carapace: merus of the exter. nal maxillipeds nearly square......
b. Ifyes either quite perfect or defi-
cient in pigment : front slightly onrved and notched in the middle, about a third the greatest breadth of the carapace : antero-external angle of the merus of the external maxillipeds much produced...

Notonix.

Cgratoplax.
ii. Fyes obsolete or nearly so :-
a. Carapace much broader than long, the postero-lateral borders parallel
b. Carapace a little broader than long, the postero-lateral borders anteriorly-convergent

Xenopetealmodra.
2. The epistome is elhort, sunken, and not boldly separated frow the palate :-
i. Eyes minate, orbits concealed beneath the anterior border of the caripace: merus of external maxillipeds with a sharp antero-external angle

Scalopidia.
ii. Eyes obsolete or nearly so, orbits visible. from above: antero-external angle of merns of external maxillipeds ronnded off

Typhlocarcinódke.
.II. The bnesal joint of the antennules completely filts ite fossa, into which the flagellam cannot thereforo be retracted:-

1. Fyes small, but perfect : onter border of merus of external maxillipeds almost straight \qquad Hrphthoprita.
2. Eyes reduced to a speck of pigment: outer border of meras of external maxillipeds with a strongly convex balge ontwards

Camafopsis.
B. Only three pairs of legs besides the chelipeds, the last pair of other orabs not being represented even by a radiment. The vasa efferentia of the male open on the 4th sternal aegment (Hesapodinss)

Lambdopfalleg.
Subfamily iii: Rhizopine, Stimps. Notonix, A. M. Edw.

Notonyx, A. Milne Edwards, Nouv. Archiv. du Mus. IX. 1873, p. 288 : Miers, Challenger Brachyara, p. 235.

Carapace deepish, subquadrilateral with the antero-lateral angles rounded off, broader than long, perfectly nude smooth and polished, without any indication of regions, convex fore and aft and anteriorly declivous.

Fronto:orbital border a good deal more than three-fourths the greatest breadth of the carapace: antero-lateral borders short, entire, curved. Front straight, sublaminar, from two-ffths to half the breadth of the carapace.

Eyes small but well developed, the eyestalks movable, obpiriform : orbits in the usual marginal position. Tlie antennules fold transversely in well formed pits. Basal antenna-joint short; the flagellum, which is of fair length, stands in the orbital hiatus.

Epistome well formed, nearly vertical : bnocal envern a little wider in front than behind. A slight hiatus between the external maxillipeds, the fierus of which appendages is square and carries the flagellum at the antero-internal angle.
. . Chelipeds subequal, or a little unequal, smooth and polished, much
more massive and but little shorter than the legs : palm short and rather deep, with the lower border sharply carinate.

Legs smooth, unarmed, with a very fer scattered lank hairs: dactyli styliform.

The abdomen in both sexes consists of 7 separate segments and does not nearly conceal the sternum between the last pair of legs.

Distribution : Indo-Pacific, from Fiji to the Persian Gulf.
Key to the Indian species of Notonyx.
I. Carnpace, length nbout three-fourthe the breadth : merns of external maxillipeds abont as long as the ischiam ... N. nitidus.
II. Carapace, length abont five-sixths the breadth : merns of external maxillipeds mnch shorter thnn the ischinm ... N. vitreus.
20. Notonyx nitidus, A. M. Edw.

Notonyx nitidus, A. Milne Edwards, Nonv. Archiv. da Mus. IX, 1873, p. 269, pl. xii. fig. 3 : Miers, Challenger Brachyara, p. 236.

Carapace, length a little more than three-fourths the greatest breadth. Front between a third and two-fifths the breadth of the carapace. Orbits elongate. Merus of the external maxillipeds as long as the ischium.

A small denticle near the far end of the upper border of the arm : inner angle of wrist pronounced, but not acute.

Legs with some scattered hairs along the edges, the 3rd pair, which are slightly the longest, are about $2 \frac{1}{2}$ times the length of the carapace and nearly half again as long as the chelipeds.

In the Indian Mascum is a single specimen from the Persian Galf : its carapace is 8.5 millim. long and 11 millim. broad.

21. Nolonyx vitreus, n. sp.

Carapace, length about five-sixths the greatest breadth, rather tamid. Front nearly half the breadth of the carapace. Merus of the external maxillipeds shorter than the ischium.

No denticle on the arm: inner angle of wrist blunt. Legs with hardly any hairs, otherwise resembling those of N. nitidus.

In the Indian Musenm is a single specimen from the Andaman Sea, 53 fathoms : its carapace is 5 millim. long and 6 millim. broad.

Ceratoplax, Stimpson.

Ceratoplax, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 96 : Miers, Challenger Brachyara, p. 233.

Carapace deep, subquadrilateral with the antero-lateral angles rounded off, a good deal broader than long, the regions very indistinctly J. II. 42
and incompletely indicated, strongly conver fore and aft and anteriondy declivous.

Fronto-orbital border about two.thirds the greateat breadth of the carapace : antero-lateral borders sharp, entire, curved: postero-latersh borders parallel.

Front about a third the greatest breadth of the carapace, its frea edge slightly arched, notched in the middle lime.

The orbits are in the usual position and the eyestalks are immorably fixed in them, but the eyes are fairly well formed, though they may be deficient in pigment. The antennules fold transversely in proper pits. The basal antenna-joint is short: the flagellum, which is of good length, stands in the orbital hiatus.

Epistome well formed and prominent: buccal cavern quadrilateral, slightly increasing in breadth from behind forwards, almost completely closed by the external maxillipeds, the merus of which has the anteroexternal angle much produced and carries the flagellam at the anterointernal angle.

Chelipeds subequal, more massive but decidedly shorter than the legs; the palm short, deep, and compressed.

Legs slender, unarmed, the 3rd pair the longest : daotyli styliform.
The abdomen in both sexes consists of 7 separate segments and does not nearly occupy the space between the last pair of legs.

Distribution : Indo-Pacific from the Bay of Bengal to Ecuador.
Key to the Indian species of Ceratoplax.

1. Surface of carapice nude, eyes well pigmentod: outer surface of palm polished and nearly smooth
C. ciliata.
II. Sarface of carapace tomentose, eyes deficient in pigment: rows of vesicalons granales on the outer surface of the palm C. hiepida.

22. Ceratoplax ciliata, Stimpson.

Ceratoplay ciliatus, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 96 : A. 0. Walker, Joarn. Linn. Soc., Zool., XX. 1890, p. 110.

Ceratoplax ciliata, Miers, Challenger Brachyara, p. 294, pl. xix. Af. 3: Caso, Boll. Soc. Nat. Napol. III. 1889, p. 229.

Carapace, chelipeds and legs rather scantily fringed with hairs, but with a nude surface.

Carapace, length a little more than three-fourths the greatest breadth, sparsely punctate, the regions not distinguishnble. Front about a third the greatest breadth of the carnpace, its free edge slightly atched and notched in the middle line. Eyes well pigmented. Chelipeds decidedly shorter than the legs : inner angle of wrist sharp, bit
mot produced: onter surface of palm smooth and polished, except for a few depressed granules inferiorly. Third pair of legs not twice the length of the carapace.

In the Indian Museum is a single specimen from the Andaman Sea, 53 frem.

23. Ceratoplax hiepida, n. sp.

Carapace, chelipeds and legs with a tomentose surface, and fringed with longer silky hairs.

Carapace, length a little less than three-fourths the breadth, when denuded its regions (and three gastric subregions) are just distingaishable, and its surface is pitted and its lateral margins granular. Front a little more than a third the greatest breadth of the carapace, its free edge decidedly arched and notched in the middle line. Eyes very deficient in pigment. Chelipeds (in the female-male anknown) mach shorter than the legs: inner angle of wrist sharply dentiform ; outer surface of palm with numerous rows of vesicalous granules. Third pair of lags two-and-a-half times the length of the carapace.

In the Indian Maseum is a single specimen from Pals Straits: its campace is 9 millim. long and 13 millim. broad.

Typhlocarcinus, Stimpson.

Typhlocareinue, Stimpeon, Proc. Ac. Nat. Soi. Philad. 1858, p. 95.
Carapace as in Ceratoplax. Fronto-orbital border about half the greatest breadth of the carapace. Front less than a fourth the breadth of the carapace, more or less distinctly bilobed. Antero-lateral borders well curved, often emarginate in places: postero-lateral borders parallel.

Orbits in the usual position, completely filled by the immovable eye-stalks: eyes obsolete, or nearly so. The antennules fold nearly transversely, in proper pits. Basal antenna-joint short; the flagellam, which is short, stands in the orbital hiatus.

Epistome well formed and prominent: buccal cavern completely, or almost completely, closed by the external maxillipeds, the flagellum of which articulates with the antero-internal angle of the merus; the onter angle of the merrus not produced.

Chelipeds sulequal or unequal, much more massive than the legs from which they do not mach differ in length: palm short deep and oompresed, with sharp upper and lower borders.

Legs slender, ungemed, the 3rd pair slightly the longest : dactyli stadiformas.

The abdomen in both sexes consists of 7 separate segments and does not nearly occupy all the sternum between the last pair of legs.

Distribution: lndo-Pacific, from the Persian Gulf to Hongkoug.
From Rhizopa, of which we possess specimens from Hongkong, this genus differs only in having the eyes obsolete and the external maxillipeds more closely opposed to each other. It may well be doabted whether these differences are of generic value.

Key to the Indian species of Typhlocarcinus.
J. Antero-lateral borders with 2 or 3 emarginations:-

1. Buccal cavern decreasing in size from behind forwards : antero-external angle of merus of external maxillipeds obsolete and rounded off T. nudus.
2. Buccal cavern quite square : antero-external angle of merus of external maxillipeds sharp T. villosus.
1I. Antero-lateral borders of carapace entire: buccal cavern quite square T. rubidus.
3. Typhlocarcinus nudus, Stimpson.

Typhlocarcinus nudus, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 96.
Carapace much transverse, its length only about five-eighths its greatest breadth, its sarface smooth and bare, the regions hardly distinguishable. The posterior part of the antero-lateral border has two or three obscure notches.

The front, which is about a fifth the greatest breadth of the carapace, is grooved in the middle line-almost bilobed. Orbits broadly oval, almost subcircular.

Buccal cavern considerably decreasing in breadth from bebind forwards: merns of the external maxillipeds with the antero external angle obsolete and rounded off ; the exognath very narrow.

Chelipeds and legs smooth, with only a few scant hairs on the margin. Chelipeds, in the male about twice the length of the carapace, a little longer than any of the legs : inner angle of wrist sharp, bat not produced: palms unequal, smooth and polished, the upper border smooth and crest-like, the lower border with a distinct moulding.

In the Indian Museum are 25 specimens, from Karachi and the Mekrán coast, Madras coast and Sandheads, and the Audamans.

In this species a tiny speck of pigment denotes an eye.

25. T'yphlocarcinus villosus, Stimpson.

Typhlocareinus villosus, Stimpeon, Proc. Ac. Nat. Sci. Philad. 1858, p. 96 Miers, P. Z. S., 1879, pp. 20, 40 : Walker, Joarn. Linn. Soc. Zool. XX. 1890, p. 110, pl. ix. fige. 6-8 : Ortmann, Zool. Jahrb. Syst. VII. 1893-94, p. 689.

Carapace and appendages everywhere covered with velvet. Carapace
aboat three-fourths as long as broad, its greatest breadth across the middle: when denuded it is granular in places and the regions are hardly distinguishable. Three blant granular teeth on the lateral borders, two of which are antero-lateral, the third being postero-lateral.

Front between a fourth and a fifth the breadth of the carapace, bilobed : orbits piriform.

Buccal cavern quite square: antero-external angle of meras of external maxillipeds well marked bat not produced, the exognath normal.

Chelipeds about twice as long as the carapace, and nearly the same length as the 3 rd (longest) pair of legs, their outer surface, especially that of the palm, is granular : inner angle of the wrist produced, dentiform. The legs are fringed with coarsish hairs.

In the Indian Museum, besides a specimen from Hongkong, nre 6 from various parts of the coast of the Bay of Bengnl.

The carapace of the best specimen is 6 millim. lotig and 8 millim. broad.

In this species also there is a tiny speck of pigment for an eye.

26. Typhlocarcinus rubidus, n. sp.

Carapace perfectly sinooth and nude, except for \mathfrak{a} few hairs on the anterior and antero-lateral margins, its length a little over three-ififhs its breadth, the regions hardly distinguishable, though the epibranchial regions have a decided dorsal bulge.

The antero-lateral borders, which, like the postero-lateral are blaut and granular, are quite entire.

Front about a fifth the breadth of the carapace, bilobed, the median groove very deep. Orbits piriform. Buccal cavern and external maxillipeds as in T'. villosus.

Chelipeds and legs rather hairy, but there is always a large smooth bare space on the outer surface of the wrist and palm. Chelipeds about as long as the longest lege, less than twice the length of the carapace: inner angle of wrist produced, dentiform: below and above the bare patch on the wrist and hand the surface, when denuded, is granular.

The colour is a rich ruddy brown.
In the Indian Museum are 18 specimens from the Bay of Bengal, 20 to 65 fms .

The largest specimen has the carapace nearly 7 millim. long and 10 millim. broad, bat there are egg-laden females smaller than this.

There is no pigment speck to represent an eye in this species.
Xenophthalmodes, Richters.
Xenophthalmodes, Richters, in Möbias Meeresf. Maurit. p. 155, 1880.
Carapace rudely semicircular in outline, the posterior border being
the longest, and the posters-Interal berders being anterieriy-oonvergant to form a common ourve with the well-arched anterier and antanglateral borders: it is but little broader than long, is conver fore and aft and strongly dectivons antoriorly, and shows the regioms indistivotly and incompletely.

Fronto-orbital border less than half, front leas than a fifth, the greabeet breadth of the carapace, the front being promimand and bithobed.

Orbits in the mand poestion, conspletely filled by the immovable eye-staiks : eyes obsoleto. The antennules are small, and fold obliquoly ratier than transversely in proper pits. Bnsal antenna-joint thort : tha flagellum, which nlso is short, stands in the orbital hiatus.

Epiotome and vaouth parts, as also the abdomen, as in Typhlocarcinus.

Chelipeds a little reequal, much more massive and nather 1onger than the legs, of which the 3rd pair is slightly the lougest. Palm shent deep suid comproseed, with shaxp edges.

Legs slender, unarmed : dactyli styliform.
Distribution: Indian Ocean, from Mauritius and the Red Sea to the Andamans.

This genus differs from Typhlocarcinus in hnving the carapace more elongate and more semicireular in outline, the front more prominent and narrower, and the antennules more cramped in consequence.

27. Xenopthalmodes moebii, Bichtera

Xenophthalmodes moebii, Riohters, in Nobias, Meereof. Manrit. p 155, pl. xvi. fig. 29 and pl. xvii. fige. :-5 1860 : Mieve, P. \&. 8. 1884, pp. 10, 12 : do Mm, Notos Leyden Mas. XII. 1890, p. 68, pl. iii. fig. 5.

The carapace has rathor a bop-sided look and is practically smooth, except for two rather deap seniknar impressieus that incompletaly soparate the gastro-cardiac from the epibranchial regions: its ancinoe is bure, bat its free edges, like the redges of the chelipeds and legs, aro thickly fringed with lenginh silky hairs : its length is aboat five-sixths the greatest breadth, which is quite posterier. Fmont very deoidedly bilobed. Orbits evai. Buccal oaverra very slightity decroasing in breadth anteriorly: the meras of the external maxillipeds has the aribert-extereal mingle rounded off.

Ghelipeds in the asale a jittide icager than tive lege, and midth the hands decidedly maequal : the inner angle of the wrist is ncpurinate: the upper edge of the palm is sharp and crest-like, the lower edge has a low granular crest or moulding, the surface of the palm is smooth and polished. The larger cheliped, measured along its converities, is \&bout twice the length of the carapace.

In the Indian Museum are 13 apcoimena, frem the Pemasis Guthe, Malebar coast, Coromandel coast, Gulf of Martaban, and the Andomena. The cirapace of the largest apecimes is $\mathbf{1 0}$ millim. long and 12 milimi. hroad.

In one very young specimen the eye is represeated by a tivy appock of pigment, as shown ia de Man's figare, hat in large apecimene there is no trace of this speck.

Scalopidia, Stimpson.
Scalopidia, Stimpson, Prac. Aa. Nat. Sci. Philod. 1858, p. 95 : Miers, Challenger Brachynra p. 223.

Hypophthalmus, Richters, Abh. Senok. Nat. Ges. Frankfart, XII. 1881, p. 429.
Carapace of but moderate depth, moderately convex fore and aft and but moderately declivous anteriorly : it is a good deal broader than long and inclines somewliat to a semicircular outline, the greatest breadth being quite posterior, the postero-lateral borders being anteriorly convergent, and the antero-lateral borders being nicely carved: the regions are distinctly mapped out by fine grooves.

Fronto-orbital border about two-fifths, front about a fourth the greatest breadth of the carapace : front ratlrer obscuiely bilobed, anterolateral borders acute.

Eyes minate, eyestalks fixed in small orbits which lis entively benenth the anterior border of the carapace. The antennules fuld transversely in shallow and rether inadequate pits. Basal antenna-joint short; the flagellpm, which is of moderate length, stands quite clear of the orbital hiatas.

Epistome sanken, not well demarcated from the edge of the buccal cavern : the latter is squarish and broader in front than behind. There is a considerable gap between the external maxillipeds, the merus of which is square and has a sharp antero-external angle and carries the fingellum at the antero-internal angle.

Chelipeds a little unequal, much shorter and not much more massive (except as regards the larger palm) than the third pair of legs: palm short and compressed, with sharp edges.

The logs have the merus broadened, especially in the case of the 2ud and 3rd pair : the 3rd pair is considerably the longest.

The abdomen consists of 7 separate segments, and does not nearly occupy all the sternum between the last pair of legs.

Distribution : Indo-Pacific, from Mndagascar to China.
28. Scalopidia spinosipes, Stimpson.

Senlopidia epincoipes, 8timpson, Proc. Ac. Nat. Soi. Phillad. 1858, p. 95 : J. R. Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 379.

Carapace and appendages downy. Carapace, length about two-
thirds the greatest breadth, its surface closely panctate: all the regions are quite plainly defined by grooves, which also subdivide the gastric into three subregions, and the epibranchial into two-an anterior and a posterior ; and the cardinc region has a distinct bulge. The sharpcat antero-lateral borders are, like the anterior border, very finely serrated, aud are marked off from the blunt postero-lateral borders by a minute spine.

The larger cheliped is bnrely half again as long as the carapace : both chelipeds have the lower edge of the arm finely serrated, liave a spinule near the far end of the upper border of the arm and one at the outer angle of the wrist, and have the inner angle of the wrist stiongly dentiform.

The legs have their edges, except in the case of the dactyli, closely and evenly spinulate, but there is a tendency for the spines to fuil on the posterior edge of the carpus and propodite. The 3rd pair, which are considerably the longest, are much more than $2 \frac{1}{2}$ times the length of the curapace. The legs increase remarkably in length from the lst to the 3 rd, and the 4th are about the same length as the first. The dactyli are sharp, stiong, styliform and ciliated : those of the last pair are curvel, those of the other pairs are straight.

Henderson records this species from the Gulf of Martaban: the only specimens in the Indian Museum are from Hongkong.

29. Typhlocarcinodes, n. gen.

Apparently one of the links between Typhlocarcinus and its allies on the one hand and Scalopidia on the other.

Carapace moderately deep, shaped mach as in Typhlocarcinus, but slightly more elongate, the free edges hairy. Fronto-orbital border about three-fifths, front about a third, the greatest breadth of the carnpace: front prominent, its free edge convex and entire.

Orbits in the normal position, nariow, button-hole slaped; ejestalks tapering, immovable; ejes obsolete or nearly so. Antennules cramped, folling very obliquely-nearly lonyitudinally-in proper pits. Antenual penduncle small and cramped, the flagellum stauding in the orbital hiatus.

Epistome sunken, linear : buccal cavern square, its anterior angles, like the antero-external angles of the merus of the external maxillipeds, rounded off: the external maxillipeds completely close the buccal envern and hare the flagellum articulated to the antero-internal angle of the merus.

The abdomen does not nearly sccupy all the space between the last pair of legs.

The above diagnosis is framed on a broken specimen, without chelipeds or legs, in the Indian Museum. In the form of the front and shape of the carapace this specimen has a strong resemblance to the Typhlocarcinus integrifrons described and figured by Miers in Anu. Mag. Nat. Hist. (5) VIII. 1881, p. 260, pl. xiv. fig. 1. Miers himself was doubtful aboat referring his species to Typhlocarcinus.

Our specimen is too mach damaged to furnish a aseful specific diagnosis.

Hephthopedta, Alcock.

Hephthopelta, Alcock, Investigator Deep Sea Brachyara, p. 76.
Carapnce rery deep, inflated, radely semicircular, about as long as broad, convex fore and aft and vertically deflexed anteriorly, all its borders entire and all, except the posterior, tumid, the cardiac and branchial regions well delimited.

Front considerably less than a third the greatest breadth of the enrnpace, bilobed, vertically deflexed; the whole extent of the frontoorbital border is more than half the greatest breadth of the carapace.

Orbits small, slinllow, excavated in the vertically-deflexed anterior border of the carapnce, not concealing the eyes. Though the eyes are small and their stalks immovally fixed, they are well formed, well defined and well pigmented.

The antennulary fossx are completely filled by the basal antennulary joint, to the exclusion of the flagella.

The basal antenna-joint is small, slender, and does not nearly reach the front; the flagellum, which arises in the orbital hiatus, is hardly longer than the orbit.

The epistome is of considerable width fore and aft and, though sunken, is well defined from the palate. The buccal cavern is square, though rery slightly narrower in front than behind : the excurrent branchial canals are well defined. The external maxillipeds, which completely cover the buccal cavern, have the merus shorter and slightly narrower than the ischium and somewhat oval in shape, and the palp jointed to the antero-internal angle of the merus and of good size.

The legs are all long and slender and end in a slender dactylus: the third pair are slightly the longest.

The chelipeds are lost in the single specimen obtained, which is a female.
30. Hephthopelta lugubris, Alcock.

Hephthopelta lugubris, Alcook, Investigator Deep Sea Brachyara, p. 77. pl. iv, fig. 2.
Carapnce as long as broad, rougbly semicircular or semiglobose, of thin texture, its surface very finely frosted and somewhat pubescent. J. II. 43

I'he fronto orbital region is vertically deflexed and almost invisible in a dorsal view.

Epibranchial and cardiac regions tumid, circumscribed by deepish grooves.

Legs suboylindrical, with a finely frosted and pubescent surface: the third pair, which are slightly the longest, are about $2 \frac{3}{4}$ times the length of the carapace : the posterior (lower) border of the merus of the first two pairs is spiulose.

Colours in spirit, light yellow, eyes black.
A single female, without chelipeds, from the Andaman Sea, 490 fms. The carapace is 8 millim. long, and the same in breadth.

Camatopsis, Alcock.
Camatopsis, Alcock, Investigator Deep Sea Brachyara, p. 75.
Carapace deep, rudely sub-semicircular, hardly broader than long, strongly convex fore and aft and declivous anteriorly : its antero-lateral borders short sharp and entire, its postero-lateral borders long sharpish and slightly convergent anteriorly: its only markings are two longitudinal grooves hardly visible on the undenuded carapace, that mark off the epibranchial regions.

Front considerably less than a fourth the greatest breadth of the carapace, obscurely bilobed; the whole fronto-orbital border is about half the greatest breadth of the carapace.

- Orbits large, deep, and normally cut in the anterior border of the carapace : eyestalks large, tumid, conical, almost immorably fixed in the orbits : eyes reduced to a speck of pigment placed on the under surface of the tip of their stalks.

Antennulary fossæ small, and filled entirely by the basal antennulary joint, to the complete exclusion of the large flagellum.

The small basal antenna-joint is wedged in between and beneath the eyestalk aud antennule, the second joint hardly reaches to the front, the flagellum is large and considerably longer than the orbit.

The epistome is of considerable width fore and aft, especially at its middle, and though sunken, is well separated from the palate. The buccal cavern is square, though rather broader in front than behind, and is almost entirely covered by the external maxillipeds. These hare the merus as long as, and markedly broader than the ischinm, owing to the strongly convex bulge of the outer border of the merus: the palp, which is of good size, is jointed to the antero-internal angle of the merus.

The chelipeds are moderately massive and in the male the hands are unequal. 'The arm is short and trigonal, the wrist rather long narrow and crooked.

Legs sufficiently long and stout, the penultimate pair being the longest; their dactyli are sharply trigonal and elegantly plumose: the last pair have the dactylus slightly curved and compressed.

The abdomen of the male, which is four-jointed, does not nearly fill the space between the last pair of legs.

Between the 4 th and 5th segments of the sternum, in the male, is intercalated a long narrow plate that covers the external genital ducts.

31. Camatopsis rubida, Alcock and Anderson.

Camatopsis rubida, Alcock and Anderson, Ann. Mag. Nat. Hist. Jan. 1899, p. 13 : Alcock, Investigator Deep Sea Brachyura, p. 76, pl. iv. fig. 3.

Carapaoe very finely granular when denuded of the short velvet that covers it and all parts of the body and appendages. The narrow front and the antero-lateral borders form a semicircular curve: the postero-lateral borders are anteriorly convergent, the greatest breadth of the carapace being between the bases of the penultimate pair of legs. The tumid anterior (true inner) borders of the ejestalks bulge bejond the orbital concavities of the anterior border of the carapace.

The efferent branchial canals cause an angular bulging or carination of the pterygostomian regions.

The chelipeds are unequal in the male (female unknown), the longer one being about $1 \frac{8}{4}$ times the length of the carapace. They are unarmed. In the larger hand the fingers meet ouly at tip and are finely toothed in the distal half only, being rather deeply notched in the basal half, while on the inner surface of the movable finger is a curious truncated spine. In the smaller hand the fingers meet throughout their extent and only the immovable finger is distinctly toothed, one or two of its teeth being enlarged.

The first and last pair of legs are aboat $1 \frac{2}{3}$ times, the second and third pair are about twice, the length of the carapace. In the last pair of legs the terminal joints are more strongly ciliated, and the dactylus is slightly curved and compressed as for swimming.

Colours in spirit rich chocolate brown. Animal entirely covered with velvet.

Three males from the Andaman Sea, 194 fathoms. The carapace of the largest is 9 millim. long and 10 millim. broad.

Subfamily iv. Hexaponine, Miers.
Lambdophalles, nov. gen.
Near Hexapus, De Haan, from which it chiefly differs in the form of the auterior pair of male sexual appendages, which are rigidly bent
into the form of an L, the horizontal limb of which is lodged in a special trench in the first segment of the sternum.

Carapace much broader than long, broadest behind. Front narrow, nearly vertically defexed. Orbits small, circular, widely communicating with the antennular fossw. The antemnales fold transversely. Antennm small, standing in the orbital liatus.

Epistome well-defiued. Buccal cavern with the sides slightly convergent anteriorly. The external maxillipeds have coarse palps, which, when folded, fill the rather broad space that exists between the ischiopodites: the merus is subquadrilateral, with the antero-external angle rounded off, and the palp articulates with its antero-internad angle: the exognath is not coucealed.

Chelipeds unequal in the male, shorter but more massive than the legs.

Only three pairs of legs, the fourth pair entirely absent.
Sternum extremely broad. Abdomen of the male very narrow. The efferent ducts of the male sex open on the 4th sternal segment inside the fossa into which the abdomen fits.

32. Lambdophallus sexpes, n. sp.

[^52]Carapace subquadrilateral with the anterior angles broadly rounded off, mach broader than long, convex fore and aft and anteriorly deflexed, nearly flat from side to side, the gastric and cardiac regions well defined, the surface nniformly finely granular under a lens.

Front nearly vertically deflexed, its edge square-cut but grooved or notched in the middle line, its breadth about a fifth the greatest breadth of the carapace.

Orbits freely communicating with the antennular fosso: eyestalks immovable and very short, eyes small but well pigmented.

Antennules large, folding transversely ; the inter-antennular septam narrow if complete.

Epistome lozenge-shaped, well defined: the sides of the buccal cavern converge slightly from behind forwards: the ischiopodites of the external maxillipeds are rather narrow and leave between them a widish gap, which, however; is filled by the flagella.

There is a deep crescentic groove across the pterygostomian region, just in front of the bases of the chelipeds, and there are several close-set oblique scorings near the antero-lateral angles of the buccal cavern.

Chelipeds in the male unequal, more massive than the legs, the larger one not $1 \frac{1}{2}$ times the length of the carapace: under the lens their
outer surface is very finely and uniformly granular : the fingers are short, especially in the larger hand, and meet only at tip, and at the base of the dactylus of the larger hand is a molariform tooth.

Legs tomentose : only 3 pairs are present, the 4th pair not being represented even by a rudiment. The first pair, which are not much longer than the chelipeds, are the shortest and slenderest: the next two pairs, which are about equal in size, are not quite twice the length of the carapace.

Sternum very broad, finely and uniformly granular: in the male, in the first sternal segment, on either side of the last abdominal tergam, is a long narrow oblique trench, in which the ends of the modified abdominal appendages are lodged.

Male abdomen very narrow, not a fifth the breadth of the sternum at its base. The first tergam is short fore and aft, the second is linear and has a somewhat trilobed form, the 3rd 4th and 5th are fased to form a sort of hexagonal plate with the distal end narrowed, the 6th and 7th are separate.

The anterior of the two pairs of male abdominal appendages are most curiously modified: they are very long and stiff and are L shaped, and the proximal limb of the L lies beneath and parallel with the abdomen, while the distal limb of the L emerges at right angles to the abdominal tergum, and, instead of being free, lies in the special sternal canal before mentioned.

In the Indian Museum are 2 specimens, from the Bay of Bengal, 65 fathoms. The carapace is 4.5 millim. long and 7 millim. broad.

Family II. PINNOTERID , Edw.

Key to the Indian genera of Pinnoteridre.
I. Carapace ill-caloified: the isohinm of the external maxillipeds is indistinguishably fused with the much enlarged merus :-

1. Edges of the carapace swollen and ill-defined: dactylus of the external maxillipeds small and of ten abnormally placed, but present

Pinnotries.
2. The edge of the carapace, in all bat its short fronto-orbital portion, forms a thin upturned crest: dactylus of the extarnal maxillipeds wanting, or represented by a tiny pencil of hairs
II. Carapace well calcified : the ischinm of the external maxillipeds is distinct and independent :-

1. Isohiam of the external maxillipeds mach smaller than the merus : dactylus of the external maxillipeds very large, spathalate. Orbits and eyes normal, the orbits circular

Tetbing.

Subfamily Xenophthalmine, nov. Xenophthalmos, White.

Xenophthalmus, White, Ann. Mag. Nat. Hist. XVIII. 1846, p. 177: Milne Edwards, Ann. Sci. Nat., Zool., (3) XX. 1853, p. 220: Barger, Zool. Jahrb., Syst. VIII. 1894-95, p. 386.

Carapace broader than long and broadest behind, arched anterolaterally, the regions faintly indicated. Front narrow, strongly deflexed.

T'he orbits are small, oblique or nearly longitudinal, button-hole like slits, placed dorsally almost at right angles to the frontal border, and the eyestalks are immovably embedded in them. The eyes are, at most, minute specks of pigment. The autennules and antennæ are extremely small, the antennules folding nearly vertically beneath the front.

Epistome not defined. Buccal cavern almost semicircular, completely closed by the external maxillipeds. The external maxillipeds have the ischium and merus equally well developed (the ischinm being nearly square and the merus about a quadrant of a circle) and the palp articulated at the antero-external angle of the merus. Exognath small and concealed.

Chelipeds in the male "with the hands somewhat elongated and thickened," in the female short and very slender.

Legs fairly stout, the third pair the longest.
The abdomen in both sexes consists of seven separate segments.
Key to the Indian species of Xenophthalmus.
J. The legs are ciliated and the third (longest) pair are not twioe the length of the carapace
X. pinnoteroides.
II. The legs are ciliated towards the tip only, and the third
(longest) pair are more than twice the length of the carapace X. obscurus.
33. Xenophthalmus pinnoteroides, White.

Xenophthalmus pinnotheroides, White, Ann. Mag. Nat. Hist. XVIII. 1846, p. 178, pl. ii. fig. 2, and Samarang Crust. p. 63, pl. xii. Gg. 8 : Milne Edrands, Ann. Sci。

Nat., Zool., (3) XX. 1853, p. 221 : Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 107 : Slaiter, Tijds. Nederl. Ind. XL. 1881, p. 162 : J. R. Henderson, Trans. Linn. Soo., Zool., (2) V. 1893, p. 394.

This species is included in the Indian Fanna on the authority of Professor J. R. Henderson. It seems to be characterized by having the ischium and merus of the external maxillipeds deeply grooved, longitudinally, near the outer margin; the legs stout and hairy, the third pair barely twice as long as the carapace; aud the three terminal joints of the first pair of legs broadened so that their edges are almost carinate: the lateral borders of the carapace are granular or finely denticalate.

34. Xenophthalnurs obscurus, Henderson.

Xonophthalmus obscurus, J. R. Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 394, pl. xxxvi. figs. 18, 19.

Carapace glabrous and shiny, but its surface is somewhat creased : the median regions are separated from the branchial regions by grooves or depressions, and each branchial region is traversed obliquely in its posterior part by a low ridge.

The rounded-off antero-lateral corners of the carapace are traversed by three low fine ridges, nearly parallel with one another : one of these defines the pterygostomian region, the next appears to be the true antero-lateral border, while the most dorsal one runs from the angle of the orbit to the junction of the antero-lateral and postero-lateral borders.

Front narrow, nearly vertically deflexed, longitudinally grooved in the middle line, its free edge squnre-cat but faintly sinuous. The eyes are just visible as minute linear specks, placed posteriorly.

No epistome. The ischium and merus of the external mnxillipeds are not deeply grooved near the onter border.

Chelipeds in the female shorter and much slenderer than the first and last pair of legs.

The 3rd pair of legs are the longest, being nbout $2 \frac{1}{4}$ times the length of the carapace : the second pair, though a little shorter than the 3rd, are equally stont. The first and last pairs are about equal to one another in size (in the female) being hardly longer than the carapace, and slenderer than the other legs. The terminal joints of all the legs are hairy : the posterior borders of the meropodites of the first three pairs are spiny, the anterior border being very finely serrulate.

In the Indian Museum are two females, one, with eggs, from off the Ganjam coast, 20 fathoms, the other from the Andamans. The carapace in the larger female is 6 millim. long and 8 millim. in greatest breath.

Ceismocarcinops, n. gen.

Carapace deep, convex fore and aft and declivous anteriorly : its greatest breadth is quite posterior, so that the postero-late:al borders, which are blunt, are anteriorly-couvergent, though slightly so: the antero-lateral borders are sharp and form an elegant curve with the anterior border : the regions are nearly as well defined as they are in Scalopidia : its length is hardly less than its breadth.

The fronto-orbital border is considerably more than a third, but the front (which is bilobed) is only about a sixth, the greatest breadih of the carapace.

The orbits, which are in the usual marginal position, are small, and the eyestalks, which are immorable, are shrunk within them: the ejes are minute.

The antennulary flagella are large and cannot be retracted into the anteunular pits, which are filled entirely by the basal joint.

The antennal flagella are long-considerably more than a third the length of the carapace-and stand in the orbital hia tus.

Epistome sunken and not altogether well demarcaled from the palute. The bucenl cavern has its antero-exterual angles rounded off, and is not nearly closed by the external maxillipeds: these have the merus much shorter and narrower than the ischium, oval and somewhat oblique, and the flagellum appears to articulate with the summit of the merus.

The chelipeds are aboat as long as the legs and are very unequal in the male.

The third pair of legs are slightly the longest. As in Scolopidia the dnctylus of the last pair of legs is recurved.

The abdomen in both sexes is narrow, not nearly occupying all the space between the last pair of legs, and in the male consists of 5 pieces, the 3 rd- 5 th segments being fused. In the male also, as in Camatopsis, there is, on either side, a narrow plate intercalated between the 4 th and 5 th segments of the sternum and covering the external genital ducts.

This genus more clearly than any other connects the Rhisopinee and the Pinnotheridæ together.

35. Chasmocarcinops gelasimoides, n. sp.

Carapnce uearly as long as broad, its surface abundantly sprinkled with vesiculons granules, its free margins rather sparsely ciliated : all the regions are distinguishable, and the cardiac and posterior lobe of the gastric regions are defined by deep impressions: the antero-lateral
borders are sharply defined and granular. Front very distinctly bilobed, prominent.

Chelipeds in the male very unequal, the larger one being twice as long as the carapnce, its chief bulk being contributed by the hand, which, with its large swollen polished palm and long crooked fingers meeting only at tip, recalls that of Gelasimus. The smaller cheliped (like the female chelipeds) is not mach shorter than the larger one and, like it, has the articulation of the wrist confined to a rather prominent postero-inferior lobe of the hand, and the fingers longer than the palm : the chief difference is that the palm is not enlarged and swollen and that the fingers meet throughont almost all their extent. In both chelipeds the surfaces of all the segments are smooth, and there are sharpish granules along the borders of the arm and at the not very prononnced inner angle of the comparatively slender wrist.

The legs, like the fingers of the smaller cheliped, are fringed, bat not very thickly, with hair. The 3rd pair are very slightly the longest, being twice the length of the carapace. The edges of the meropodites are furnished with sharp granules and spinules, these being abundant in the case of the first 3 pairs and rather ferm on the 4 th pair. In the first 3 pairs also the carpopodites are of good length and sabcylindrical, and the dactyli straight and almost styliform; bat in the 4th pair the two terminal joints are compressed, the carpopodite being shortened and the dactylas recurved.

A male and a female from off Madras, 12 falhoms. The carapace of the male is 11 millim. long and 12 millim. broad.

Subfamily Pinnotherelina.
Tetrias, Rathban.
Tetrias, Rathbnn, Proc. U. S. Nat. Mus. XXI. 1898, p. 607.
Carapace strongls ealcified, broader than long, deep, subquadrangular, dorsally flattish, anteriorly declivous, the regions faintly indicated.

Front between a third and a fourth the greatest breadth of the carapace, its edge only deflexed, not directly united to the epistome. Orbits circular, small: eyestalks short, eyes small. The antennules fold a little obliquely from the transverse. Antenum small, the flagellam in the orlital hiatas.

Epistome well defined: buccal carern broadish, quadrilateral. Exterual maxillipeds large, their palp about as large as their merus and ischium combined: ischinm distinct, small; meras very large, carpus large and triangular and articulating at the antero-external J. II. 44
angle of the merus, propodite large and articulating with the end of the carpus, dactylus large and spathulnte and articulating with the inner angle of the propodite: exognath small and a good deal concealed.

Chelipeds equal, short : the chelipeds in the male equal, and much stonter than the legs.

First 3 pairs of legs coarse, not differing much from ench other or from the chelipeds in length, though the second pair are slightly the longest. The fourth (last) pair are very much smaller than the others.

The abdomen of the male is narrow and consists of 7 separate segments.

Tetrias differs very little from Pinnixa of which it might, perhaps, be regarded as a subgenus.

Distribution : Indo-Pacific, Andamans to Californin.

36. Tetrias Fischeri, (A. M. E.).
or Pinnixa (Tetrias) Fischeri (A. M. E.).

Pinnotheres Fischeri, A. Milne Edwards, Ann. Soc. Entomol. France, VII. 1867, p. 287.

Pinniza Fischeri, A. Milne Edwards, Nouv. Archiv. du Mas. IX. 1873, p. 319, pl. xviii. fig. 3 : de Man, Archiv far Natarges. LIII. 1887, i. p. 385, pl. xvii. fig. 2.

Carapace and appendages everywhere covered by a close adherent coat of short hair. The regions of the carapace are fairly well indicated and its dorsal surface is closely and finely granular, except in the middle where also the hair is somewhat deficient. Deflexed edge of the front broadly triangular. Eyes well pigmented. The inner edge of the carpus and the inner and distal edges of the large spathulate dactylus of the external maxillipeds are fringed with a close row of hairs of extraordinary length.

Chelipeds in the male much more massive than the legs, and about $1 \frac{1}{2}$ times the length of the carapace : their movements are somewhat restricted. There are some spinules at the inner angle of the wrist, and numerous rows of granules-the lowermost row rather acute--on the outer surface of the palm : the fingers, which are shorter than the palm, are stumpy but sharp-pointed.

The first 3 pairs of legs are coarse and are all about $1 \frac{1}{2}$ times the length of the carapace, though the second pair are very slightly the longest. The 4th pair are very short-not two thirds the length of the carapace-and are much slenderer than the others. All the legs bave a shaggy posterior border, and all end in small hooked dactyli. The posterior border of the meropodite of the last pair is armed with small coarse spines.

The abdomen of the male is narrow and consists of 7 segments : the first two segments are very short, the 3 rd 4 th and 5th gradually increase in length and slightly decrease in breadth, the 6th is a little shorter than the 5th, and the 7th is long and spathulate and encroaches on the buccal cavern.

In the Indian Museum is a single male specimen, from coral, from the Andamans: its carapace is a little over 5 millim. long and 7 millim. broad.

Subfamily Pinnoterine.

*Pinnoteres, Latreille.
Pinnotheres, Latreille, Hist. Nat. Crust. et Ins. VI. p. 78, and Gen. Crust. et Ins., p. 34: Lamarck, Hist. Nat. An. Sans. Vert. (2nd edit. Vol. V. p. 410) : Boec, Hist. Nat. Crust. I. p. 239 : Leach, Malac. Pod. Britt. : Desmarest, Consid. Gen. Crust. p. 116: De Haan, Faun. Japon. Crust., p. 34: Milne Edwards, Hist. Nat. Crust. II. 30, and Ann. Sci. Nat., Zool., (3) XX. 1853, p. 216 : Dana, U. S. Expl. Exp. Crust. pt. I. p. 878 : Bell, British Stalk-eyed Crast. p. 119 : Miers, Challenger Brachyora, p. 275 : Ortmann, Zool. Jahrb., Syst., VII. 1894, p. 698 : Bürger, Zool. Jahrb. Syst., VIII. 1894-95, p. 362 : Adensamer, Ann. Nat. Hofmus., Wien, 1897, p. 105.

Carapace often ill calcified, generally convex with ill-defined edges, in shape transversely oval, or circular, or subquadrangular or subhexagonal with rounded angles, the surface generally smooth, the regions seldom defined.

Front narrow, generally deflexed in the female if not in the male. Orbits small, circular, eyestalks short, eyes small. Antennules folding obliquely in small pits. Antennæ small, the minute flagellam standing in the inner angle of the orbit.

Epistome well defined. The buccal cavern is of a curious crescentic shape, being arched and very broad from side to side, but very narrow fore and aft. The external maxillipeds completely close the buccal cavern: they consist chiefly of the merus, which is fused with the ischinm to form a single large obliquely-directed joint carrying the flagellum at its inner end : the flagellum is small though its propodite may be spathulate, and the dactylus is often inserted on the inner or flexor border of the propodite: the exognath is for the most part concealed.

The chelipeds and legs are short, the chelipeds being equal and generally, even in the female, stouter than the legs.

The abdomen in the male is narrow, in the female it is generally larger than the sternum : it consists of 7 separate segments.

- Pinnoteres, the correct transliteration of the Greek word, was used by Rumph in 1705, so that no apology is necessary for reverting to it.

The Pinnoterw live as parasites or messmates, generally within the mantles of Lamellibranch Mollasks.

Key to the Indian species of Pinnoteres.
I. The dactylus of the external maxillipeds is articulated far back on the inner or flexor edge of the propodite: the eyes in the female are not entirely visible in an ordinary dorsal view :-

1. The dactyli of all the legs are about equal :-
i. Carapace somewhat octagonal in outline, with deepish tomentose pits separating the branchial from the median regions: first three pairs of legs nearly equal in length : dactyli of all the legs of fair length............
P. Edrvardsi.
ii. Carapace circular, perfectly smooth : second pair of legs decidedly the longest : dactyli of all the legs very short
P. mactricola.
2. Dactylus of the 3 rd pair of legs longer than any of the others
P. purpureus.
3. Dactylus of the 4th pair of legs longer than any of the others
P. parvulue.
II. The dactylus of the external maxillipeds is articulated to the tip of the propodite: the eyes in the female are entirely dorsal
P. abyssicola. 37. Pinnoteres Edwardsi, de Man.

Pinnotheres Edivardsi, de Man, Journ. Linn. Soc., Zool., XXII. 1887-88, p. 103, pl. vi. figs. 6-9 (1889).

The description applies to the female.
The length of the carapace is nearly equal to the greatest breadth. Carapace octagonal in shape, with the angles rounded : its dorsal surface little convex, with tomentose depressions of some size nud depth separating the median from the branchial regions. The deflexed part of the front is very distinctly triangular. Eyes very small, bat deeply pigmented.

Dactylus of external maxillipeds slender and inconspicuons; placed far back on the inner edge of the spathulate propodite.

Chelipeds and legs more or less downy, especially on their under sarface. Chelipeds nearly as long as the carapace, a little longer and much stouter than the legs, unarmed: dactylus as long as the upper border of the palm.

Legs rather coarse: the first 3 pairs are about equal in length, the 4th pair is a little shorter.

Carapace 15 millim. long and 16 millim. broad.
From an Ostræu from Mergui.

38. Pinnoleres purpareus, n. sp.

Closely related to P. palaensis, Bürger.
The description applies to the female.
Carapace and appendages smooth, polished, nude. Carapace transversely oval, strongly convex, the regions not well defined. Deflexed part of front broadly and indistinctly triangular. Eses very. small, but well pigmented.

Dactylus of external maxillipeds slender and inconspicuous, placed far back on the inner (flexor) edge of the propodite.

Chelipeds and legs slendes, the chelipeds being little stouter than the legs and about the same length as the first pair of legs. The movable finger is not much more than half the length of the upper border of the palm.

The third pair of legs are the largest of all, their meropodites and carpopodites being longer than those of the first two pairs and nearly twice as long as those of the 4th pair. The dactyli of the 3rd and 4th pairs are several times the length of those of the first two pairs, and the dactylus of the 3rd pair exceeds thut of the 4th pair. Though the 4th pair lave a long dactylus their total length is not greater than that of either of the first two puirs.

Colour either hyaline with numerous minute specks of bluish-black pigment, or the specks may be sufficiently numerous to make the whole animal nearly black.

From an Ostrga from the Andaman Islands.
Carnpace 7 millim. long and 9 millim. broad.
39. Pinnoteres parvilus, Stimpson, de Man.

Pi»notheres parvulus, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 108: de Man, Journ. Linn. Soo., Zool., XXII. 1887-88, p. 105, and Archiv fur Nat. LIII. 1887, i. p. 383 : Ortmann, Zool. Jalırb., Syat., VII. 1893-94, p. 699 : Bürger, Zool. Jalırbo, Syst., VIII. 1894-95, pp. 363, 876, pl. ix. fig. 18 and x. fig. 17.

A single damaged female appears to differ from P. purpureus only in the following particulars:-
(1) though the 4th pair of legs are shorter than the 3rd, they are decidedly longer than the 2nd, and still more decidedly longer than the lst.
(2) the dactyltus of the 4 th pair of legs is the longest of all.

40. Pinnoteres mactricola, n. sp.

Closely related to P. cardii, Bürger.
The description applies to the female.
Carapace perfectly circular smooth and polished, convex. Edge of front nearly straight. Eyes minute, well pigmonted.

Dactylus of external maxillipeds slender and inconspicuons, arising far back on the inner (flexor) edge of the propodite:

Chelipeds decidedly stouter than the legs and about ns long as the first pair of legs: their inner border is scantily fringed with hair: their dactylus is nearly two-thirds the length of the polm.

Legs slender, fringed with lairs: the second pair are decidedly the longest- Ω little longer than the carapace : the fourth pair are decidedly the shortest : the first and third pairs are about equal in length : in all four pairs the dactyli are equally short.

From Mactra violacea, from the mouth of the R. Hooghly.
Diameter of carapace not quite 6 millim.
In the male the front is a little prominent and the chelipeds are very mach stoater.

41. Pinnoteres abyssicola, Alcock and Anderson.

Pinnoteres abyssicola, Alcock and Anderson, Ann. Mag. Nat. Hist. (7) III. 1899, p. 14: Alcock, Investigator Deep Sea Brachynra, p. 81.

The description applies to the female.
Carapace subcircular, smooth, convex. Front rather prominent, little deflexed, broadly triangalar. Eyes of good size but deficient in pigment, entirely dorsal.

The palp of the external maxillipeds is minute and is much concoaled by hairs that fringe the prominent internal angle of the merus: the dactylus is borne at the tip of the propodite.

Chelipeds much stouter than the legs, nude except far a fringe of hairs on the lower border of the inmobile finger: they are about as long as the carapace, and the dactylus is not mach shorter than the upper border of the palm.

Legs slender, nude : the 2nd and 3rd pairs are slightly longer than the lst and 4th, being nearly $1 \frac{1}{2}$ times the length of the carapace: the dactyli also of the 2 nd and 3 rd pairs are a little longer than those of the lise and 4th.

From Lima indica, from 430 fathoms off the Travancore coast.
Diameter of carapace 8 millim.
Xanthasta, White.
Xanthasia, White, Ann. Mag. Nat. Hist. XVIII. 1846, p. 176: Dana, U.S. Expl. Exp., Crust., pt. I. p. 383 : Milne Edwarde, Ann. Sci. Nat., Zool., (3) XVIII. 1853, p. 221 : Bürger, Zool. Jahrb., Syst., VJII. 1894-95, p. 386.

Resembles Pinnoteres in stracture and habit, but differs in the following particulars:-

The edge of the carapace is well defined and, in all but its franto-
orbital portion, forms an upturned crest, so that the dorsul suiface of the carn pace is depressed and sancer-like. Other crests are found on the dorail surface of the enrapace and, in the centre, a large minghroom-like tabercle.

Though it is on an inferior plane, the narrow front is prominent and not deflexed.

The buccal cavern and month-parts have the same curions form, except that (owing to the encroachment of the epistome in the middle line) the anterior edge of the buccal caveru is bilobed or bow-shaped rather than semicircular, and the dactylus of the external maxillipeds is wanting or is represented by a few hairs.

Distribution : Indo-Pacifc, from the east coast of Africa to Fiji.

42. Xanthasia murigera, White.

Xanthasia murigera, White, Ann. Mag. Nat. Hist. XVIII. 1846, p. 177, pl. ii. fig. 8: Dana, U. 8. Expl. Exp., Crust. pt. I. p. 384, pl. xxiv. Ggs. 6 a.b: Milne Edwards, Ann. Sc. Nat., Zool., (3) XX. 1853, p. 221: A Milne Edwards, Nouv. Archiv. du Mus. 1X. 1873, p 321 : Haswell, Cat. Austrul. Crust. p. 118 : Miers, Zool H. M. S. Alert, pp. 518, 546 : de Man, Journ. Linn. Soc., Zool., XXII. 1887-88, p. 106 : Bürger, Zool. Jahrb., Syst. VIII. 1894-95, p. 386, pl. x. fig. 33 : Adensamer, Ann. KK. Nat. Hofmus. Wien, XII. 1897, p. 109 : Nobili, Ann. Mas. Genov. (2) XX. 1899, p. 264.

The edge of the carapnce is formed, in all but its short frontoorbital portion, by a thin sharp apturned overhanging crest, which ends in a carl on the auterior part of either branchial region.

A large mushroom tabercle, having a rough or reticulate surface and a more or less reniform outline, occupies the middla of the dorsal surface of the carapace, and between this and the front is.a pair of parallel longitudinal crests.

The front is somewhat prominent and is dorsally grooved or obscarely bilobed, and on each side of it, beyond the small orbits, is a small wing-like projection.

Chelipeds not, or hardly, stouter than the legs: the dactylus in the male is about two-thirds, in the female not mach more than balf the length of the palm.

Legs rather coarse : the first three pairs, which are about equal to one auother and to the chelipeds in length, are about as long as the carapace, the fourth pair are a little shorter: the dactyli in all are about equally short.

In the female the broad abdomen is traversed longitudinally by a sort of coarse interrapted carina.

In the Indian Museum are 5 specimens from the Andamans and Mergai. The carapace of the largest female is 11.5 millim. long and 15.5 millim. broad.

The Xanthasia sp., or Xanthasia Whitei, from Mergai, referred to by de Man in Journ. Linn. Soc., Zool., XXII. 1887-88, p. 106, pl. vii. fig. 1 is represented in the collection by a single small male and is characterized by having the upraised edge of the carapace blant nnd rounded, instend of thin and acate, and the median tabercle of the carapace ill defined instead of sharply circumscribed : the posterior margin of the carapace, also, is more prominent and is not quite continnous with the lateral margins. The legs also are somewhat longer.

Family OCYPODIDAT, Ortmann, emend.
Key to the Indian genera of Ocypodidæ.
I. A hairy-edged ponch leading into the branchial carity, between the bases of the 2nd and 3rd pair of true legs [Ocypodinæ]:-

1. Antennalar flagella rudimentary, completely hidden beneath the front: antennæ small, almost rudimentary : ejes very large, occupying the greater part of the ventral surfnce of the ejestalks: chelipeds rery unequal in both sexes

Ocypoda.
2. Antennalar flagella small, not hidden beneath the front: anteunæ of good size: eyes small, terminal on the long slender eyestalks : in the male only, one cheliped is enormously enlarged the other being very small

Greasimus.
II. No pouch or opening between the bases of any of the legs:-

1. The antennules fold obliquely or nearly vertically: carious membranous spaces, or "tympana," are present on the meropodites of the lege (Scopimerinæ):-
i. Tympans very well defined: external maxillipeds very large and with a strong almost hemispherical balge forwards:-
a. Merus of external maxillipeds larger than the isohinm : the distal end of the 4th abdominal segment of the male is fringed with bristles and overlaps the 5th segment

Dotilla.
b. Ischinm of exterual maxillipeds larger than the merus: the 4th abdominal segment of the male is normal, but the 5th is constrioted in part or all of its extent and gives the abdomen a wasp-like appear. ance Scopixrra.
ii. Tympann ill defined: external maxillipeds of moderate size, the merus larger than the ischiam : the chelipeds of the female, though not so stont as those of the male, are stonter than the legs

Tympanomerds.

2. The nntennules fold obliquely or quite transversely: no "tympana" are present on any of the joints of the legs (Macrophthalminæe):-
i. Meras of the external maxillipeds smaller than the ischium, the flagellum coarse und articulating at the antero. external angle of the meras: front deflexed : oyestalks often very long
......
ii. Merus of the external maxillipeds as lnrge as or larger than the ischinm, at least the two terminal joints of the flagellum are slender: eyestalks not partionlarly long:-
a. Front declivous : carapace slightly convex : the flagellam of the external maxillipeds articulates at the antero-external angle of the merns: (the chelipeds of the female, as in all Macrophthalminæ, nre shorter and slenderer than the legs) \qquad
b. Front square-cnt, not in the least deflexed; carapace quite flat dorsally: the flagellam of the external maxillipeds articulates near, bnt not at, the autero-external angle of the merus : eyes not terminal on the eyestalks

Tylodiplax.
Clistostoma.

Subfamily Ocypodine, Daua.
Ocypoda, Fabr.
Ocypoda, Frbricius, Ent. Syst. Snppl. p. 347 : Desmarest, Consid. Gen. Crust. p. 119, and Dict. Sci. Nat. XXVIII. p. 239 : De Haan, Faan. Jnpon. Crust. p. 29: Milne Edwarde, Hist. Nat. Crust. II. 41, and Ann. Sci. Nat., Zool., (3) XVIII. 1852 p. 141 : Dana, U. S. Expl. Exp. Crnst. pt. I. p. 324: Kingsley, Proc. Ac. Nat. Soi. Philad. 1880, p. 179 : Miers, Ann. Mng. Nat. Hist. (5) X. 1882, p. 376, and Challenger Brachyara, p. 287: Ortmann, Zool. Jahrb., Syst., X. 1897-98, p. 359 (Revision der Gattung Ooypoda).

Carapace deep, square or subquadrilateral, broader (but not much broader) than long, moderately convex, strongly declivous anteriorly, its dorsal surface closely granular with the regions indistinctly and incompletely defined. Front a narrow deflexed lobe, from a seventh to nn eighth the greatest breadth of the carapace.
J. II. 45

Orbits very capacious, occupying the whole face of the carapace between the front and the antero-laterad angles on either side, usually not very deep: their floor is divided into two fossæ, one for the basal portions of the eyestalk, the other for the eye. The basal joint of the eyestalk is visible throughout: the eje chiefly occupies the ventral surface of the eyestalk, and is often, but not always, tipped by a horn or style formed by a prolongation of the latter.

The basal antennular joint is visible, but the rudimentary antennular flagellum is quite hidden beneath the front. The antennæ, which lie in the orbital hiatus, are, though properly formed in all their parts, little more than rudiments.

The epistome, though short, is quite distinct, and is sculptured. The baccal cavern (in its widest part) is as broad as long, but diminishes in size a little, anteriorly : it is completely closed by the external maxillipeds, which are somewhat narrow and elongate and end in a coarse flagellum that articulates with the antero-external angle of the merus.

Chelipeds shorter than the legs and, in both sexes, remarkably unequal, the larger one being much more massive than the legs. The palm is short and high-especially in the larger cheliped-and is almost always compressed-especially so in the smaller cheliped: the fingers are stont, usually compressed, and strongly toothed. In most cases there is, on the inner surface of the larger palm, near the fingers, a stridulating organ, which can be scraped against the inner surface of the ischium.

Legs stout, the fourth pair much shorter and somewhat less massive than the first three pair, which are of about equal length : between the basal joints of the 2nd and 3rd pair is an orifice, thickly protected by hairs, leading towards the brauchial carity. The bianchial cavity is very capacions, and its lining membrane is thick spongy and vascular.

The abdomen of the male is narrow : in both sexes it consists of seven separate segments.

Distribution : Tropical and subtropical coasts, from the American Atlantic, through the Mediterranean and Red Seas, to the American Pacific.

The Ocypodes live together in large companies, and most of them are in the habit of digging long and tortaous burrows in the moist sand near high-water mark, into which they retire with great rapidity when alarmed. As a rule they do not go far from their barrows, bat if they do happen to wander and are cut off, they ran to sea with marrellons speed. Though the barrows can be but temporary structures, each individnal crab, in all the species that I have observed, keeps rigidly to its own. The efficacy of the atridulating-organ as a masical instrament is beyond
dispute, and I have pablished my own observations on that of 0 . macrocera in the Administration Report of the Marine Survey of India for the year 1891-92 (reprinted in the Annals and Magasine of Natural History for 1892). Dr. A. R. Anderson has published a note on the sound produced by O. ceratophthalma in this Journal for the year 1894.

My own opinion is that these crabs use the stridulating-organ when in their burrows-which undoubtedly are private property-to warn intending intruders of the herd that the burrow is occupied, and thas to prevent the barrow becoming crowded to suffocstion-point. This, of course, need not be its exclusive use.

Key to the Indian species of Ocypoda.
I. No stridulating ridge on the inner surface of the palm: eyestalks not prolonged beyond the eyes in the form of a style
O. cordimana.
II. A stridulating ridge on the inner surface of the palm : eyestalks (except sometimes in the young) prolonged beyond the ejes to form a horn or style :-

1. Length of the stridulating organ much more than balf the greatest breadth of the palm: anterolateral angles of the carapace well pronounced :-
i. Fingers of both ohelipeds pointed :-
a. Stridulating ridge narrow, consisting entirely of small tnbercles: no brushes of hairs on the propodites of any of the legs
O. platytarsis.
b. Ihe stridulating ridge consists of tubercles gradually passing into striæ: the anterior surface of the propodites of the first two pairs of legs thickly furnished with hairs ... O. ceratophthalmu.
ii. Fingers of the smaller cheliped expanded at tip: the stridulating ridge consists entirely of striæ...
O. macrocera.
2. Length of the stridulating organ much less than half the greatest breadth of the palm: antero. lateral angles of the carapace rounded off O. rotundata.

The synonomy of the species of Ocypoda has been discussed, at length, by Ortmann (Zool. Jahrb., Syst., X. 1897-98, p. 359), who has had access to a great deal more material than I have. J.t would be inadvisable, therefore, for me, working on a collection made almost entirely in India, to attempt any iudependent criticism of the older work; so that, in dealing with the Indian species, I shall generally restrict my citations to the papers of Ortmann and the other authors (Kingsley and Miers) who have made a revision of the genus.

43. Ocypoda ceratophthalma (Pallas), Ortm.

Cancer ceratophthalmus, Pallas, Spicilegia Zool. IX. p. 83, pl. v. Ggs. 7, 8. Oancer cursor, Herbst, Krabhen, I. ii. 74, pl. i. figs. 8, 9.
Ocypoda ceratophthalma, Fabricius, Ent. Byst. Suppl. p. 347: Milne Edwards, Hist. Nat. Crust. 1I. 48, and Cavier Hègne An. Crust. pl. 17 : Kingaley, Proc. Ac.

Nat. Sci. Philad. 1880, p. 179 : Miers, Ann. Mag. Nat. Hist. (5) X. 1882, pp. 378, 379 : C. W. S. Aurivilling, Zur. Biol. Amphib. Decap., p. 17 (Mitg. K. Ges. Wiss. Upsala, 1893).

Obtiann, Zuol. Jahrb., Syst. X. 1897-98, pp. 360, 364 (ubi synon.).
Carapace square, its greatest breadth, which is about a tenth more than its greatest length, is at the acuminated antero-lateral angles; which coincide with the outer orbital angles and are right angles, or nearly so.

The borders of the carapace, with the exception of the posterior border, are elegantly beaded or serrulate, and the lateral borders in their anterior third are straight and parallel, or nearly so.

The cardiac region can be distinguislied, and the anterior ends of the cervical groove are present on either side of the gastric region.

Upper border of orbit sinuous and a little oblique, so that the onter angle of the orbit is considerably behind the front: the lower border has an obscure notch near its middle, but there is no gap at its uuter angle. The eyestalk is prolonged beyond the eye into a blunt-pointed style of variable length.

The lateral borders of the buccal cavern, though their general direction is slightly convergent anteriorly, have a distinct outward curve. The merus and ischinm of the external maxillipeds have their exposed surface circumscribed by a raised row of granules, which is deficient only at the basal attachment of the ischinm.

Chelipeds and legs scabrous, the asperities having in many places a tendency to Ω ragiform or squamiform arrangement, and almost forming serrations on the borders of some of the joints, and becoming spines or teeth on the lower borders of the arms and hands and at both angles of the wist-especially at the inner angle where there is always at least one distinct spine.

The stridulating organ of the larger palm is of good length (much. more than half the greatest breadth of the palm) and is some little distance from the immobile finger, a thick strip of hair intervening: in its upper half it consists of tubercles gradually passing to striæ, in its lower half it consists of a comb of fine regular and very close-set strix. It plays against a polished ridge that runs across the apper part of the inner sulface of the ischium.

The palms and fingers of both lini:ds-but notably of the smaller hand-are compressed, and the fingers of both hands are pointed.

The fist three pairs of legs have the merus broadened : they do not differ greatly in length, and the 2nd pair, which are slightly the longest, are about two-and-a-balf times the greatest length of the carapace The fourth (last) pair arc a gcod deal shortened-renching only a little.
more than half-way along the propodite of the 3rd pair-and have a much narrower merns. In all the legs the dactylus is stout and fluted like a bayonet and has more or less of its anterior surface hairy : though somewhat laterally-compressed at base and gradually broadening und becoming dorso-ventrally.compressed towards the tip, it may fairly be called styliform. The propodites of the first two pairs of legs have conspicuons brashes of hairs along their anterior surface.

In the Indinn Museum are 84 specimens from all parts of the coasts of the mainland and islands of India. Large specimens have the carapace 40 millim. long and about 45 millim. in greatest breadth.

Distribution : Indo-Pacific, from the east coast of Africa to the Sandwich Islands:

In young specimens the sarface of the appendages is smoother and the eyestalks are not prolonged beyond the eyes, which are of large size. In half-growu specimens the terminal style of the eyes is still short.
44. Ocypoda macrocera, Edw.

Ocypoda macrocera, Nilne Edwards, Hist. Nut. Crust. II. 49: Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 181 : Miers, Ann. Mag. Nat. Hist. (5) X. 1882, pp. 378, 381 : Ortmanẹ, Zool. Jabrb., Syst., X., 1897-98, pp. 360, 368.

Closely relnted to O. ceratophthalma, from which it is distingnished ${ }^{-}$ by the following characters:-
(1) the carapace is rather broader and the orbits are a little more' oblique :
(2) the raised marginal row of granules on the external maxillipeds is less pronounced':
(3) the fingers of the smaller cheliped are lamellar np to the tips, which are broad and blunt, not pointed:
(4) the stridulating, ridge is less liairy and consisis entirely of strix.
(5) it is a smaller species, large specimens having the carapace 31° millim. long and 37 millim. broad.

In the Indian Museum are 78 specimens from the coasts of the Bay of Bengal : there are none from the west coast or from any of the islands, and the species nppears to be confined to the Bay.

The colour, in life, is bright red. This species lives in large? warrens in the sands of almost all paris of the east coast of the peninsula. One of its most active enemies is the Brahminy kite (Haliastur. indus). One almost certain use of the stridulating-organ is to give; warning to intending trespassers, of its own spccies, that a burrow is already occupied liy its rightful owner.

Ocypoda platytarsis, Milne Edwards, Ann. Sci. Nat. Zool. (3) XVIII. 1852, p. 141 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 180: Miers, Ann. Mag. Nat. Hist. (5) X. 1882, pp. 878, 383 : Ortmann, Zool. Jahrb, Syst., X. 1897-98, pp. 359, 363 (ubi synon.).

This species may be distinguished from O. ceratophthalna, which it closely resembles, by the following characters :-
(1) the carapace is very distinctly broader, its length being about four-fifths of its breadth, and the orbits are hardly at all oblique:
(2) the surface of the ischium of the external maxillipeds is often quite smooth :
(3) the stridulating ridge is not, or hardly at all, hairy and consists entirely of granules or small mamillated tabercles; and though the upper edge of the inner surface of the ischinm of the larger cheliped is raised and rough, there is no special process against which the stridulat-ing-ridge of the palm can be scraped:
(4) the dactyli of the legs, though flated as in the other species, are distinctly compressed dorso-ventrally and broadened :
(5) there are no brushes of hairs along the anterior sarface of the propodites of any of the legs.

It is a somewhat larger species, the carapace in full-sized adults being 40 millim. long and 54 millim. broad.

In the Indian Museum there are 42 specimens from both coasts of the peninsula and from Ceylon.
46. Ocypoda rotundata, Miers.

Ocypoda rotundata, Miers, Anu. Mag. Nat. Hist. (5) X. 1882, pp. 878, 382 : Ortmann, Zool. Jahrb., Syst., X. 1897-98, pp. 360, 864.

This species differs from 0 . ceratophthalma in the following important particulars:-

The carapace is less distinctly quadrilateral, owing to the fact that the antero-lateral borders are arched, instead of forming an angle with the upper border of the orbit. These borders sometimes form an unbroken carve with the upper border of the orbit, but sometimes the junction between the two is marked by a notch. The length of the carapace is about five-sixths its greatest breadth, which, owing to the carvature of the antero-lateral borders, is some distance behind the orbits.

There is a notch in the middle of the lower border of the orbit, and a gap at the outer angle, between the upper and lower borders.

The deflexed tip of the front is swollen.
The spines or serrations at the inner angle of the wrist are more numerons, and at the outer angle are better marked.

The length of the stridulating organ is much less than lialf the greatest height of the palm : the organ consists of about Ω dozen distant ridges much concealed in hair, and each ridge is sharply servated.

The scraper on the ischinm is placed near the upper angle of the inner face of that joint and consists of nn elongate-elliptical longitudi-nally-grooved cicntrix-like surface, with a patch of hair above it and a much larger patch below it.

The fingers of the smaller cheliped are almost as much dilated at tip as those of O. macrocera.

The dactyli of the legs are dorso-ventrally compressed as in O. platytarsis.

There is a thick brush of hairs along the anterior sarface of the propodite of the first pair of legs only.

The meropodites of the first three pairs of legs are not so broad as in the three preceding species.

In the Indian Masenm are 29 specimens from the coasts of Catch, Sind, and Buluchistan.

This is the largest Indian Ocypode, the carapace of the ndnlt being 52 millim. long and 62 millim. broad.

47. Ocypoda cordimana, Desm.

Ocypoda cordimana, Desmarest, Consid. Gen. Crust. p. 121: Milne Edwards, Hist. Nat. Crust. II. 45 : Kingeley, Proc. Ac. Nat. Sci. Philad., 1880, p. 185 : de Mnn, Notes Leyden Mas., III. 1881, p. 248 : Miers, Ann. Mag. Nat. Hist. (j) X. 1888, pp. 879, 887 : Ortwann, Zool. Jahrb., Syst., X. 1897-98, pp. 359, 362 (ubi synon.).

Carapace deep, quadrilateral, strongly convex fore and aft, its length about seven-eighths its greatest breadth, which is some little distance behind the orbits, owing to the gentle curve of the anterolateral borders: its antero-lateral angles coincide with the outer orbital angles, and point acutely forwards.

Orbits deep; their upper border sinuous, but not in the least oblique; there is usually a notch near the middle of their lower border, and always a deep gap at the outer angle. No terminal style to the eyes.

The lateral borders of the buccal cavern are anteriorly convergent and have no outward curve. The marginal row of granules on the outer surface of the ischium of the external maxillipeds is indistinct or absent.

Though the chelipeds and legs are rough and the roughness is in places squamiform, there is no serration of their edges, except in the case, of the lower borders of the arms, the inner edge of the wrists, and the lower border of the hands. The palm of the larger hand, though deep, is not particularly compressed, and it has no stridulating ridge.

The propodites and dactyli of the legs are rather sliort and stont, the dactyli being fluted and more or less hairy : the edges of the propodites of the first 2 pairs of legs are hairy. The third pair of legs, which are slightly longer than the first 2 pairs, are less than twice the length of the carapace.

In the Indian Musenm are 59 specimens, from the Laccadives, the Madras coast, Ceylon, Mergui, Tavoy, the Andaminis and Nicobars: ..: The carapace of the largest specimen is 35 millim. long and 40 millim. broad.
:.... Gelasimos, Latr.
Gelasimus, Latreille, Dict. des Sciences Nat. XVIII. p. 286.(1890): Desmarest, Consid. Gen. Crust. p. 122, and Dict. Sci. Nat. XXYIII. p. 241 : De Hann, Fam. Japon Crust. p. 25 : Milne Edwards, Hist. Nat. Crnst. II. 49, and Ann. Sci. Nat., Zool., (3) XVIII. 1852, p. 144 : Dana, U. S. Expl. Exp. Crust. pt. I, pp. 318, 315 : Hess, Archiv f. Nuturges. XXXI. 186б, p. 145: A. Milne Edwards, Nouv. Archiv. da Mus. JX. 1873, p. 271 : Kingsley, Proc. Ac. Nat. Sci. Philnd. 1880, pp. 135, 136 : Miers, Challenger Brachyura, p. 241 : de Man, Notes. Leyden. Mng. XIII. 1891, pp. 20-23: Ortınann, Zool.Jnhrb., Syst. VII. 1893-94, pp. 749-753.
"Uca," Leach, Trans. Linn. Soc. XI. 1815, pp. 309, 323 : Mf. J. Rnthbnn, Proc: Biol. Soc. Washington, XI. 1897, p. 154: Ortmann, Zool. Jrhrb., Syst, 1897-98, p. 346 (cf. notes by Desmnrest and Milne Edwnrds, ll. cc. supra).

- In obedience to certain interpretations of the rale of priority, which sacrifice everything to a legal precision that defeata the object of classification, some modern nathors propose to apply the name Uca, which was originally given to and has for nearly seventy-five years been authoritatively used for a land-orab of the Gecarcinoid family; to the species of the Ocypodoid family which have for the anme long period beell known to everybody by the name Gelasimus.

One of the objects of my poor work being to avoid confusion, I cannot consent to this proposal : and if the rales of nomenclature do not permit me to retain A name that bas been deliberately ohosen, and nsed without any ambigaity, by snch illustrious predecessors as Latreille, Milne Edwards, and Dana, then I think that the rules should be modified.

The introduction of a rule sanctioning the retention of nny name that has been accepted and defined by a monographer of repate; and that has thereafter been in common nse for fifty years, would probably satisfy those to whom the written anthority of the law is a consideration of first importance.
: Carapace deep, subquadrilateral but with the antero-lateral anglea produced and acute and the Iateral borders more or less convergent posteriorly, occasionally subhexagonal, a good deal broader than long; the regions never very strongly defined. The front is a narrow declivons lobe, the breadth of which, between the eyestalks, is from onesixteenth to one-sixth the greatest brendth of the cnrapace.

The orbits are narrowish trenches occnpying the whole anterior extent of the carapace between the narrow front and the antero-lateral.
angles, and are more or less sinuons and oblique: the eyestalks are very long and are formed as in Ocypoda, but are much slenderer: the eyes, though chiefly ventral in aspect, are always terminal.

The small antennular flagelln, which are not hidden under the front, fold obliquely. The antenna, which stand free at the inner angle of the orbits, have well developed flagella.

Epistome, though short, quite distinct. The lateml borders of the buccal envern are conrex ontwards, sometimes so much so as to give the carorn a subcircular outline. The external maxillipeds have a long ischinm and a short and somewhat oblique merns with the coarse flagellam jointed to its antero-external angle: they close the buccal cavern except for a chink anteriorly.

The chelipeds differ greatly in the sexes. In the female they are equal, are shorter and slenderer than the legs, and have broad-tipped spoon-shnped fingers. In the male one of the chelipeds resembles those of the female, but the other is of relatively gigantic proportions, the hand alone being often as big and heavy as all the rest of the animal.

The legs are stoat and end in very sharp dactyli, and the meropodites of at least the 2nd and 3rd pairs are foliaceons : these two pairs are a little longer than the other two, being abont twice the length of the carapace.

As in Ocypoda, the branchial carity is capacions, and its liuing membrane thickened and vascular, with a fleshy lobe, shaped like a gillplume, projecting into the space between the tips of the last two gillplames: nlao, between the basal joints of the 2nd and 3rd pairs of legs, there is an orifice, thickly protected by hairs, leading towards the branchial cavity.

The abdomen of the mnle is narrow: in both sexes of all the Indian species it consists of seven separate segments.

Distribution : all the warmer regions of the globe, from the Atlantic consts of America eastwards (including the Mediterranean basin) to the Pacific coasts of America agnin.

The species of Gelasimus are, like the Ocypodes, gregarions, and live in warrens in the mad-flats of tropical and subtropionl estuaries. Their intelligence, like that of the Ocypodes, is of n high order.

In one species, at any rate (Gelasimus annulipes), the males, which are greatly in excess of the females, ase the big and beantifally-coloured cheliped, not only for fighting with each other, bat also for "calling" the females. I have described my own observations on these points in the Administration Report of the Marine Survey of India for 1891-92-reprinted, as an extract, in the Annals and Magaxing of Natural History for 1892.

The fact that the males greatly oulnumber, and therefore are more J. II. 46
commonly captared than, the females, is sufficient justification for the common practice of using the largar cheliped of the male for the discrimination of the species. It must, however, be remembered that-at lenst in all the Indian species-this organ changes greatly with adrancing age.

I must also confess bere that the synonomy of species has defied me.

Key to the Indian species of Gelasimus.

I. The breadth of the front, measared exactly between the bases of the eyestalks, is between a fifth and a sixth the greatest breadth of the carapace :-

1. Two oblique granular ridges on the inner surface of the palm of the large cheliped of the male, one continuous with the dentary edge of the immobile finger, the other running to the lower edge of the same finger : -
i. Carapace subqnadrilateral, the trne lateral borders being moderately convergent posteriorly : an enlarged tooth near the tip of the immobile finger of the large cheliped of the male gives the
tip of this finger a notched.truncate appearance
ii. Carapace aubquadrilateral, the true lateral borders nearly parallel : the tip of the immobile finger of the large cheliped of the male is obliqne. trancate bat not notched \qquad G. lacteus.
iii. Carapace distinctly hexagonal, owing to the great obliquity of the orbits and the strong con. vergence posteriorly of the true lateral borders : tip of the immobile finger of the large cheliped of the male not truncate or notohed \qquad G. triangularis.
2. The oblique crest ranning to the lower edge of the immobile finger of the large cheliped of the male is either absent or is represented by a slight and smooth tumescence
G. annulipes.
G. inversus.
II. The breadth of the front, measured as above, is very much less than a sixth the greatest breadth of the cara-pace:-
3. No row of grannles running inside of and parallel with the lower border of the orbit:-
i. The inner border of the arm of the larger cheliped of the male ends in a sharp tooth or spine, in. dependent of the terminal lobe-like constriotion of the arm :-
a. Front, measured as above, abont a tenth the greatest breadth of the carapace: in the large cheliped of the male the wrist is
smooth, the palm fall with the granular ridges on the inmer surface indistinot, and
the fingers are not speoially compressed...
b. Front, measured as above, not a fifteenth the greateat breadth of the oarapere: in the large male cheliped the upper surface of the wriat is granular and the fingers are remarkably compressed and blade-like :-
a. In the large male cheliped the crests on the inner sarface of the palm are moderately prominent, the dactylus is quite blade-like and the outting-edge of the immobile finger is not mueh soallopped
P. The oreste on the inner surfece of the palm are extremely prominent, the cutting edge of the dactylus is not quite straight and that of the immobile finger is scallopped into two large triangalar lobes \qquad
G. tetragonum.
G. Marionis.
G. Marionie, var. nitidus.
ii. The arm of the large male cheliped ends in a constricted lobe, but there is no sharp apstanding tooth inside it on the inner border :-
a. Front, measured as above, about a twelfth the greatest breadth of the carapace; the fingers of the large male cheliped have tipe that suggest tongs, owing to the presence of an enlarged tooth near the tip: the meropodites of the last pair of legs are nearly as foliaceons as those of the preceding pair
b. Front, measured as above, not a fifteenth the greatest breadth of the carapace: the flagors of the large male cheliped end in simple hooked tips: the meropodites of the last pair of legs are nat much braad. ened
G. Dussumieri.
4. On the lower wall of the orbit, inside of and parallel with the middle third of the lower border of that cavity; is a raised row of granules \qquad
5. Gelasimus annulipes, Latr., Edw.
? Canoer vocame minor, Herbst, Krabben, I. ii. 81, pl. i. Ag. 10.
Gelasimus annulipes, Mine Edwards, Hiat. Nat. Crust. II. 55, pl. xviii. fig. 10-18 ; and Ann. 耳oi. Nat., Zpol., (8) XVIII. 1852, p. 149, pl, iv. fig. 15 :, Dapa, U. 8. Expl. Exp, Groft., pt. L. p. 317 : Heller, Novara Cruat. p. 38: Hilgendorf, in. v. d. Decken's Reis. Ost-Afr. IlI. i. p. 85, and MB. Ak. Berl. 1878, p. 803 : Hoffmann, in Pollen and ran Dam, Faun. Madagasc., Crust. p. 18: Kossmann, Reise roth.

Meer., Crust., p. 53 : Miers, Phil. Trans. Boy. Soc. Vol. 168, 1879, p. 488, and Ann. Mag. Nats Hist. (5) V. 1880, p. 310, and Zool. H. M. 8. Alert, pp. 518, 541, and Challenger Brachyura, p. 244: Richters, in Möbius Meeresf. Mnurit., p. 155: Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 148, pl. x. fig. 22 : de Man, Notes Leyden Mas. IT. 1880, p. 69, and Journ. Linn. Soc., Zool., XXII. 1887-88, p. 118 pl. viii. frg. 5-7, and Archiv f. Naturges. LIII. 1887, i. p. 353, and Notes Leyden Mus. XIII. 1891, pp. 23, 89, and in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. 1892, p. 307, and Zool. Zahrb., Syst., VIII. 1894-95, p. 577 : Lenz \& Richters, Abh. Senck. Nat. Ges. Frankf., XII. 1881, p. 423 : F. Muller, Verh. Ges. Basel. VIII. 1886, p. 475 : J. R. Henderson, Trans. Linn. Soc., Zool., (2) V. 1898, p. 888 : Ortmann, Zool. Jahrb. Syst. VII. 1893-94, pp. 752, 753, and Jena. Denk. VIII. 1894, p. 57 : Zehntner, Rev. Suisse de Zool. II. 1894, p. 178.

Gelasimus Carionis, Edv. (nec Desm.), Hist. Nut. Crust. II. 53.
Gelasimus porcellanus, White, P. Z. S. 1847, p. 85, and in Adams and White, Samarang Crust., p. 50: Milne Edwards, Ann. Sci. Nat.; Zool., (8) XVIII. 1852, p. 151 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 355.

Gelasimus perplexus, Milne Edwards, Ann. Sci. Nat., Zool., (8) XV1II. 1852, p. 150, pl. iv. fig. 18 : A. Milne Edwards, Nouv. Archiv. du Mus. IX. 1873, p. 274.
? Gelasimus pulchellus, Stimpson, Proe. Ac. Nat. Sci. Philad. 1858, pp. 99, 100.
Uca annulipes, Ortmann, Zool. Jahrb. Sgst. X. 1897-98, pp. 351 and 354 : Nobili, Aun. Mus. Genov. (2) XX. 1899, p. 274 : Doflein, SB. Ak. Münch. XXIX. 1899, p 193.

Length of the carapace about three-fifths of the greatest breadth at the acute claw-like antero-lateral angles. The posterior border of the dorsum of the carapace-i.e., the border corresponding with the last segment of the sternum-is a good deal over half the greatest breadth of the carapace, so that the lateral borders of the dorsum of the carapace, which are distinctly defined in almost two-thirds of their extent by a fine raised line, are only moderately convergent. The post-gastric and cardiac regions are the only ones that are defined, and they bat faintly.

Front, measured between the bases of the eyestalks, from a fifth to a sixth the greatest breadth of the carapace.

Orbits sinuous and considerably oblique; their upper border defined by a fine raised line which is very distinctly double in a good part of its extent; their lower border very elegantly and regularly serrated-the teeth increasing in size from within outwards. In the female only there is a short row of granules inside of and parallel with the lower border of the orbit.

In the large cheliped of the adult male the greatest length of the hand (including fingers) is at least three times the length of the carapace: the outer surface of the somewhat rounded arm and of the wrist and hand is smooth to the naked eye, with a few small granules on the inner border of the wrist: the lower border of the palm is obscurely marginate : and on the inner surface of the palm are two salient granular crests, one of these is deeply grooved and nearly verticnl and becomes continuous with the dentary edge of the immobile finger, the other,
which is the more prominent, is oblique and rans to the lower border' of the same finger. In the adult male the fingers of the large hand are about twice the length of the upper border of the palm: they are not very broad, and owing to the hook-like curve of the dactylus there is a wide space between them when the tips are apposed: the immobile finger is but slightly curved, and is generally shorter than the ductylus, and owing to the presence of an enlarged tooth near the tip, the tip has a characteristic notched-truncate appearance.

The meropodite in the last pair of legs is not at all folinceous.
The carapace in the adult male is about 11 millim. long and 19 millim. broad.

In the Indian Museum are 300 specimens from all parts of the coast from Karachi on the west to Mergai ou the east.

This species is not, as Miers queries, the same as Stimpson's G. splendilus, of which we have numerous specimens from Hongkong.

49. Gelasimus lacteus (De Haan).

Ocypodé (Gelasimus) lactea, De Haan, Faun. Japon., Grust., p. 54, pl. xv. fig. 5.
Gelasimus lacteus, Milne Edwards, Ann. Sci. Nat., Zool., (3) XVIII. 1852, pl. iv. fig. 16 : Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 100 : Miers, P. Z. S. 1879, pp. 20, 36 : Kingsley, Proc. Ac. Nat Sci. Philad. 1880, p. 149, pl. x. fig. 28 : Cano, Boll. Soc. Nat. Napol. III. 1889, p. 234: de Man, Notes Leyden Mas. XIJI. 1891, p. 22 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, pp. 752, 759.

Uca lactea, Ortmann, Zool. Jahrb., Syst., X. 1897-98, pp. 351, 355.
Easily distinguished from G. annulipes, which is its nearest relative, by the following characters :-
(l) the carapace is much more nearly quadrangular, the posterior border of its dorsum being between three-fifths and two-thirds of its greatest breadth, and its true lateral borders being pnrallel, while the lateral borders of its dorsum are nearly so:
(2) in the lnrger cheliped of the male the outer end of the apper border of the arm, and the inner border of the wrist, are distinctly denticulated; the dactylus is not so strongly hooked, and the end of the immobile finger though obliquely truncate has an acuminate tip-never a notched-truncate tip :
(3) the colour, in spirit specimens, has a sort of livid bloom hever. seen in G. annulipes.

In the Indian Maseum are 47 specimens from Karachi and 3 from the Andamans.

[Gelasimus inversus, Hoffmann.

Gelasimus inversus, Hoffmann, in Pollen and van Dam, Fann, Madagase. Crdst. p. 19, pl. iv. fige. 23-26 (1874) : Kingsley, Iroc. Ac. Nat. Sci. Philad. 1880, p. 155.
de Man; Kotes Leyden Mes. XEłI. 1801, pp. 21, 44, ph iv. fig. 12: Ortmann, Zank Jahab., Eyst., VII. 1893-94, p. 751, and Jena. Denk. V1II. 1894, p. 69.

Gelasimus chlorophthalmus, Hilgendorf (nec Fdw.), MB. Ak. Berl, 1878, p. 809 (apud de Men).

Gelasimus Smithii, Kingsley, Proc. Ac. Nat. Sci, Philad. 1880, p. 144, pl. 9, fig. 14 (apud Ortmann).

Uca inversa, Ortmann, Zool. Jahrb., Syst., X. 1897-98, p. 351.
There are in the Indian Museum specimens of this species from Madagascar and the Red Sea, and some from Karachi which differ from the type in the form of the dactylas of the large male cheliped, and are here separated as a variety.]
50. Gelasimus invorsus, var. sindensis, nov.

This variety differs from typical G. isversks from Madagascar only in having the tip of the dactylus of the large male cheliped simple (instead of furnished with a second tooth that gives it a notched appearance) and the palm of the land smqother externally.

The species resembles G. annulipes, from which it differs in the following characters:-
(1) the lateral borders of the dorsum of the carapace are defined by a fine line which is raised and distinct in the anterior third anly, and is a little more oblique:
(2) the lower border of the orbit is muoh mare sinuous, and is either entire or is quite imporceptibly denticulated at its outer angle :
(3) is the large cheliped of the male the anm is trigonal with sharp edges, the upper edge rising into a distinct lobe or crest and the distal end of the inner edge forming a crest or blunt tooth; the inner edge of the wrist is distinctly denticulated, sud the upper border of the palm has several longitudinal rows of granules; af the granular ridges on the inner surface of the palm the lover one that in G. snnnlipes russ to the lower edge of the immabile finger is abaent or, at most, is represented by a smooth and slight swelling; finally the immobile finger, though as in G. annulipes nealy straight and shorter than the dactylus, bas a simple not a notah-like tip.

In the Indian Museum are 30 specimens from Karschi. The caraFence of the largest specimen is 10 millim. long and 18 millim. broed.

[^53]Gelasimus perpleans, Holier (nee Edw.h Novars Crust. p. 88, pl. v. Ag. 4.
?? Gelasimus minor, Owen, Zool. H. M. B. "Blossom," Crasto, p. 79, ph. xxiv.
 Proc. Ac. Nat. Soi. Philad. 1880, p. 150.

Uca triangularis, Nobili, Ann. Man. Geaor. (2) XX. 1890, p. 874.
Length of the carapace alout four-sevenths of the greatest breadth, which is at the spine-like antero-lateral angles.

Carapace strongly convex, almost hexagonal, the regions not indicated. The posterior border of the dorsum of the carapace is less than half the greatest breadth, hence not only the lateral borders of the dorsum of the carapace, but also the true lateral borders, are strongly couvergent posteriorly, the former being defined by a fine raised line in more than tivo-thirds of their extent.

Front, as in G. annulipes, from a fifth to a sixth the grentest breadth of the carapace.

Orbits sinnons, much oblique : the apper border defined by a fine microscopicully-beaded line, which is double in grent part; the lower microsopically beaded, serrulate at its outer end.

In the large cheliped of the sdult male the hand is about $2 \frac{1}{3}$ times ns long as the carapace; the outer surface of the arm, wrist, nnd hand are smooth to the naked ege; all the borders of the arm are sharply defined and finely serrulate, the inner border of the wrist is finely serrulate, aud the opper and lower borders of the palm are marginate and granulate, especially the apper border; and the two oblique granular cresta on the inner surface of the arm are in strong relief.

In the large hand the dactylus, in the adalt, is from $1 \frac{1}{2}$ to $\frac{18}{4}$ times the longth of the upper border of the paim; its tip is simply hooked and overhangs the simple apcurved tip of the immobile finger.

The meropodite of the last pair of lege is not nearly so broad as that of the two preceding pairs.

Iu the Indian Musenm are 70 spooimens, all but one being from various parts of the Bay of Bengal littoral. The carapace of a large specimen is 10 millim. long and abost 18 millim. broad.

The figures of G. minor, Owen, agree very well with this species, and if the two nomes should prove to refer to the same species this name has the precedence.
52. Gelasimus tetragonum (Herbst).*

Cancer marinus, minor, vociferans, Seba, Theanarus, III. p. 48, pl. xix. fig. 16. Cancer tetragonon, Herbst, Krabben, I. ii. 257, pl. xx. fig. 110, and III. i. 81. Gelasimus tetragonum, Rüppell, 24 Krab. roth. Meer., p. 25, pl. V. Fig. E: Milnø

[^54]Edwards. Hist. Nat. Crast. II. 52, and Ann. Sci. Nat., Zool., (3) XVIII. 1858, p. 147, pl. iii. fg. 9 : Guérin, Voy. Coqnille, II. Zool., Crast. p. 10, pl. i. fige. 2, 8 : A. Milne Edwards, in Maillard's l'ile Réunion, Ann. F., p. 6, and Nouv. Archiv. du Mue, IX. 1873, p. 278 : Heller, Novara Crast., p. 37 : Hilgendorf, in v. d. Decken's Reisen OstAfr. Crast. p. 84: Hofimann, in Pollen and Van Dam, Faun. Madag. Crast. p. 16: Kossmann, Reis. roth. Meer. Crust. p. 52 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 143, pl. ix. fig. 11 : de Man, Archiv f. Natarges. LIII. 1887, i. p. 358, and Notes Leyden Mus. XIII. 1891, pp. 20, 24, pl. ii. fig. 6 : Ortmann, Zool. Jahrb. Syat. VII. 1893-94, pp. 750, 754: Whitelegge, Mom. Austral. Mus. III. 1897, p. 138.

Gelasimus Duperreyi, Guérin, Dana U. S. Expl. Exp. Crast. pt. i. p. 317.
Uca tetragona, Ortmann, Zool. Jahrb., Syst. X. 1897-98, p. 3 Ł8: Doflein SB. Ak. Münch. XXIX. 1899, p. 193.

Length of the carapace about two-thirds of its greatest breadth at the acute antero-lateral angles. Carapace somewhat pentagonal, markedly convex fore and aft, the regions all recognizable but not strongly defined: though the posterior border of its dorsum is only half its greatest breadth, the true lateral borders are but slightly convergent posteriorly. In the adult male the fine raised line that bounds the dorsal plane on each side is distinct as such only in the neighbourhood of the antero-lateral angles, but in the female it rans much further backwards.

The breadth of the front, measured between the bases of the erestalks, is about a tenth the greatest breadth of the carapace.

Orbits mach oblique, both borders sinuous, the lower border elegantly denticulated throughout.

In the large cheliped of the adult male the upper border of the arm is fairly prominent and the inner burder ends in a sharp tooth, quite independent of the constricted-off terminal lobule; the wrist is quite smooth to the naked eye, and has the inner angle sharp bat not spiniform; and the hand is about $2 \frac{1}{2}$ times the greatest length of the carnpace.

In the hand of this cheliped the palm is, to the naked oje, frosted with very fine granales, some of which in the neighbourhood of a scar near the base of the immobile finger are visible to the naked eye; its upper border is not, and its lower border is but obscurely, defined; and the two oblique crests on its inner surface are mere swellings, often quite faint, and never strongly salient. The fingers are neither broad nor particularly thin: the dactylus, which is about $1 \frac{2}{3}$ times the length of the upper border of the palm, tapers and is somewhat hooked at tip; the inmobile finger commonly has two teeth a little enlarged, the second one being near the tip and sometimes giving the tip a somewhat notched (but not truncated) appearance.

The merus of the last pair of legs is not at all foliaceons.
In the Indian Museum are 29 specimens from the Andamans: the carapace of a large one is 17 millim. long and 26 millim. broad.

The "Challenger" specimens referred by Miers to this species have a broad front and are identical with specimens from Honglong that I take to be G. splendidus.

53. Gelasimus Marionis, Desm.

Gelasimus Marionis, Desmarest, Consid. Gen. Crust., p. 124, pl. xiii. fig. 1, and Dict. Sci. Nat. XXVIll. 1823, p. 248: Milne Edwards, Ann. Sci. Nnt., Zool., (3) XVIII. 1852, p. 145, pl. iii. fig. 5 (nec Hist. Nat. Crust. II. 53) : de Man, Notes Leyden Mns. II. 1880, p. 67: Miers, Ann. Mag. Nnt. Hist. (5) V. 1880, p. 308 : Kingsley, Proc. Ac. Nat. Sci. Philad. XXXII. 1880, p. 141, pl. ix. fig. 8.

Gelasimus cultrimanus, White, P. Z. S. 1817, p. 205, Aun. Mag. Nat. Hist. XX. 1847, p. 205, and Samarang Crust. p. 49 (apud Miers loc. cit. supra!.

Gelasimus cultrimanus var. Marionis, Ortmann, Zool. Jahrb. Syst. VII. 1893-94, pp. 750, 75 4.

Length of the carapaco about two-thirds of the greatest breadth, which is at the claw-like antero-lateral angles.

Carapace little conver, all its regions rery well defined, the posterior border of its dorsum in the adult male is half its grentest breadth and the true lateral borders are moderately convergent posteriorly: the fine raised line that in some other species defines the greater part of the dorsal plane is here, in the adult male, confined to the neighbourhood of the antero-lnteral angles.

The breadth of the front between the bases of the eyestalks is not a fifteenth the greatest breadth of the carapace.

Orbits not very oblique nor very sinuous; the lower border, which is nearly straight, is elegantly creulate throughout.

In the large cheliped of the adult male the upper border of the arm is prominent and the inner border ends in a sharp tooth, independent of the terminal constricted-off lobule; the upper surface of the wrist is granular, and the iuner border of the wrist has a denticle or spinule at its angle; and the hand (fingers included) is about three times the length of the orrapace.

This large hand has a curious twist: its palin is compressed and las the upper and luwer margins well defined, the outer surface covered with large granules, and the two granular crests on its inner surface fairly prominent: its fingers are broad thin and laminar; the dactylus, which may be four times as loug as the upper border of the palm, is slaped like a knife-blade; and in the immobile finger, which has a groove or line of pits along its outer surface, the dentary edge has a simple S-shaped curve.

The merus of the last pair of legs is not at all foliaceons.
In the Indian Museum are 9 specimens from the Andamans. The carapace of a large specimen is 18.5 millim. long and 26.5 millim. broad.
J. II. 47

54. Gelasimus Marionis var. nitidus, Dana.

Gelasinus vocans, Milne Edwards, Ann. Sci. Nat., Zool., (3) XVIII. 1852, p. 145, pl. iii. fig. 4 (nec Hist. Nat. Crust. II. 54) : Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 99: Heller, Novara Crust. p. 37 : Hilgendorf, in v. d. Decken's Reis. Ost-Afr., p. 83: A. Milne Edwnrds, Nonv. Arohiv. du Mas. IX. 1873, p. 272 : Hoffmann, in Pollen and Van Dam's Fann. Madagnsc. Crast. p. 16: Miers, Phil. Trans. Roy. Soo. Vol. 168, 1879, p. 488, and Ann. Mag. Nat. Hist. (5) V. 1880, p. 308, and Challenger Brachynra, p. 242: Richters, in Mobins, Meeresf. Maurit. p. 155: de Man, Notea Leyden Mus. II. 1880, p. 67, and X1II. 1891, p. 23, pl. ii. fig. 5, and Archiv f. Naturges. LIII. 1887, i. p. 352, and in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. 1892, p. 305, and Zool. Jahrb. Syst. VIII. 1894-95, p. 572 : Haswell, Cat. Austral. Crast. p. 92.

Gelasimus nitidus, Dana, U. S. Expl. Exp. Crust. pt. I. p. 316, pl. xix. figs. $5 a-l$: Milne Edwards, Ann. Sci. Nat., Zool., (3) XVIII. 1852, p. 147: Thallwitz, Abh. Mas. Dresden, 1890-91, p. 42.

Gelasimus cultrimanus, Kingsley, Proc. Ac. Nat. Sci. Plihid. 1880, p. 140, pl. ix. fig. 7: Ortmann, Zool. Janrb., Syst., VII. 1893-94, pp. 750-753, and Jena. Denk. VIII. 1894, p. 56.

Oca cultrimana, Ortmann, Zool. Jahrb., Sgst. X. 1897-98, p. 348.
Differs from G. Marionis only in the form of the large hand of the adult male: this member, in var. nitidus,
(1) is not much over $2 \frac{1}{2}$ times the length of the carnpace, its dactylus being but little more than twice the length of the apper border of the palm :
(2) it has the two oblique granular ridges on the inner surface of the palm remarkably salient:
(3) it has the dentary edge of the immobile finger thrown into a claracteristic W-shaped curve owing to the strong projection of two large triangular lobes, and
(4) it has the dactylus somewhat hooked at tip.

In the Indian Museum are 103 specimens, chiefly from the Andamans and Nicobars, but also from the Coromandel and Malabar coasts. The length of the carapace in large specimens is 14 millim., the breadth 21 millim.

55. Gelasimus acutus, Stimpson, de Man.

Gelasimus acutus, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 99 : Tozzetti, Magenta Crust. p. 107 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 144: de Man, Journ. Linn. Soc., Zool. XXII. 1887-88, p. 113, pl. vii. figs. 8-9, pl. viii. figs. 1-4, and Notes Leyden Mus. XIII. 1891, p. 21, and in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. 1892, p. 306, and Zool. Jahrb. Syst. VIII. 1894-95, p. 573: Ortmann, Zool. Jahrb., Syst. 1893-94, p. 750.

Uca acuta, Doflein, SB. Ak. Münch. XXIX. 1899, p. 193.
Length of the carapace about three-fifths the greatest breadth, .which is at the acute wing-like antero-lateral angles.

Carapace strongly convex fore and aft, the regions moderately well defined: its lateral borders are strongly convergent, and still more so are the lateral borders of the dorsal plane, which are defined in more than two-thirds of their extent by a fine raised line: the posterior border of the dorsal plane is contained from $2 \frac{1}{2}$ to $2 \frac{t}{8}$ times iu the geatest breadth.

Front, measured between the eye-stalks, about a twelfth the greatest breadth of the carapace, its moulded and bevelled edges do not together take up half its breadth.

Orbits moderately oblique, both upper and lower borders much sinuous; the lower border finely, the upper border still more finely and more distantly crenulate.

In the large cheliped of the adalt male all three borders of the arm are well defined, the inner and the lower borders being crenalated, but the inner border laving no tooth independent of the terminal constrictedoff lobule; the apper surface of the wrist and the outer surface of the palm are closely covered with vesiculous granules; and the hand (fingers included) may be $3 \frac{1}{2}$ times the length of the carapace.

In this large hand the upper and lower borders of the palm are well defined, and of the two oblique granular crests on the inner sarface of the palm the upper one that runs to the dentary edge of the immobile finger is short and indistinct : the fingers are not particularly broad or thin, and however the teeth may be disposed, there is always one near the end of each finger that is enlarged so as to give the ends of the fingers, when apposed, a sort of tongs-like or forceps-like grip: the dactylus is from 2 to noarly $2 \frac{2}{3}$ times the length of the upper border of the palm.

The meras of the last pair of legs is distinctly foliaceous.
In the Indian Masenm are 92 specimens chiefly from the Sanderbands and Mergai, but also from Karachi and the Andamans. In a large specimen the carapace is 14 millim. long and 25 broad.

56. Gelasimus Dussumieri, Edw.

Gelasimus Dussumieri, Milne Edwards, Ann. Sci. Nat. Zool. (3) XV1II. 1852, p. 148, pl. iv. Gg. 12: A. Milne Edwards, Nouv. Archiv. du Mus. IV. 1868, p. 71, and IX. 1873, p. 274: Hoffmann in Pollen and van Dam's Faun. Madag. Crust. p. 17, pl. iii. figs. 19-22 : Kingaley, Proc. Ac. Nat. Sci. Philad. 1880, p. 145, pl. x. fig. 16 : de Man, Notes Leyden Mus. II. 1880, p. 68, and XIII. 1891, pp. 20, 26, and Journ. Linn. Soc. Zool. XXII. 1887-88, p. 108, pl. vii. figs. 2-7, and in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. 1892, p. 306, and Zool. Jahrb., Syst., VlII. 1894-95, p. 576 : Lenz and Richters, Abh. Senck. Nat. Ges. Frankf. XII. 1881, p. 423 : Haswell, Cat. Austral. Crust. p. 63 : Miers, Zool. H. M. S. Alert, pp. 518, 541 : Ortmann, Zool. Jahrb. Syst. VII, 1893-04, pp. 750, 755.

Gelasimus longidigitum, Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 144, pl. ix. figg. 10, 13 (fide Ortmann l. c. infia).

Uca Dussumieri, Ortmann, Zool. Jahrb, Syst., X. 1897-98, p. 348 : Nobili, Ann. Mus. Genov. (2) XX. 1899, p. 273 : Doflein, SB. Ak. Münch. XXIX. 1899, p. 193.

Closely related to G. acutus, from which it can be distinguished by the following characters when fully adult males are compared:-
(l) the regions of the carapace are much more strongly defined, and the raised lines that bound the dorsal plane of the carapace on each side are more curved, less rapidly convergent, and less distinct in their posterior part, which gives the carapace n much less posteriorlg-contracted look; and the orbits are less oblique:
(2) the front, measured between the bases of the ejestalks, is about a fifteenth the greatest breadth of the carapace, and its moulded and bevelled edges together take up more than two-thirds of its breadth :
(3) in the large cheliped the arm is longer and more slender, both the oblique grauular ridges on the inner surface of the palm are very strongly defined, and the fingers may be fully 3 times the length of the upper border of the palm:
(4) these large fingers are broader and thinner, their tips are somewhat hooked and have no enlarged tooth near them, but near the middle of the immobile finger there is a enlarged tooth or triangalar lobe :
(5) the merus of the last pair of legs, though it is compressed and somewhat broadened, is not a short foliaceous joint.

In the Indian Museum are 52 specimens, from Mergui, Andamans and Nicobars, nnd Bimlipatam.

57. Gelasimus Urvillei, Edw.

Gelasimus Urvillei, Milne Edwards, Ann. Sci. Nat., Zool., (8) XVIII. 1852, p. 148, pl. iii. fig. 10 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 145, pl. ix. fig. 15 : de Man, Notes Leyden Mus. XIII. 1891, pp. 21, 84 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 750.

Gelasimus Dussumieri, Hilgendorf (nec Edw.), in v. d. Decken's Reis. Ost-Afr. Crust. p. 84, pl. iv. fig. 1.

This species closely resembles G. acutus and G. Dussumieri, but is distinguished from both by the presence of a raised row of granules behind and parallel with the middle third of the lower border of the orbit-i.e., just inside the orbital cavity.

As in G. acutus, the fine raised lines that define the dorsal plane of the carapace laterally are distinct throughout and rapidly convergent, which gives the carapace a look of breadth in front and of unusual narrowness behind; and, as in G. acutus, the meropodites of the last
pair of legs are, even in the male, decidedly shortened and foliaceonis joints.

On the other hand the front is, as in G. Dussumieri, extremely narrow, and its bevelled and moulded edges take up most of its breadth between the eye-stalks. The regions of the carapace, also, are as strongly defined as they are in G. Dussumieri.

The large hand of the male resembles that of G. Dussumieri in having both the oblique granular ridges on the inner snrface of the paln strongly salient, and in having very long fingers with simple booked tips : the fingers however are not so broad and thin, and the lobe near the middle of the dentary edge of the immobile finger may be present or not.

In the Indian Museum are 10 specimens, from Karachi, Madras, and the Nicobars.

The carapace of the largest specimen is 20 millim. long and 36 millim. broad.

Subfamily Scopimerine.

Dotilla, De Haan, Stimpson.
Doto, De Haan, Faun. Japon. Crast. p. 24 (1835) nom. præoc. : Milne Edwards, Hist. Nat. Crust. II. 38, and Ann. Sci. Nat., Zool., (3) XVIII. 1852, p. 152.

Dotilla, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 98.
Cephalothorax so deep as to be subcubical, as long as brond or a little broader than long. Anteriorly the sidewalls of the carapace have a curious gyrous-salcate scalptare resembling brain-convolations: often also a similar kind of scalptare is found on the dorsum of the carapace and on the meropodites of the external maxillipeds.

Front a narrow deflexed lobe much as in Ocypoda. The orbits, which occupy all the rest of the anterior border of the carapace, are more or less oblique aud shallow-in one species so shallow as to be almost obsolete. Eyestalks rather long and slender, with the eyes at the end.

Antennules, like those of Ocypoda, having the basal joint of good size, and the flagellum small and hidden by the front. The antennm stand at the inner angle of the lower orbital border and lave a rather short flagellum.

The epistome would be linear bat for a large median tringgular lobe that projects between the external maxillipeds.

Buccal cavern enormons, suboval or subcircular in ontline: the external maxillipeds, which completely cover it and are also very large, have a strong almost hemispherical bulge; their merus is mach larger
than the ischium and carries the flagellum at the antero-external angle : the exognath is extremely slender and inconspicuous.

Chelipeds equal, stouter than the legs : fingers usually slender and a little deflexed, usually without conspicuons teeth.

Legs not mach differing in length, which is moderate: their meri (as also those of the chelipeds) have on the apper surface a curious membranous area or "tympanum." Similar "tympana" may also be present on some of the segments of the sternum.

The abdomen in the male consists of 7 separate segments, and though narrow is nowhere linear or compressed : the distal end of the fourth segment is thickly fringed with bristles, and overlaps and partly conceals the fifth tergum. In the female, according to De Haan, the abdomen cousiste of 5 separate segments.

Distribution: Tropical shores and mud-flats, from East Africa and the Red Sea eastwards to Japan. Found in the same situations as Gelasimus and Ocypoda.

Key to the Indian species of Dotilla.

I. Carapace broader than long: chelipeds not much longer than the carapace, and not mach differing from the legs in point of length: no "tympana" on the sternam :-

1. Meropodites of legs not dilated : fingers of chelæ slender, without any conspicuous teeth :-
i. Whole surface of merus of external maxillipeds gyrous-sulcate: fiugers not longer than palm.
D. affinis.
ii. Only the onter-half of the merus of the external maxillipeds is gyrous-sulcate :-
a. Fingers slightly longer than the palm
D. Blanfordi.
b. Fingers more than twice as long as the palm
D. intermedia.
2. Meropodites of the legs dilated :-
i. Fingers of chelæ without any conspicuons tooth : dactyli of the legs, even of the last pair, shorter than the propodites......
ii. A large tooth on each finger of the chelæ, arranged so that when the tips of the fingers are closed these large teeth meet, and an hour-glass-shaped space is left between the closed fingers : dactyli of the legs longer than the propodites.
D. brevitarsis.
D. clepsydrodactylus.
II. Carapace at least as long as broad : chelipeds 3 or 4 times as long as the carapace, and much longer than the legs: " tympana" present on the sternum.
D. myctiroides.
3. Dotilla affinis, n. sp.

Differs from D. sulcata, with specimens of which, from the Red Sea, I have compared it, only in the following characters:-
(1) there is no spine on the under surface of the arm, (2) the fingers are not so long as the palm, (3) there is a small tympanum on the dorsal surface of the merus of the last pair of legs, whereas in D. sulcata only the tympanum on the ventral surface is present.

The carapace behind the gastric and inside the branchial regions, forms a smooth somicircular facet, but all its anterior and lateral regions have a curiously convoluted sculptare, the convexities of the convolutions being finely granular.

The grooves that define these convolutions form, when viewed ns Ω whole, a sort of five-rayed star, the anterior ray (which runs up between the eyes on to the front) being the shortest, the antero-lateral rays (which run towards the outer angles of the orbit) being a little longer, and the postero-lateral rays (which really are triple) being the longest of all.

The pterygostomian regions and neighbouring part of the sidewalls of the carapace, and the meropodites of the external maxillipeds have the same curious convoluted sculpture. The orbits are shallow but are perfectly defined.

The merus of the external maxillipeds is more than twice the size of the ischinm.

Chelipeds (measured round their curve) not twice the length of the carapace: no spine on any of their segments : fingers not so long as the palm.

Legs slightly longer than the chelipeds, their meropodites not at all broadened but all having a "tympanum": except in the case of the last pair of legs-in which the dactslus is remarkably long-the dactyli are rather shorter than the propodites.

No tympaua on the sternum.
In the Indian Museum are 4 specimens from Aden and the Baluchistan coast. The carapace of the largest is 5.3 millim. long and $7 \cdot 3$ millim. brond.
59. Dotilla intermedic, de Man.

Dotilla intermedia, de Man, Journ. Linn. Soc., Zool., XXII. 1887-88, p. 135, pl. ix. figs. 1-6 (1888).

Carapace sculptured in much the same way as in D. affinis, only the grooves are not so deep and distinct, and there is an additional groove running parallel with the posterior margin.

The merus of the external maxillipeds is not twice as large as the ischinm, and the scalpturing consists of a single loop parallel with the outer border of the meras, the inner half of that joint being quite smooth.

Fingers more than twice as long as the palm. In the last pair of legs the ductylus is aboat twice as long as the propodite: in all the other legs the dactyli are very little longer than the propodites.

In other respects this species agrees with D. "ffinis.
In the Indinn Maseam are 15 specimens from Mergui. The carapace is 4 millim. long and a little over 4 millim. brond.

60. Dotilla Blanfordi, n. sp.

The whole of the dorsal surface of the carapace is areolated and grooved (the arcolm being finely granular and the grooves smooth) as follows :-

A very distinct groove runs parallel with either lateral border, and a scarcely less distinct one runs parallel with the posterior border, and in the space bounded by these grooves Ω six-rayed star of grooves of nearly equal length can be made out. This "star" is formed by a groove ranning fore and aft down the middle of the carapace and having, on either side of it, a semicircular chord joining the outer angle of the orbit with a point near the postero-lateral angle of the carapace. The intersection of these grooves cuts the post-gastric subregion into 4 symmetrical tubercles.

The whole side-wall of the carapace is finely granular, and the subhepatic and pterygostomian regions hare the characteristic convoluted scalpture. The orbits are shallow bat are perfect.

The external maxillipeds are finely granular: the merus is twice as big as the ischium, and its sculptare consists of a single loop parallel with the outer border and a single groose parallel with the inner border.

Chelipeds as in D. affinis, except that the fingers are a little longer than the palm.

Legs as in D. affinis, the meropodites being slender and all having a "tympanum," but in the last pair the dactylus is about twice as long as the propodite, and in the other pairs the dactyli are very slightly longer than the propodites. No sternal tympana.

In the Iudian Museum are 4 specimens from the coast of Sind nnd Baluchistun. The carapace of the type is a little over 5 millim. long and not quite 7 millim. broad. Collected by Mr. W. T. Blanford, F.R.S.

61. Dotilla clopeiydrodactylus, h. sp.

Near D. Wichmanni, de Man.
The sculpture of the dorsum of the carapace is like that of D. Blanfordi, only the grooves are much deeper cut and the groove between the post-gastric region and the postero-lateral angle of the carapace is double: the sculpture of the sidewall of the carapace is like that of D. Blanfordi.

In the external maxillipeds the merus is not twice as big as the ischinm, and its scalpture consists of a single simple convolution parallel with the outer border, the inner half of its surface being quite smooth-as is D. intermedia.

The orbits are shallow but are quite perfect.
The chelipeds, measured all round their curve, are not twice the length of the carapace nnd have no spine on the arm. The fingers are much longer than the palm : in the adult male they are extromely slender, and each has a large tooth arranged so that whon the tips of the fingers are closely apposed these twoo toeth meet and leave an hour-glass-shaped space between the closed fingers.

Legs a little longer than the chelipeds; their meropodites are slightly but distinctly dilated and all have a tympanum: their dactyli are all longer than their propodites, and in the last pair the dactylus is very long, slender, straight, and fluted. No sternal tympana.

Colours, speckled like the sand in which they live.
In the Indian Museum are eight specimens from False Point on the sea face of the Mahanaddi Delta. The carapace of the largest is 5 millim. long and 6 millim. broad.
62. Dotilla brevitarsis, de Man.

Dotilla brevitarsis, de Man, Joarn. Linn. Soo., Zool., XX1I. 1887-88, p. 180; pl. ix. fige. 1-3 (1888).

The whole carapace is grooved and areolated (but the sculpture is not very deep) as follows :-

A strong groove raus fore and aft down the middle of the carapace; another rans parallel with the posterior border, and on each side another takes a sinuous course along each lateral border: other short and rather indefinite grooves join the median and lateral grooves.

The subhepatic and pterygostomian regions have the usual convolated sculpture. Orbits shallow, but distinct.

The merus of the external maxillipeds is much larger than the ischium : its whole surface is sculptured, the sculptare taking the form of a W-shaped convelation.
J. II. 48

Cbelipeds short, without any spine on the arm : palm short, high, and compressed, with sharp edges, traversed by a fine raised line near and parallel with the lower border: fingers thin and compressed, about as long as the palm, the apper edge of the dactylus-like that of the palm-fringed with hair.

Legs a little longer than the chelipeds, the meropodites-especially of the first 3 pairs-much broadened and compressed, all having a tympanum. The dactyli, even of the last pair of legs, are shorter than the propodites.

No tympana on the sternum.
In the Indian Museum are fragments of 3 specimens from Mergni: de Man states that the breadth of the cephalothorax of the largest specimen is nearly 10 millim.

63. Dotilla myctiroides, Edw.

Doto myctiroides, Milne Edwards, Ann. Sci. Nat. Zool. (3) XVIII. 1852, pl. ir. fig. 24.

Dotilla myctiroides, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 98 : A. O. Walker, Journ. Linn. Soc. Zool. XX. p. 111 : Anrivillias, Zur Biologie amphibischer Dekapoden, p. 5, pl. i. figs. 1-13, pl. iii. fig. 13, (Mitg. Ges. Wiss. Upsala, 1893).

Scopimera myctiroides, Henderson, Trans. Linn. Soc., Zool., (2) V. 1898, p. 890.
Carapace about as long as, or slightly longer than, broad, little sculptured dorsally, though its antero-lateral parts are stadded with vesiculons granules. Front grooved: a groove runs parallel with either lateral border, and a faint groove crosses either postero-lateral angle. The side-walls anteriorly have the usual "brain-convolution" sculpture.

Orbits very oblique and very shallow, almost obsolete.
The merus of the external maxillipeds is nearly twice as big as the ischium and is finely granular; a single faint groove, most distinct anteriorly, rans parallel with its onter border.

Chelipeds between three and four times the length of the carapace, all the joints long, slender, and unarmed: fingers longer than the palm, without any couspicaons teeth.

Legs long, but much shorter than the chelipeds: the meropodites strongly dilated, and with a large "tympanam": the dactylus of the last pair is longer than the propodite, but in the other three pairs it is a little shorter than the propodite.

On either side of each of the last four thoracic sterna is a large tympanum.

In the Indian Maseam are 19 specimens from the Andamans and 17 from the Coromandel coast. The carapace is 10 millim. long.

Scopimera, De Haan.

Scopimera, De Hann, Fann. Japon. Crust., p. 24 (1835): Milne Edwards, Ann. Sci. Nat., Zool., (3) XVIII. 1852, p. 153.

Scopimera has the same deep "cabical" carapace and the same general facies as Dotilla, but differs in the following characters:-

The carapace is much broader than long and has none of the curious sculpture, resembling brain convolutions, that is found, at any rate on the sidewalls, in Dotilla: the external maxillipeds are uusculptured and their merus, though large, is smaller than their ischinm : the abdomen of the male has a curious wasp-like form owing to the length and narrowness of its fifth segment, which segment may even become elongate-linear by constriction; it has no bristles either on the 4th tergum or elsewhere: in the female the abdomen consists of 7 separate segments.

Distribution : Indo-Pacific shores, from Karachi to Japan.

Key to the Indian species of Scopimera.

I. Chelipeds and legs with a reticulate or subsquamiform granulation, the chelipeds in the male about twice the length of the carapace: most of the tympana on the legs are traversed by a longitudinal ridge: ffth abdominal tergam of male long and narrow, bat not linear
S. investigatoris.
II. Chelipeds and legs finely and aniformly granular, the ohelipeds in the male nearer 3 times than twice the length of the carapace: the tympana not sabdivided by a ridge: the fifth abdominal tergum of the male is long and linear. S. crabricauda.

According to F. Müller, S. globosa, De Haan, is found in Indian waters. The form of the abdomen in this species is similar to that of S. investigatoris, but the carapace is smooth, and the tympana of the legs are different.

64. Scopimera investigatoris, n. sp.

Carapace much broader than long, decidedly pentagonal, without distinction of regions, smooth except anteriorly and laterally where there are numerous irregularly-scattered granules: the sidewalls and pterygostomian regions finely granular.

Orbits broad as in Ocypoda, shallow, the upper border very oblique, the lower border finely denticulated and very prominent as in Gelasimus.

External maxillipeds with some obsolescent granulation. Chelipeds and legs finely granular in a somewhat reticulate or subsquamiform way.

Chelipeds about twice as long as the carapace: tympanum on the inner surface of the arm large, that on the outer surface of the arm small: fingers about as long as the palm, without any enlarged teeth.

First 3 pairs of legs about the same length as the chelipeds, the 4th pair shorter : the merus of all much dilated and with large welldefined tympana, nll of which, except only the one on the dorsal surface of the last pair, are longitudinally subdivided by a fine ridge: the dactylus in the first 3 pairs is about the same length as the propodite, but in the last pair is considerably longer.

In the male abdomen the first 2 segments are horizontal-linear, the 3rd and 4th, though distinct, form a " butterfly" plate, the 5th is long and narrow and longitudinally grooved and gradually expands to meet the 6th, which is long and broad, while the 7 th is transversely oval.

In the female the abdomen is of the usual shape, butin its broadest part is little more than half the bread th of the sternum.

In the Indian Museum are 11 specimens, from Diamond Island off C. Negrais in Burma. The carapace of the largest male is 4.5 millim . long and 7 millim. broad.

65. Scopimera crabricaula, n. sp.

Carapace subpentagonal, the regions indistinctly indicated, the surface of the mid-dorsal region is symmetrically puckered or vesiculous; the sidewalls and pterygostomian regions granular.

Orbits moderately broad and deep, the upper border oblique, the lower border prominent and finely denticulate.

External maxillipeds smooth : chelipeds and legs "frosted" under the lens.

In the male the chelipeds are more than $2 \frac{1}{2}$ times the length of the carapace and are longer and much stouter than the legs : there is a large tympanum ou the inner surface of the arm, and a very small one on the outer surface: the dactylus is a little shorter than the palm and has one large tooth. In the female the chelipeds are shorter and not much stouter than the legs: the fingers are shorter than the palm, and the dactylus has no large tooth.

The meropodites of the legs are much dilated: all have tympana but these are not subdivided by any ridge: in the first 3 pairs of legs the dactyli are a little longer, in the fourth pair considerably longer, than the propodites.

In the male abdomen the first 2 segments are linear-horizontal and concealed, the 3rd and 4th form a triangular plate deeply grooved down
the middle line, the 5th is long linear and grooved, the 6th and 7th, though separate, together form a racket-head.

In the female the abdomen is of normal shape.
In the Indian Museum are a male and female from Karachi. The carapace of the male is 6.5 millim. long and barely 10 millim. broad.

Tympanomerds, de Man, Rathbun.
Diozippe, de Man, Journ. Linn. Soc., Zool., XXII. 1887-88, p. 187 (1888) ; nom. preoce.

Tympanomerus, Rathban, Proc. Biol. Soc., Washington, XI. 1897, p. 164.
Carapace deep, quadrilateral, broader than long, the regions not defined. Front narrow, deflexed: the orbits are trenches occupying the whole anterior border of the carapace between the front and the anterolateral angles.

Eyes, antennules, antennæ and epistome as in Dotilla. Buccal cavern large, a little narrowed and rounded anteriorly: the external maxillipeds completely close the buccal cavern, the anterior outer corner of the ischinm is marked off as a distinct facet as in Dotilla and Scopimera, the merus is much larger than the ischium, the palp arises near the antero-external angle of the merus, and the exognath is small and linear.

Chelipeds in both sexes stouter, and in the male longer, than the legs: fingers a little deflexed.

Legs rather compressed, the two middle pairs a little longer than the first and last pair: there are ill-defined tympana on the meropodites.

The abdomen in both sexes consists of separate segments, and in the male is narrow.

Distribution : Japanese and Andaman Seas.

[^55]66. Tympanomerus orientalis (de Man).

Diosippe orientalis, de Man, Journ. Linn. Soc. Zool. XXII. 1887-88, p. 138, pl. ix. figs. 8-10.

Carapace square-cat, the length about four-fifths of the greatest breadth, dorsally nearly flat with the lateral borders well defined especially anteriorly, the surface a little lumpy in places: a perfectly straight fine transverse ridge runs close to and parallel with the posterior border.

Front grooved dorsally, hardly a fourth the breadth of the carapace. The outer angle of the lower border of the orbit forms a
prominent tooth. The merus of the external maxillipeds is grooved along the oater border.

Chelipeds in the male rearly three times the length of the carapace: wrist elongate, somewhat cuboid, with a strong laterally-compressed lobe or tooth at its inner angle: palm rather high, both borders marginate and a second fine ridge runs close to and parallel with the lower border: fingers a little shorter than the palm, finely denticulate.

In the female the chelipeds are not twice the length of the carapace, the wrist is not elongate, though the tooth at its inner angle is present, and the fingers are a little longer than the palm.

The meropodites of the legs are slightly dilated, the dactyli are shorter than the propodites, and the carpopodites and propodites of the first two pairs are densely tomentose.

The fifth abdominal tergum of the male, though not particularly elongate, is a little constricted at base.

In the Indian Museum are 6 specimens from Mergui. The carapace of the largest is 4 millim. long and 5 millim. broad.

Subfamily Macrophthalmina, Dana.
 Chistostoma, De Haan restr.

Cleistostoma ($=$ dilata nec pusilla) De Haan, Fann. Japon. Crust. p. 26 : Mine Edwards, Ann. Soi. Nat., Zool., (3) XVIII. 1852, p. 160.

Carapace of no great depth, broader than long, its sides slightly arched, its regions ill-defined.

Front of moderate breadth, more than a fourth the greatest breadth of the carapace, declivous : orbits well defined, of good depth, occupying all the rest of the anterior border of the carapace : eyestalks stout, eyes terminal. The antennules fold obliquely: the antennm are small and stand in the inner orbital hiatus.

Epistome well defined, very short fore and aft, with a prominent lobe or tooth in the middle line projecting between the external maxillipeds.

Buccal cavern squarish, but with the sides a little arched, completely closed by the external maxillipeds. These are large, and have the inner angle of the ischium strongly produced, the merus as large as or larger than the ischinm, and the palp articulating at the anteroexternal angle of the merus: the carpus is ovate, bat the two terminal joints are very short and slender: the exognath is in great part concealed.

Chelipeds in the female shorter and slenderer than any of the legs, in form exactly like those of the female of Gelasimus.

Of the legs the first two pairs are the shortest and slenderest; while the middle two pairs are much the largest and have very broad meropodites. There are no "tympana."

The abdomen of the female consists of 7 separate segments, and is very broad.

67. Clistostoma dotilliforme, n. sp.

Carapace rather depressed, slightly convex, smooth, with the regions ill-defined; its lateral borders are slightly arched and are finely serrated anteriorly behind the acate, almost dentiform, antero-lateral angles. Front between a third and a fourth the greatest breadth of the carapace, concare in the middle line. Upper border of the orbit sinuous, lower border prominent and finely serrated.

Merns of the external maxillipeds larger than the ischiam, sculptured (somewhat ns in the Dotille) with a sort of Y -shaped sulcus starting from the antero-external angle. The pterygostomian regions also are sculptared with branching or convolated grooves mach as in the Dotills.

The second and third pair of legs, which are much longer than the other two pair, are a little over $1 \frac{1}{8}$ times the length of the carapace and have an almost foliaceons meropodite with the anterior border finely serrulate and the posterior border elegantly spinate: the anterior border of the carpus and propodite of the second and third pair of legs is tomentose.

A single egg-laden female is in the Indian Maseum : it was fonnd at Karachi, and its carapace is 7 millim. long and 9 millim. broad.

Trlodiplax, de Man.
Tylodiplax, de Man, Zool. Jahrb., Syst. VIII. 1894-95, p. 593 (1895).
Carapace deepish, quite flat dorsally, broader than long and broader behind than in front, the lateral borders being posteriorly divergent and having a distinctly convex carve, the regious more or less defined.

Front between a third and a fourth the greatest breadth of the carapace, not deflexed, grooved longitudinally. The orbits occupy the rest of the anterior border of the carapace, but as the extent of this border is a good deal less than the greatest breadth of the carapace, and as the front is broad, the orbits have not the same elongate form as they have in most species of Macrophthalmus, though otherwise similar. Antennules and antennæ as in Macrophthalmus. Eyes small, not terminal on the eyestalks.

The epistome would be linear, were it not for à septum-like fold or lobe that projects strongly between the meropodites of the exteraal maxillipeds: owing to this fold the anterior edge of the buccal carern has a bilobed appenrauce. The external maxilipeds completely cluse the buccal cavern: their merus is at least as long as and decidedly broader than their isclium : the flagellam, which is slender, is articulnted near, bat not at, the antero-external angle of the merus: the exognath is not much concealed, though not completely exposed.

The chelipeds in the adult male are unknown : in the young male they are equal and are shorter and slenderer than the legs, except perhaps the very small 4th pair.

The legs have somewhat the same relations as in Macrophthalmusi.e., the first and last pairs are much the shorter and the two middle pairs are much the longer and stonter.

The abdomen in the female is anknown : in the male it is narrow, and consists of 5 separate joints, the 3rd 4th and 5th segments being fnsed, but without obliteration of satures.

It seems to me of very donbtfal utility to separate this form from Paraclistostoma, de Man, or either of them from Clistostoma, De Haan (as restricted by de Man).

68. Tylodiplax indica, n. sp.

Abstract

Two young males from Karachi nre in the Indian Masenm : their chelipeds are still of the female Macrophthalmus type, so that it is impossible to give a complete. diagnosis of the species.

Carapace more or less hairy, finely punctate, its length less than two-thirds its greatest breadth which, owing to the strong divergence, from before backwards, of the lateral borders, is posterior; its anterolateral angle is an obtuse angle. The gastric region is defined by a perfectly circular line.

Frout square-cat, laminar, but not projecting beyond the inner angles of the orbits, from whieh it is separated by a groove: tlie front is concave in thie middle line.

The pigment of the eyes is small in amount, and is placed somedistance behind the end of the eyestalks.

The merus of the external maxillipeds is longer and much broader than the ischium, and has its antero-external angle considerably dilated, and its surface somewhat granular.

The chelipeds of the immature male, and the legs, are hairy, muchas in Mucrophthalmus depressus, the hairs on the posterior border of the meras of the 2 nd pair of lege and on the dorsal -surface of carpus. and propodite of the 2nd and 3rd pair of legs being particularly
thickset. The length of the longest (second) pair of legs is $2 \frac{1}{3}$ times that of the carapace, that of the last pair of legs is very little more than that of the carapace.

Two young males from Karachi : the carapace 6.5 millim. long and 11 millim. broad.

Macrophthalmus, Latreille.

Macrophthalmus, Latreille, in Cuvier Règne An. (ed. 2) Vol. IV̀. p. 44 (1829): De Haan, Faun. Japon. Crast. p. 26 : Milne Edwards, Hist. Nat. Crust. II. 63, and Ann. Sci. Nat., Zool. (3) XVIII. 1852, p. 165 : Dana, U. S. Expl. Exp., Crust. pt. I. p. 312: Miers, Challenger Brachyura, p. 248.

Carapace depressed, quadrilateral, broader than (sometimes more than twice as broad as) long: the regions are well defined, the cervical and branchial grooves being characteristically conspicuous both on the dorsum of the carapace, and on the lateral border where they cut out two prominent teeth or lobes.

Front deflexed, narrow, often a narrow lobe as in Gelasimus: its free edge never approaches the epistome. The orbits are narrow trenches occupying the whole anterior border of the carapace between the front and the antero-lnteral angles : eyestalks usually very long and slender, as in Gelasimus. The antennular flagella, which are rather small, fold transversely beneath, but are not concealed by, the front. The antenno stand at the inner angle of the orbit: the basal joint is short, and the flagellum is of good length.

Epistome very short fore and nft, almost linear, but well delimited from the palate. Buccal cavern somewhat arched anteriorly. The external maxillipeds have a broad folinceous ischium and merus (the latter about half the length of the former) and a coarse flagellum articulating with the antero-external angle of the merus: though the ischinm and merus may not quite meet across the middle of the buccal cavern, the narrow interval that may exist between them is largely filled by the flagella, so that the underlying parts are concealed.

The chelipeds differ greatly in the sexes : in the female they are equal, and are shorter and slenderer than any of the legs except, perhaps, the short and weak last pair : in the adult male they are equal or sabequal, and are longer and stouter than any of the legs except, perhaps, the particularly large and stout penultimate pair: in both sexes the fingers are curiously deflexed and bent or curved inwards distally.

Of the legs, the first and last pairs are usually singularly short and slender compared with the second and third pairs: the third pair are the longest and stoutest, being nearly or quite as large as the chelipeds, J. II. 49
and the fourth (last) pair much the shortest and weakest of all. The dactylus in all is broad, stout, and laterally compressed.

The abdomen in both sexes consists of 7 separate segments, and in the male is narnower at base than the breadth of the sternum.

Key to the Indian species of Macrophthalmus.
I. Carnpace much broader than long, its sides are distinctly convergent posteriorly and the antero-lateral angles are acate and spiniform : front narrow :-

1. The eyestalks projeot nearly half their length beyond the antero-lateral angles of the carapace
M. Terreauxi.
2. The eyestalks project slightly beyond the antero-lateral angles of the carapace : the true first tooth of the lateral burder of the carapace belongs to the upper border of the orbit, and the antero-lateral angle of the carapace is formed by the true second tooth
M. sulcatus.
3. The eyestalks do not project beyond the antero-lateral angles of the carapace :-
i. Some of the borders of some of the leg joints are denticulate or sping
ii. Legs smooth, except for a small subterminal denticle on the anterior border of the meropo. dites
M. converus.
II. Carapace broader than long, its sides are parallel :-
4. The tooth at the antero-lateral angle of the carapace is trancate and square-cut: front about an eighth the greatest breadth of the carapace : inner surface of the palm of the male smooth
M. depressus.
5. Front about a fourth the greatest breadth of the carapace: inner surface of the palm of the male armed with a spine
M. erato.
III. Carapace broader than long, its sides divergent posteriorly : two nearly parallel, obliquely longitudinal, finely beaded lines on the posterior part of each epibranchial region M. tomentosus.

Besides the fore-named, the four following species, of which I have not seen specimens, are said to occar in Indian Seas :-
(1) M. simplicipes, Gaérin, Mag. de Zool. II. 1838, pl. xxiv. fig. 1 : it appears to differ from M. pectinipes in having no spines or denticles on the leg.joints.
(2) M. carinimanus, Milne Edwards, Hist. Nat. Crast. II. 65, and Ann. Sci. Nat. Zool. (3) XVIII. 1852, p. 156 : it appears to differ from M. convesus only in having a spine on the inner surface of the palm of the male cheliped.
(3) M. pacificus, Dana, U. S. Expl. Exp., Crast. pt. I. p. 314, pl. xix. fg. 4: it appears to differ from M. erato only in not having a spine on the inner surface of the palm of the male cheliped.
M. bicarinatus, Heller, Novara Crust. p. 36, pl. iv. fig. 2, which I am nnable from the descriptions to distingaish from M. pacificus.
69. Macrophthalmus Verreauxi, Edw.

Abstract

Hacrophthalmus Verreausi, Milne Edwards, Ann. Sci. Nat., Zool., (3) IX. 1848, p. 358, and XVIII. 1852, p. 155, pl. iv. fig. 25: Hess, Archiv f. Nat. XXXI. 1865, i. pp. 142, 171: de Man, Notes Leyden Mus. II. 1880, p. 184 : Haswell, Cat. Austral. Orust. p. 89.

Carapace finely granular on the branchial regions, its length about two-thirds its greatest breadth, its sides slightly convergent posteriorly and cat anteriorly into 3 teeth, the first of which is the antero-lateral angle.

Front only very moderately deflexed, its least breadth (between the eyestalks) is about a fifth the greatest breadth of the carapace, very obscurely bilobed.

Orbits oblique, sinuous, their borders microscopically beaded. The eyestalks project nearly half their length beyond the antero-luteral angles of the carapace.

The external maxillipeds, when the flagella are folded, completely occlude the baccal cavern: the suture between the merus and ischinm is oblique.

The legs are darkly variegated or incompletely banded, and are nnarmed except for a subterminal spine on the anterior border of the meropodites of the first 3 pairs.

The chelipeds in the young male are not as long as, though more massive than, the 2ad and 3 rd pairs of legs.

In the Indinn Maseum are 4 specimens, more or less damaged, from the Andamans and Mergui ("Investigator" collection). The largest male (which wants the chelipeds) has a carapace 9 millim. long and 14 millim. broad.

70. Macrophthalmus pectinipes, Guérin.

Macrophthalmus pectinipes, Guérin, Voy. Favorite, p. 167, pl. 49 (1839), and Mag. de Zool. II. 1839, Crust. (Cl. VII.) pl. xxiii (1838) : Milne Edwards, Ann. Sci. Nat., Zool., (8) XVIII. 1852, p. 158 : Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 889 : Ortmann, Zool. Jahrb., Byst., X. 1897-98, p. 340.

Carapace studded with large conspicuous pearly granules, its length in the adult male is abont six-elevenths of its greatest breadth at the level of the second tooth of the lateral border : the lateral borders are slightly but distinctly convergent posteriorly where they are beaded or denticalate, anteriorly they are cat into three acate teeth the last of which is minate, the first being the outer orbital angle.

The front, measured at its narrowest part between the eyestalks, is barely a sixteenth the greatest breadth of the carapace : its free edge is distinctly bilobed. Orbits sinuous, a little oblique; their upper border
elegantly denticulate, the lower border unevenly crenulate. Eyestalks slender and curved: the eye does not reach to the end of the orbital trench.

When their flagella are folded the external maxillipeds completely occlude the buccal cavern : the suture between the ischium and merus is hardly at all oblique.

In the adult male the chelipeds are from $2 \frac{1}{2}$ to 3 times the leugth of the carapace and longer than any of the legs except the 3rd (penaltimate) pair: except the hand, their joints are not more massive than those of the 2 nd and 3rd pair of legs. The arm is trigonal, its inner border being prominent and rising into n crest, on the most convex part of which is a short horng plate, called by de Man the " musical ridge": this border of the arm, as also the inner border and angle of the wrist and the extreme proximal end of the upper border of the palm, is serrated. The palm is nearly as long as the arm and is perfectly smoath and unsculptured, it has Ω tuft of hair at its extreme distal end, continuous with a thick fringe of hair along the upper border of the dactylus: the dactylus is about two-thirds the grealest length of the palm and has a molariform tooth nt its basal end, but there is no such tooth on the immobile finger: the fingers meet only at the distal inbent end.

In the female and young male the chelipeds are short and slender, a good deal fringed with hair, but unsculptured, and the fingers are longer than the palm.

In both sexes the legs are alike, the 2nd and 3rd pairs being remarkably long and strong and the lst and 4th (last) pairs being short and comparatively slender. The 3rd pair, which are the longest of all, are from $2 \frac{1}{2}$ to nearly 3 times the length of the carapace, the 4th pair are only about $1 \frac{1}{2}$ times the length of the carapace. In all but the last pair the meropodites carpopodites and propodites are scabrons, the anterior border of all these joints and the distal end of the posterior border of the meropodites being serrated: in the third pair only the posterior border of the propodite is very strongly serinted.

In the Indian Museum are 7 specimens from Karachi and one from Orissa. In a large male specimen the carnpace is 35 millim. long and 62 millim. broad.

The great changes that occur in the chelipeds during the growth of the male indicate that caution is necessary in basing specific distinctions on the form of these organs in this genus.

71. Macrophthalnus convexus, Stimpson.

Macrophthalmus convexus, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 97 : Miers, Ann. Mag. Nat. Hist. (5) V. 1880, p. 307 : Haswell, Cat. Austral. Crubt. p. 80 :
de Man, Archiv f. Naturges. LIII. 1887, i. p. 354, pl. xv. Gg. 4 : Ortmanin, Zool. Jahrb., Syst., VII. 1893-94, p. 745 and X. 1897-98, pp. 342, 344.

Macrophthalmus inermis, A. Milne Edwnrds, Ann. Soc. Ent. France, (4) VII. 1867, p. 286, and Nouv. Archiv. du Mas. IX. 1873, p. 277, pl. xii. fig. 5 (apud de Man).

Carapace smooth, becoming finely granular near the lateral margins, its length in the male is half, in the female decidedly more than half, its greatest breadth : on either branchinl region, behind the branchial groove, are two granular eminences, one behind the other: 3 teeth arranged ns in M. pectinipes at the anterior end of the posteriorlyconvergent lateral borders, the first (outer orbital angle) being the most prominent and much the largest, the third minute.

Front, in its narrowest part between, the ejestalks, about one. eleventh the greatest breadih of the carapace, its free edge obscurely bilobed. Orbits considerably oblique, the upper border microscopically beaded, the lower boriler finely and elegantly serrate. The esestalkg are slender and curved, and the eyes reach to the end of the orbital trench.

The suture between the ischium and merus of the external maxillipeds is decidedly oblique, and there is a distinct gap between these appendages even when their flagellum is folded.

The chelipeds have the sane general proportions as in M. pectinipes : all the borders of the arm are granular or denticulate, but there is no "masical ridge" on the inner border: a bunch of spinules at the inner angle of the wrist: both borders of the palm, but particularly the lower border, are fincly granular, and a fine raised granular line rans along the outer surface of the palm parallel with the lower border: the inner surface of the palm, like that of the fingers, is hairy, but quite smooth. and unarmed beneath the hair: there is a small molariform tooth at the base of the dactylus, and a larger one having a forward slant on the immobile finger.

The legs hare the same general proportions as in M. pectinipes, but. they are quite smooth and unarmed, except for a small subterminal spine on the anterior border of the meropodites of the 2nd and 3rd pair.

In the Indian Museum are 5 specimens from the Audamans. The carapace of the largest specimen is 10.5 millim. long and 21.5 millim. broad.

72. Macrophthalmus sulcalus, Edn:

Macrophthalmus sulcatus, Bfilne Edwurds, Ann. Sci. Nat. Zool. (3) XVIII. 1852; p. 156: Ortmann, Zool. Jalirb. Syst. X. 1897-98, pp. 344, 345 (nec synon.).

Carapace free of grannles in the female, studded with minute granules in the male, its length in the male only about three-eighthe, in the female nearly half, its greatest breadth. On the branchial region,
behind the branchial groove, are, in both sexes, three granular eminences, one behind the other, the last being on the posterior border. The lateral borders are convergent: their true first tooth, which in other species is at once the antero-lateral angle of the carapace and the outer angle of the orbit, appears in this species to belong to the upper border of the orbit, so that the antero-lateral angle of the carapace is formed by the much larger second tooth which also is the apparent outer orbital angle.

The least breadth of the front, between the eyestalks, is about an eighth the greatest breadth of the carapace: its free edge is very obscurely bilobed.

Orbits sinuous and oblique: the upper border microscopically beaded and farnished near its outer end with a sharp recurved tooth, which is really the outer orbital angle, though the apparent angle is the much larger tooth of the lateral border of the carapace: the lower orbital border is finely denticulated in its inner two-thirds, but is broken and indistinct beyond this. Eyestalks long, slender, curved: the eyes reach not only beyond the true limits of the orbit, but also beyond the antero-lateral angle of the carapace.

The external maxillipeds do not quite meet across the buccal cavern : the suture between the ischium and merus is decidedly obliqne.

The legs and chelipeds have the same general proportions as in M. pectinipes, but the legs are unarmed.

In the male chelipeds the anterior border of the arm is hairy and strongly denticulated, but there is no " masical ridge: " the inner angle of the wrist and the proximal part of the upper border of the palm are also denticulated. On the outer surface of the palm there is a crest running close to, and parallel with, the lower border; and on the inner surface of the palm, near the middle line, is a longitudinal row of denticles the first one of which is considerably enlarged : the surface above this ridge, as also the inner surface of the fingers, is densely hairy. The dactylus is not nearly two-thirds the length of the palm : the immobile finger, but not the dactylus, has a strong molariform tooth at its basal end.

In the female the chelipeds are short and weak as usual, and the hand is quite smooth and has the borders - but specially the lower border - thin and sharp.

In the Indian Museum are a male and a female from the Andamans : the carapace of the male is 9 millim. long and 24 millim. broad.
73. Macrophthalmus depressus, Rüpp.

Macrophthalmus depressus, Rüppell, 24 Krabben Roth. Meer. p. 19, pl. iv. fg. 6, pl. vi. Gig. 18 : Milne Edwards, Hist. Nat. Crusto 1I. 66, and Ann. Sci. Nat. Zool. (3)
XVIII. 1852, p. 159 : Heller, SB. Ak. Wien, XLIII. 1861, i. p. 862 : de Mnn, Notes Leyden Mas. III. 1881, p. 255, and Archiv f. Naturges. LIII. 1887, i. pl. xv. fig. 3, and Joarn. Linn. Soo., Zool., XXII. 1887-88, p. 124, and Zool. Jahrb., Syst. VIII. 1894-95, p. 578 : J. R. Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 389 : Ortmann, Zool. Jahrb., Syst. VII. 1893-94, p. 745 ($?$) and X. 1897-98, pp. 341, 312.

Macrophthalmus affinis, Guérin, Mag. de Zool. II. 1838, pl. xxiv. fig. 2: Milne Edwards, Ann. 8ci. Nat. (3) XVIII. 1852, p. 158: Haswell, Cat. Austral. Crust. p. 88 (apud Ortmann).

Carapace stadded with minute granules not always plainly visible to the naked eye, its length in the male about two-thirds of its breadih. The lateral borders are parallel and the antero-lateral angle is rather a square-cut lobe than a tooth. On the epibranchial regions, behind the branchial groove, are two nearly parallel obliquely-longitudinal finelygranular lines, the inner of which is faint.

Front, at its narrowest part, about an eighth the breadth of the carapace, longitudinally grooved, bat its free edge is strnight and not bilobed.

Orbits little sinuous and little oblique, their upper border microscopically, their lower border finely and evenly denticnlate. Eyestalks slender, hardly carved, the eyes reach almost to the end of the orbital trenches.

When the flagella are folded there is not mach space between the external maxillipeds: the sature between the ischinm and merus of these appendages is hardly oblique.

In the male the chelipeds and legs have mach the same general proportions as in M. pectinipes, but they are unarmed, except for a small sabterminal denticle on the anterior border of the meropodites of the first three pairs of legs : on the other hand the inner surface of the joints of the chelipeds, and the apper surface of the leg-joints (especially of the meropodites) are densely hairy. The dactylus is more than twothirds the length of the palm, which is smooth and nosculptured : there is a molariform tooth near the basal end of the dactylns, and a similar, but less distinct and more oblique, tooth on the immobile finger.

In the Indian Maseam are 2 males from Mergai, besides several specimens from Aden. The carapace of the largest specimen is 14 millim. long and 22 millim. broad.

74. Macrophthalmus erato, de Man.

Macrophthalmus erato, de Man, Journ. Linn. Soo., Zool., XXII. 1887-88, p. 125, pl. viii. figs. 12-14, and Zool. Jahrb. Syst., VIII. 1894.95, p. 679.

Carapace quadrilateral, not granular to the naked eye, its length about two-thirds of its breadth, the cervical groove plain, but the
branchial groove faint: the second tooth of the lateral border is a little more prominent than the first. Front about two-ninths the breadth of the carapace, square cat, longitudinally grooved, but not bilobed. Orbits slightly sinuons, hardly oblique : eyestalks little curved, stoutish, not quite reaching end of orbit. In the male the lower border of the orbit is peculiar : it is finely denticulate at its internal extremity and has a small lobule at its outer angle, and in between these it has the form of a prominent deflexed somewhat triangular lobe. In the female the lower border of the orbit is finely crenulate throughout. The external maxillipeds do not quite meet ncross the buccal carern, and the suture between their ischium and merus is a little oblique.

All three borders of the arm are serrated, and the iuner angle of the wrist and apper border of the arm are very finely denticulated. There is a strong "musical crest" obliquely parallel with the inner border of the arm and in the middle third of that border. Palm longer than the arm, its inner surface is hairy and carries a spine near the carpal end about midway between the upper and lower borders. The fingers are cousiderably less than two-thirds the length of the palm: there is a molariform tooth at the base of the dactylus and a largerslanting one on the immobile finger.

The upper surface of the legs, especially in the case of the third pair, is hairy.

In the Indian Museum are 4 specimens from Mergai and Akyab : the carapace of the largest specimen is 10 millim. long and 14 millim . broad.

75. Macrophthalmus tomentosus, Eyd. and Soul.

Macrophthalmus tomentosus, Eydoux and Souleset, Zool. Voy. Bonite, I. p. 243, pl. iii. fig. 8, (1841) : Milne Edmards, Ann. Sci. Nat., Zool., (3) XVIII. 1852, p. 159 : A. Milne Edward, Nouv. Archiv, du Mus. IX. 1873, p. 279 : de Man, Journ. Linn. Soc., Zool., XXII. 1887-88, p. 122.

Carapace studded with very fine granules : its length is about twothirds its greatest breadth, which is behind the middle of the lateral border, the lateral borders being decidedly divergent posteriorly. On either epibranchial region, behind the branchial groove, are two finely beaded obliquely-longitudinal lines. The first two teeth of the lateral borders are square-cat.

Front, in its narrowest part, about one-eleventh the greatest breadth of the carapace; though longitudinally grooved it is not bilobed.

Orbits hardly sinuous, not oblique; their upper border microscopically beaded, their lower border finely crenulate. The eyestalks are hardly curved, and the eges do not reach to the end of the orbits.

The chelipeds and legs have the same general proportions as in M. pectinipes, but are shorter. Chelipeds nnarmed and unsculptured, except for some spinules along the inner angle of the wrist and some denticles along the proximal part of the upper border of the palm : in the distal half of the inner border of the arm is a short upstanding horny "musical crest": the borders of the arm and the inner border of the fingers are hairy. The dactylus has a small molariform tooth near the base, and the immobile finger has a much larger one.

The legs are unarmed, except for a small subterminal denticle on. the anterior border of the meropodites of the first 3 pairs: the upper surfaces of their joints are more or less hairy.

In the Indian Masenm is a single specimen from Mergni: its carapace is 23 millim. long and 34 millim. broad.

Family MICTYRID風, Dana.

Mictrris, Latreille.
Mictyris, Latreille, Gen. Crust. et Ins. p. 40 (1808), and in Cavier Bdgne Animal; III. p. 21 : Desmarest, Consid. Gen. Crust. p. 115, and Dict. Sci. Nat. XXVIII. 1828, p. 235 : De Haan, Faun. Japon. Crust. p. 24 : Milne Edwards, Hist. Nat. Crust. II. 86, and in Cuvier Règne An., Crust. p. 67, and Ann. Sci. Nat., Zool., (8) XVIII. 1852, p. 154: Miers, Challenger Brachyura, p. 878.

Carapace elongate globose, oval but truncated posteriorly by the short and perfectly straight posterior border, the cervical and cardiobranchial grooves well developed and making the regions very distinct and convex, the posterior border fringed with bristles, as is also the npposed very prominent edge of the first abdominal tergum.

The afferent branchial orifice is a singular valvular recess, formed dorsally by a semicircular notch in the margin of the carapace, and ventrally by a curious cup-shaped dilatation of the base of the epipodite of the external maxillipeds.

Front a narrow deflexed lobe as in Ocypoda. Orbits represented by n small post-ocular spine, the ejes, which are borne on shortish stalks, being quite unconcealed.

Antennules as in Ocypoda, the basal joint being large and exposed, while the flagellum is rudimentary and concealed beneath the front. Antennæ small but well formed, standing in the asnal position.

Epistome short lozenge-shaped. Buccal cavity enormous, somewhat oval in outline. External maxillipeds very large and foliaceous, with a hemispherical bulge causing them to face as much laterally as ventrally : their greater part is formed by the ischium, the inner margin of which is hairy, especially at base: the merus is very much smaller J. II. 50
than the inchlum and carries the coarse hairy flagellam at its anteroextemal angle : the exognath is small, slender, and very inconspicnons.

Chelipeds moderately long and rather slender, stouter and a little shorter than the legs; their freest motion is in a vertical plane: the wrint is a rather elongate trigonal obeonioal joint.

Legs somewhat compressed : the first pair aro the longest and the others decrease slightly in length in posterior succession.

The aldomen in both sexes is of a broad trancate-oval shape, the segments from the 2 nd to the 6 th gradually increasing in length but the 7 th being narrow : in both sexes the abdomen is fringed with hairs.

Distribution: Indo-Pacific from China and Australia to the Andamans.

In habits the species of Mictyris resemble the Ocypodes, Gelasimi and Dotillæ.

76. Mictyris longicarpus, Latreille.

Mictyris longicarpus, Latreille, Gen. Crust. et Ins. p. 41 (1806): Desmarest, Consid. Gen. Crust. p. 115, pl. xi. fig. 2, and Dict. Sci. Nat. XXVIIL. p. 236: Guérin, Icon. Regne An. Crust. pl. iv. fig. 4: Nilne Edwards, Hist. Nat. Crast. II. 37, and in Cuvier Ràgne An. Crust. pl. xviii. fig. 2, and Ann. Sci. Nat., Zool., (3) XVIII. 1852, p. 151 : Dana, U. S. Expl. Exp. Crust. pt. I. p. 389 : Stimpeon, Proc. Ac. Nat. Sci. Philad. 1858, p. 99 : Hess. Archiv f. Nat. XXXI. 1865, p. 148 : Heller, Novarn Crust. ṇ. 10 : A. Milne Edwards, Nonv. Archiv. du Mus. 1X. 1873, p. 876 : Tozzetti, Magenta Crast. p. 185, pl. xi. figs. 5, Ba-c : Nanck, Zeita. Wise. Zool. XXXIV. 1880, p. 22, pl. i. figa 5 • (gastric teeth) : Haswell, Cat. Austral. Crust. p. 116 : Miers, Zool. H. M. S. Alert, pp. 184, 248, and Challenger Brachyura, p. 278 : de Man, Arohiv f. Naturges. LIII. 1887, i. p. 358, and Notes Leyden Mus. XII. 1890, p. 83 : Hendermon, Trnns. Linn. Soc., Zool., (2) V. 1893, p. 390 : Aurivilling, Zar Biol. Amphib. Dekap. p. 38, pl. iii. fige. 10.11 (Mitg. K. Ges. Wiss. Upsala, 1893) : Ortmann, Zool. Jalirb. S_{5} st. VII. 1893.94, p. 748, and in Semon's Forschangr. Crust. p. 58 (Jena. Denks. VIII) : Stead, Zoologist, (4) II. 1898, p.' 807 : Nobili, Ann. Mus. Genov. (2) XX. 1890, p. 972.

Carapace smooth, the regions moderately convex and dividing the dorsal surface into four lobes: edge of front broadly triangular : linea anomurica very distinct.

Chelipeds a little over $1 \frac{1}{2}$ times the length of the carapace: a strong spine at the inner angle of the ischium (sometimes absent in the female) : usually some spinules along the distal part of the lower border of the arm : wrist with the upper border of the onter surface marginate, and with Ω tooth near the middle of the distal border of the inner surface : palm much shorter than the wrist and not mach more than half the length of the fingers; the upper and lower borders of its outer surface are marginate, and the middle of its outer surface is traversed by two divergent ridges which are continued along the
fingers : fingans slender and tepering, in the male there is ap onlarged tooth near the base of the dactylus.

The lagg, like the obelipede, anp nough ruder the lens: the edges of their propodites and dactyli are finely pluund: nome of dheir joints are dilated: the first pair, which are slightly the longest, are about $1 \frac{3}{4}$ times the length of the carapace.

In the Indian Moseana are 5 specimens from the Andemans and 2 frem the Mioobors.

Family HTMENOSOMIDA, Ortm.

Key to the Indian Genare or fybeganera.

C. Frgat comapioneualy tridentate : the ertermel mazillipedr do anot anite meet anoers beoved ensem and their exognath is not hidden in its proximal pertion : ahelippeds much more masaive than the lags
II. Front broadly triangular, or trancated : the external maxillipeds completely close the buccal cavern and their exognath is completely hidden :-

1. The interantennular septam is a prominent plate: chelipeds in the male moch more massive bhan the

2. The interantennular septum is a mere ridge; chelipeds in both seazes slonder, not stouter than the legs Tbigonophax.

ELAMBNA, EdNV.

Flameng, Milne, Edwarde, Biat. Nat. Cirnat. 1I. 88, and Aon. Sci. Nat., Zool.,
 Nouv. Archiv. du Mus. IX. 1878, p. 321.

Caxapace flat dorsally, thin and almost tamallar, triangular or subcircular, its edges are uanally turned ap to form a thin cireumseribing ridge and are without any teath. Front broadly triangular, or sometimes trancated. There are no orbits and the eyes, though they may be hiddea beneath the frout, are exposed and non-retractile: a small post-ocular tooth may be present or not. The antennules fodd beneath the front and are not visible from above when folded : the imberantennular septum is a prominent plate. Antennal peduncle slender, the flagellum of no great length.

Epistome woll defineid and pemarkebly long fore and aft. Buccal covesen quave; the eaternal manilipeds, which complotely otoce it, have the mange ahaptia learge as the ischium, the palp.articolating not far from the inalaronatamal angle of the merus, and the enogneath slender and poncealed.

Chelipeds in the male subequal, massive, especially as to the palm. Legs long and slender.

The abdomen of the male does not quite fill all the space between the last pair of ambulatory legs.

77. Elamena sindensis, n. sp.

Carapace broadly piriform, smooth, flat, with no distinction of regions: its odge, which is slightly turned up, is entire and anarmed. Front a prominent broad tringular lamina, somewhat rounded at tip. No post-ocular tooth. Interantennular septum very prominent. Eyes not quite concealed beneath the front.

Male chelipeds about $1 \frac{3}{3}$ times as long as the carapace, palm massive and somewhat swollen, fingers stont and pointed and meeting throughout their length. Female chelipeds little longer than carapace, slender, with a slender palm and longish fingers spooned at tip.

Legs slender, the 1st pair not three times as long as the carapace: in all, there is a distinct tooth at the end of the anterior border of both the merus and carpus, and the dactylus is long compressed and faloate with two or three teeth at the end of its posterior border.

In the Indian Museam are 7 specimens from Karachi : the carapace of a male is 5 millim. long and 6 in greatest breadth.
78. Elamena truncata (Stimpson P).
? Trigonoplas truncata, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 109.
Elamena truncata, A. Milne Edwards, Nouv. Archiv. dn Mus. IX. 1878, p. 323 : J. R. Henderson, Trans. Linn. Soc., Zool., (2) V. 1898, p. 895.

Carapace orbiculate-ovate, smooth, flat, with no distinction of regions, its edge, which is slightly tarned up and entire and unarmed, shows the faintest traces of angulation in 2 or 3 places. No post-ocular tooth; eyes quite concealed beneath the front. The front, though it projects slightly besond the carapace is broadly truncated, having its free margin cat quite strnight. Interantennular septam very prominent. The female chelipeds and the legs are as in the preceding species, the auterior border of the merns and carpus of all the legs ending in a strong tooth.

In the Indian Maseum is a female from the Nicobars.

> Tbigonoplax, Edw.

Trigonoplaw, Milue Fdwarde, Ann. Sci. Nat. Zool. (8) XX. 1858, p. 224
This is best regarded as a subgenus of Elamena, from which it differs only in the following animportant particulars:-(1) the edge of the oarapace is not turned np , (2) the interantennular septum is a mere ridge, (3) the ohelipede in the malo, as in the female, are very slender.

79. Elamena ('Trigonoplax) ungriformis, De Haan.

Elamene unguiformis, De Haan, Fann. Japon. Orast. p. 75, pl.. xxis. fig. 1 and pl. H : J. R. Henderson, Trans. Linn. Soc. Zool., (2) V. 1893, p. 894.

Trigonoplax unguiformis, Milne Edwards, Aun. Sci. Nat. Zool. (3) XX. 1853, p. 224 : Ortmann, Zool. Jahrb., Syst., VII, 1893-94, p. 31.

Carapace smooth, flat, lamellar, broadly pentagonal with the postero-lateral sides about.a third as long as any of the others, the regions not defined, the sides entire, unarmed. Front a broad, horizontal, triangular lamina. No post-ocular tooth : eyes not concealed by the front, though the eyestalks are. Interantennalar septum a mere ridge.

Epistome as long as broad. Chelipeds and legs amooth and slender.

Chelipeds not stouter than the legs, about $1 \frac{1}{2}$ times as long as the carapace : fingers slender, as long as the slender sub-cylindrical palm, their tips spooned.

The anterior border of the meropodite of all the legs ends in an inconspiouous denticle, the dactylus of all is long, subfalciform, and strongly compressed, and has two or three denticles at the tip of the posterior border. The 2nd and 3rd pair of legs, which are the longest, are more than three times the length of the carapace.

In the Indian Museam are 5 specimens from the Andamans. The carapace of one is 12 millim. long and 14 in greatest breadth.

Hymenicus, Dana.

Hymenicus, Dana, Amer. Journ. Sci. (2) XII. 1851, p. 290, and U. S. Expl. Exp. Crust. pt. I. p. 387 : Milne Edwards, Ann. 8ci. Nat., Zool., (3) XX. 1858, p. 224.

Differs from Elamena only in the following particulars:-
(1) the front is tridentate and the ridge that defines the edge of the carapace dorsally is continued across its base between the eyes: (2) the interantennular septum, as in Trigonoplax, is a mere ridge: (3) on either lateral border of the carapace teeth are sometimes present: (4) the external maxillipeds do not quite meet across the buccal cavern and their exognath is not hidden in its proximal portion:

Rhynchoplax of Stimpson (Proc. Ac. Nat. Sci. Philad. 1858, p. 109) is probably synonymous.

Key to the Indian species of Hymenicus.
I. Median spine of the rostrum of moderate longth : 3 teeth on either lateral border of the carapace ...
11. Median spine of the rostrum very long : no teeth on the lateral bordery of the carapace H. inachoides.

80. Hyшешісия Woed-Masoni, a. ©p.

Body and chelipeds tomentose. Cacspace darselly flat ar aumen, longer than browd, circalar without the restrum, the regious demaronted by fine grooves.

The front, which is delimited from the rest of the carapace by a fre rwited liwe ranning achoss its base between the oyes, is cont into 3 prominent toeth, the middle one of which is somewhat the largest. The antenatiles fold beneath the front.

A sumal pont-beulat denticte: a large tooth on the iatatal border of the carapuce abote the base of the lst pair of legs, mother, harlly smaller, midway between this and the front, a third, much smalier, mindway botweon this amd the post-ocular dentiole.

Chelipeds in the adult male more than twice the length of the carapere, wery much stoater thean the lege, the pabra beimg epecially maseive. Withen demaded, the wpper border of the arm is dentate and there is a stout spine near the far end of the outer bordor of thie joint : there awe sevecul sharp taberctes on the upper surface of the wrist, the outer surface of the palm is reticutate in ploces, and the fingers which awe stout and ans long as the palm, bave elegantly interlecking teeth.

In the femade the chelipeds ane considerably shorter and, though stouter than the legs and formed on the male pattern, are not reardy so steut as in the male.

The legs bave long, curved dactyli, which are armed with amall recurved teeth at the distal end of the posterior border: the 2nd pair, which are a little the longent, are erar $2 \frac{1}{2}$ times the length of the carapace

Carapase of azale (including rostrusi) 7.5 millim. long and 6 braad. Specimens were collected by the late Professor Woed-Mason at Port Blair in the Andamans, and at Port Canning near Calcutta.

81. \#ymenicus inachoides, n. sp.

Carapace somewhat tonuentose, flat, elongate-triangular, ending in a rostrum of three long teeth of which the middle one is about a third the leugth of the rest of the carapace, the other two being more than half the length of the middle one. The regions are all well defined by grooves. No spines on the lateral borders of the carapace. Post-ocnlar denticle hardly distinguishable. The antemnules fold beneath the front.

Chelipeds of the edalt malessomerkhat tomentrese, mot $1 \frac{1}{8}$ times the length of the carapace : arm slender, with a tooth near the distal end of the auter border; palm short, high, produced and somewhat swollen below; the fingens a little longer then the :psilm, stont, and finely toothond.

Legs long and slender, with long dactyli farnished with hook-like teeth at the end of the posterior border : the Ind pair of legs are nearly three times the length of the carapace.

A aingle male from Port Canniog near Calcutta: its carapace is 8.5 millim. long and 6 millim. in ite greatost breadth.

Family GRAPSIDAN Dana.
 Key to the Indian Genera.

I. The antennales fold beneath the front in the ordinary way:-

1. No oblique hairy ridge on the exposed surface of the external maxillipeds:-
i. A very wide gap between the external maxillipeds, the exopodites of whioh appendages are narrow, and the palp of which appendages articulates at or near the antero-external angle of the meras: the abdomen of the male fills all the space between the last pair of ambulatory logs (Grapsines) :-
A. Front less than half the greatest breadth of the carapece : morus of the external maxillipeds longer than broad:-
a. Fingers with broad spooned tips: hagellum of ezopodite of external maxillipeds well developed. Grapsus.
b. Fingers aonte, not spooned: flagellum of exopodite of exter. nal maxillipeds absent........... . Geograpsus.
B. Front more than half the greatest breadth of the earapace : merus of the external maxillipeds broader than long:-
a. Antenns completely excladed from the orbit.
b. Antennse in the orfital hiakas... Pachyerapads.
ii. A moderate gap between the external maxillipeds, the exopodites of which appendages are bread, nnd the paip of which appendages articulater near the middle of the anterior border of the broad meras: the abdomen of the male doee not quite fill nil the epace between the last pair of legs (Varmsines) :r-
A. Rrognath of the external maxillipels not es broed en the iseobiogmaths terminal joimete of lege thin hamed and

B. Exognath of the external maxillipeds
as broad as or broader than the ischi-
ognath: dactyli of the legs com-
prossed but not broadened :-
a. Carapace flat and depressed....
b. Prychoenatius.
Carapace deepish, strongly con-
vex in both directions.......... Pyindognatiocs.
2. An oblique hairy ridge on tho exposed surface of the external maxillipeds (Sesarminæ) :
i. Carapace little, sometimes not at all, broader than long, the pterygostomian regions and sidewalls with a sieve-like reticulation : lower border of orbit not abnormally prominent:-
A. Antenne lodged in the orbital hiatas :-
a. Carapace vearly square: front abraptly and vertically deflexed.
b. Antero-lateral borders of carapace arched : front obliquely deflexed
B. The tooth at the inner angle of the lower border of the orbit meets the front, so as to exclade the antennm from the orbit :-
a. Carapace dorsally smooth and nude

Metasebarma.
b. Carapace doreally verrucose and densely tomentose...
ii. Carapace much broader than long, the ptorygostomian regions, etc., not reticulated: lower border of orbit prominent beyond the front. Front gradually deolivons. General appearance much like Macrophthalmus. \qquad Mrtaplax.
II. The antennules fold nearly longitudinally in deep notches in the front visible in a dorsal view (Plagusiinee):

1. Merus of the external maxillipeds of good size and as broad as the ischinm.

Plagusia.
2. Merus of the external maxillipeds small and mach narrower than the ischiam.

LioLopius.

Sub-family Grapsine, Dana (pt.). Grapsos, Lamk., Kingsley.

Grapsus (part) Lamnrk, Syst. Anim. Sans Vertebr. : Latreille, Hist. Nat. Crnst. et Ins. VI. p. 56, and Gen. Crust. p. 82.

Grapsus, Leach, Trans. Linn. Soc. XI. 1815, pp. 309, 328.
Grapsus (part) Desmarest, Consid. Gen. Crust., p. 129, and Dict. Sci. Nat. XXVIII. p. 247 : Milne Edwards, Hist. Nat. Crust. II. 83, and Ann. Sci. Nat., Zool., (8) XX. 1853, p. 166 : Dana, U. S. Expl. Exp. Crunt. pt. I. p. 836.

[^56]Carapace little broader than long, much depressed, the regions fairly well defined, the branchial groove particularly clear, the branchial regions with regular: obliquely transverse ridges, the gastric region with a transverse squamiform sculptare. The lateral borders are arched and are armed with a tooth, placed immediately behind the acute outer orbital angle.

Front about half the breadth of the anterior border of the carapace, strongly deflexed : along the line of flexion are 4 tubercles, the outer of which on either side correspond with the supra orbital angles.

Orbits of moderate size, deep, distinctly divided into two fosse: their lower border is deeply notched near the outer angle: the wide inner orbital hiatus is filled partly by the antennal peduncle and partly by a strong isolated tooth that belongs to the inner of the two fosser into which the orbit is divided.

The antennules fold nearly transversely in rather narrow fosse: the interantennulary septum is very broad. The antennal fiagellum is short, and lies practically in the orbital cavity : the excretory tubercle of the basal antenna-joint is singularly prominent.

Epistome of good length fore and aft, well defined; its wings run up towards the orbital hiatus. Buccal cavity square with the anteroluteral corners rounded off. The external maxillipeds are widely distant, leaving between them a rhomboidal gap in which the mandibles are exposed : the ischium and merus are both narrow, the merus being slightly shorter than the ischinm, and the palp, which is coarseespecially as to its carpus-articulates at the autero-external angle of the merus.

Chelipeds subequal in both sexes and much shorter than the legs, though, in the male, of a somewhat stouter make : hands and fingers short and stout, the tips of the fingers broad and hollowed en cuillère.

Legs broad and compressed, especially as to the merus : the dorsal surface of some of the joints has a sort of reticulate or squamiform sculpture, and the dactyli are thorny.

The abdomen in both sexes consists of 7 segments, and in the male its base is as broad as the sternum between the last pair of legs.
.Distribution : rocks and reefs of all the tropical and subtropical seas.

The Grapsi of Indian seas are found in considerable number wherever there are rocks. They live out of water and are very cunning and active : if they cannot succeed in dodging their pursuer they J. II. 51
fling themselves into the sea and in that way escape capture. Their colour in life is a dark bottle-green.

82. Grapsus grapsus (Linn.).

Seba, Thesaurus, III, p. 43, pl. sviii. figs. 5, 6.
Cancer grapsus, Linnæas, Syst. Nat. (ed. xii.) p. 1048 : Fabricius, Ent. Syst. II. p. 488 and Sappl. p. 342.

Grapsus maculatus (Catesby, 1748), Milne Edwards, Ann. Sci. Nat. Zool. (3) XX. 1853, p. 167, pl. vi. fig. 1: Hoffmann, in Pollen and Vnn Dam, Faun. Madagasc., Crnat., p. 21 : Brocchi, Ann. Sci. Nat., Zool., (6) II. 1875, Art. 2, p. 78 (mnle appendages) : Kingsley, Proc. Ac. Nat. Sci. Philad. 1879, p. 401, and 1880, p. 192 : de Man, Notes Leyden Mus. V. 1883, p. 159 : Miers, Zool. H. M. S. Alert, pp. 518. 544, and Challenger Brachyurn, p. 255 : Cano, Boll. Soc. Nat. Napol. III. 1889, p. 236: R. 1. Pocock, Journ. Linn. Soc., Zool., XX. 1800, p. 512 : de Man, Notes Leyden Mus. XIII. 1891, p. 49 : Koelbel, Ann. Nat. Hofmus. Wien, VII. 1892, p. 114 : Henderson, Trans. Linn. Soo., Zool., (2) V. 1893, p. 391 : A. Milne Edwarde and Boavier, Hirondelle Crast. (Monaco, 1894) p. 47 : de Man, Zool. Jahrb. Syst. IX. 1895-97, p. 79: Whitelegge, Mem. Austral. Mus. III. 1897, p. 139 : Nobili, Boll. Mus. Torino, XII. 1897, p. 3. Grapsus maculatus var. pharaonis, A. Milne Edwards, Nouv. Archiv. du Mus. IX. 1873, p. 285.

Grapsus pictus, Latreille, Hist. Nat. Orust. et Ins. VI. p. 69, pl. xlvii. fig. 2, and Genera Crust. p. 33 : Lamarck, Hist. Nat. Anim. Sans Vert. V. p. 248 : Dameril, Dict. Sci. Nat. XIX. p. 322 : Desmarest, Oonsid. Gen. Crust. p. 130, pl, xvi. fig. 1 : Milne Edwards, in Oqvier Règne An. pl. xxii. fig. 1, and Hist. Nat. Crust. II. 86 : Milne Eidwards and Lacas, Voy. Amer. Merid., Crust. p. 28 : Gay, Hist. Fisica Chili, pt. III. Zool. p. 166 : Dana, U. S. Expl. Exp. Crast. pt. I. p. 336 : PDesbonne and Schramm, Crust. Gardal. p. 49 : Martens, Archiv f. Nat. XXXVIII. 1872, p. 106 : Miers, Cat. Crust. New Zenl. p. 36, and P. Z. S. 1877, p. 78, and Phil. Trans. 1879, p. 489, and Ann. Mag. Nat. Hist. (5) V. 1880, p. 810 : Smith, Trans. Connect. Acad. IV. 1880, p. 258 : Tenison Woods, Proc. Linn. Soc. N. 8. W. V. 1880-81, p. 117 : Ozorio, Journ. Sc. Nnt. Lisb. XI. 1885-87, p. 227. Grapsus pictus var. ocellatus, Studer, Abh. Ak. Berlin, 1882, Gazelle Crust. p. 14: Grapsus pictus var. Webbi, Hilgendorf, SB. Nat. Freunde Ges. 1882, p. 24.

Grapsus ornatus, Milne Edwards, Ann. Sci. Nat. Zool. (3) XX. 1858, p. 168.
Grapsus pharaonis, Milne Edwards, Ann. Sci. Nat. Zool. (8) XX. 1853, p. 168 : Heller, SB. Ak. Wien. XLIII. 1861, i. p. 362 : Hoffmann in Pollen and Van Dam, Faun. Mndagasc. Crnst. p. 20, pl. v. figs. 32-35: Richters, in Mobias, Meeresf. Manrit. Crust. p. 156.

Grapsus Webbi, Milne Edwards, Ann. Sci. Nat. (3) XX. 1853, p. 167 : Stimpeon, Proc. Ac. Nat. Sci. Philad. 1858, p. 102.

Grapsus altifrone, Stimpson, Ann. Lsc. Nat. Hist. N. Y. VII. 1862, p. 230.
Grapsus grapsu8, Ives, Proc. Ac. Nat. Sci. Philad. 1891, p. 190 : Ortmann, Zool. Jahrb. Syst. VII. 1893-94, p. 708 : Faxon, Mem. Mns. Comp. Zool., XVIII. 1895, p. 30 : Rathbnn, Proc. U. S. Nat. Mus. XXI. 1898, p. 604.

Goniopsis picta, De Hann, Faun. Japon. Crnst. p. 33, and Kranse Eudafr. Crust. p. 46.

Carapace somewhat discoidnl in shape, owing to the curvature of
the sides : its regions well defined : the transverse and oblique ridges are salient, and the surface between the latter is coarsely reticulate.

Front deep and almost vertically deflexed, overhanging the epistome and mach concealing the antennules, its free edge orenate.

Length of the epistome one-third or more of its greatest breadth. The tooth at the inner angle of the orbit is blant.

Chelipeds in the male hardly longer than the carapace, shorter in the female: inner border of ischiam and arm strongly spinate, and there are one or two less acute spines at the far end of the outer border of the arm : wrist with fine scattered tabercles on its apper surface, and with its inner angle produced to form a talou-shaped spine : palm nearly as high as long, its outer surface sculptured, its upper border culminating in a tooth: the fingers have very broad rounded tips, and the length of the dactylus in the male is nearly twice the length of the apper border of the palm.

Of the legs the lst pair are very decidedly the shortest and the 3rd pair the longest, the latter being aboat twice the length of the carapace: the 4th pair are longer than the first by a dactylus, and shorter than the 2 nd by about two-thirds of a dactylus. Only in the last pair of legs does the brendth of the meras approach half the length of the same joint: the far end of the upper border of the merus is spine-like and there are usually 2 or 3 spines at the far end of the lower border.

In the Indian Museum are 18 specimens from the Laccadives, the Andamans, the Coromandel const, and Ceylon. The carapace of a large specimen is 64 millim. long and 68 millim, broad.

83. Grapsus strigosus (Herbst).

Cancer strigosme, Herbst, Krabben, 1II. i. p. 55, pl. xlvii. fig. 7. Grapous strigosus, Bosc, Hist. Nat. Crust. I. p. 203 : Latreille, Hist. Nat. Crust. et Ins., VI. p. 70, stc. : Milne Edwards, Hist. Nat. Crast. II. 87 : Gay, Hist. Fis. Chili, III. Zool. p. 168 : Dana, U. S. Expl. Exp. Crast. pt. I. p. 338 : Milne Edwards, Anu. Sci. Nat., Zool., (3) XX. 1853, p. 169 : Stimpson, Journ. Bost. Soc. Nat. Hist. VI. 1857. p. 466 : Kinahan, Jouru. Roy. Soc. Dabl. I. 1858, p. 340 : Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 102 : Heae, Arohiv f. Nat. XXXI. 1865, i. pp. 147, 171 : Heller, Novara Crust. p. 47 : A. Milne Edwards, Nouv. Archiv. du Mus. IV. 1868, p. 71 and IX. 1873, p. 286 (ubi synon.) : Hilgendorf in v. d. Decken's Reis. Ost-Afr. ILI. i. p. 87 : Hoffmann, in Pollen \& Van Dam, Fann. Madag. Crust. p. 20, pl. v. fig. 31 : Lockington, Proc. Calif. Acad. VII. 1876, p. 151 : Kossmann, Reise roth. Meer., Cront. p. 60 : Miers, P. Z. ©. 1877, p. 186, and Ann. Mag. Nat. Hist. (5) II. 1878, p. 410 : Hilgendorf, MB. Ak. Berl. 1878, p. 808: E. Nanck, Zeits. Wis8., Zool. XXXIV. 1880, p. 82 (gastric teeth): Kingeley, Proc. Ac. Nat. Soi. Philad. XXXII. 1880, p. 194 : Haswell, Cat. Austral. Crast. p. 97 : Miers, Zool. H. M. 8. Alert, pp. 518, 544, and Challenger Brachyara, p. 256: Müller, Verh. Nat. Ges. Basel, VIll, p 475: de Man,

Arohiv f. Nat. LIII. 1887, i. p. 365, and Journ. Linn. Soc. Zool. XXII. 1888, p. 148 : Cano, Boll. Soc. Nap. III. 1889, p. 236 : Walker, Journ. Linn. Soc., Zool., XX. 18861890, p. 110 : Henderson, Trans. Linn. Soc., Zool., (2) V. 1893, p. 390 : de Man, Zool. Jahrb. Syst. IX. 1895-97, p. 80 : Ortmann, Zool. Jahrb., Syst., 1893-94, p. 705 : Wedenissow, Bull. Soc. Ent. Ital. 1894, p. 415.

Grapsus albo-lineatus, Lamarck, Hist. Nat. Anim. Sans Vert. V. p. 249 (fide Edw.).
Gonioposis flavipes, Macleay, Ill. Ann. S. Africa, p. 66, and Krauss, Sudafr. Crust. p. 46 (apud Miers).

Goniopsis strigosa, De Haan, Faun. Jap. Crnst. p. 33 : Macleay, loc. cit. : Kranss, loc. cit.

Grapsus granulosus, pelagicus, aud Peroni, Milne Edwards, Ann. Sci. Nat. (3) XX. 1853, p. 169 (fide A. M. E.).

The chief differences between this species and G. grapsus are the following:-

The branchial grooves of the carapace are not so well cut, the transverse and oblique ridges are low and smooth, and the surface between the oblique ridges is quite smooth.

The front is not so deep and is obliquely deflexed, hardly overhanging the epistome and not concealing the antennules, and its free edge is not so distinctly crenulate. The tooth at the inner angle of the orbit is sabacute. The length of the epistome is not nearly a third its greatest breadth.

In the chelipeds, the tooth at the inner angle of the wrist is nearly straight, not talon-like, the length of the upper border of the palm is nearly two-thirds the length of the dactylus, and the tips of the fingers are not so broad and blunt.

In the legs the meropodite is broader, its greatest breadth being half its length. Moreover the difference in size between the lst and 4th pairs of legs is much less marked.

In the Indian Museum are 76 specimens, from the Baluchistan and Sind coast, the Malabar coast, Ceylon, the Coromandel coast, the Arakan and Tenasserim coast, Mergui, the Andamans, and the Nicobars.

The carapace of the largest specimen (a female) is 59 millim. long and 63 millim. broad.

Geograpsus, Stimpson.

Geograpsus, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 101 : Kingsley, Prgc. Ac. Nat. Sci. Philad. 1890, pp. 188, 195 : Miers, Challenger Brachyura, p. 260.

Orthograpsus, Kingsley, l. c. pp. 188, 194.
Closely resembles Grapsus, but differs in the following important particulars :-

The carapace is more quadrate, the sides being very little arched, it is also broader and less depressed. The lobe at the inner inferior
angle of the orbit is not so completely isolated. The antennal peduncle is not so massive, nor is its "urinary tubercle" conspicuous. The epistome is shorter fore and aft, and is much less well defined.

The chelipeds are altogether of a different type, being vastly more massive than the legs, and in the adult male at least as loug as the longest legs: the fingers are pointed. Though the dactyli of the legs are thorny, they are not so closely covered with thorns, nor are the thorns so coarse, as in Grapsus. Between the coxæ of the 2nd and 3rd pair of legs is a narrow fossa fringed with hair leading to the branchial cavity. .

The two Indian species of the genus are laud-crabs and are found in the jungles of the Andaman and Nicobar islands and in the villages of the Laccadive islands. They are extremely vigilant and active.

84. Gengrapsus Grayi (Edw.).

Grapsus Grayi, Milne Edwards, Ann. Sci. Nat. Zool. (3) XX. 1853, p. 170.
Geograpsus rubidus, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 103.
Geograpsus Grayi, A. Milne Edwarde, Nouv. Archiv. du Mus. IX. 1873, p. 288 : Miers, Phil. Trans. 1879, p. 489, and Zool. H. M. S. Alert, pp. 518, 545, and Challenger Brachyurn, p. 261: Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 196 : Kichters, in Mobins, Meeresf. Maurit. p. 156 : Haswell, Cat. Anstral. Crust. p. 98 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 707 : de Man, Zool. Jahrb., Syst. IX. 1895-96, p. 80 : Nobili, Ann. Mus. Genov. (2) XX. 1899, p. 266.

Carapace subquadrilateral, a little convex, the lateral borders well defined anteriorly, ill defined and slightly convergent posteriorly : transverse markings fine, curved or oblique on the branchial regions, almost invisible on the gastric region.

The four tubercles along the line of flexion of the front are not salient; the edge of the front in a dorsal view is concave. The notch near the outer end of the lower border of the orbit is small and narrow. The epistome is rather ill defined.

Chelipeds in both sexes a little unequal: squamiform markings are present but, except on the arm, are indistinct, as also are the scattered granules on the apper surface of the palm. The larger cheliped may be a little under or a little over twice the length of the carapace. The inner border of the ischium is denticulate, the inner border of the arm is expanded to form a dentate lobe, and the inner angle of the wrist is spiniform.

The greatest breadth of the meropodites of the legs is less than half their length. The first pair of legs are slightly shorter than the 4th : the 2nd pair are the longest of all, being about twice the length of the carapace. The last 3 joints of all the legs are bristly.

Colours in life yellow-ochre, the greater part of the dorsum of the enrapace livid blaish or parplish.

In the Indian Museam are 24 specimens from the Andamans, Nicobars, and Laccadives.

The carapace of a large male is 40 millim. long and 49 broad.
85. Geograpsus crinipes (Dana).

Grapsus crinipes, Dana, Proc. Ac. Nat. Sci. Philad. 1851, p. 249, and U. S. Expl. Exp. Crust., pt. I. p. 341, pl. xxi. fig. 6.

Geograpsus crinipes, Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 101:: Heller, Novara Crust. p. 48 : Streets, Bull. U. S. Nat. Mus. VII. 1877, p. 115 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 196 : Ortmann, Zool. Jahrb., Syst. VII. 1893-94, p. 706 : de Man, Zool. Jahrb., Syst. IX. 1895-97, p. 83 : Whitelegge, Mem. Austral. Mus. 1II. 1897, p. 139.

Grapsus rubidus, Hilgendorf, in v. d. Decken's Reisen Ost-Afr. Crust., p. 87, pl. v. : Hoffmann, in Pollen \& Van Dam, Fann. Madagasc. Crust. p. 22.

Differs from G. Grayi in the following particulars: -
The carapace is quite flat, and the laternl borders, which are thin and well defined throughout their extent, nre slightly divergent posteriorly : the transverse markings are distinct and uearly straight.

The four tabercles along the line of flexion of the front are salient, and the free edge of the front is quite straight. The notch near the onter end of the lower border of the orbit is large, and the lobale external to the notch is denticulate. The epistome is well defiued from the palate by a granular or pectinate ridge.

The chelipeds in the male are nearly equal, but in the female they are unequal. The squamiform markings on the arm, wrist, and lower portion of the hand are distinct, as also are the vesiculous granules on the upper surface of the palm and dactylus.

The greatest breadtl-near the far end-of the meropodites of the last 3 pairs of legs is more than half their length.

Colour in life bright red.
In the Indian Museum are 2 males and a female from the Andamans, a male from the Nicobars, and a female from the Laccadives. The carapace of a female is 40 millim. long and 45 broad.

Metopograpsus, Edw.

Metopograpsus, Milue Edwards, Ann. Sci. Nat., Zool., (3) XX. 1858, p. 164 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, pp. 188, 190: Miers, Cballenger Brachyara, p. 257.

Carapace quadrate, little broader than long, somewhat depressed, the regions not well defiued, the branchial groove distinct, fine oblique
grooves are present on the lateral parts of the branchial regions: the antero-lateral, or outer orbital angle, is acate, but there are no teeth on the lateral border behind it.

Front very broad, more than half the extreme width of the carapace, deflexed : along the line of flexion are four depressed lobes, the outer one of which on either side sometimes shows a tendency to split into two.

Orbits of moderate size, occupying the corners of the carapace: the lower border is notched near its outer end : the orbital hiatus is filled by a special lobe which belongs to the inner of the two fosso into which the orbit is divided and this lobe completely exclades the nntennæ from the orbit. The nntennules fold nearly transversely in fossm of good size. The antennæ have a short and slender flagellum : the basal joint of the peduncle is not very massive.

Epistome well defined, but short fore and aft. Buccal cavity square with the anterior corners rounded off. The external maxillipeds leave between them a rhomboidal gap in which the mandibles are exposed : the meras is shorter than the ischinm, and carries the coarse palp at or near the antero-external angle.

Chelipeds either subequal or nnequal, the larger one much more massive than the legs bat shorter than the 2nd and 3rd pairs of these : fingers rather short and stout, with the tip sponned.

Legs broad and compressed, especially as to the merus, which joint-like the arm of the chelipeds-usually lias some squamiform markings : the last three joints have bristly edges and the dactylus is thorny.

The abdomen in both sexes consists of 7 separate segments, and in the male its base is as broad as the sternum between the last pair of legs.

An Indo-Pacific genus.

86. Metopograpsus messor (Forskal) Edw.

Cancer messor, Forskal, Desorip. Anim.in itin. orient. p. 88. Grapsus messor, Milne Edwards, Hist. Nnt. Crust. II. 88 : Krnass, Sadafr. Crast. p. 43 : Hoffmann in Pollen \& Van Dam, Fnun. Madag. Orust. p. 23: Sluiter, Tijds. Nederl. Ind. XL. 1881, p. 164. Metopograpsus messor, Milne Edwards, Ann. Sci. Nat., Zool., (3) XX. 1853, p. 165 : Heller, SB. Ak. Wien, XLIII. 1861, p. 362, and Novara Crust. p. 44: A Milne Edwards, Nouv. Archiv. da Mns. IV. 1868, p. 71 : Kossmann, Reise roth. Meer., Crast. p. 57 : Hilgendorf, MB. Ak. Berl. 1878, p. 808 : Miers, Phil. Trans. 1879, p. 489, and Zool. H. M. S. Alert, pp. 184, 245, 518, 545, and Ohallenger Braohyara, p. 258 : de Man, Notes Leyden Mus. II. 1880, p. 183, and Journ. Linn. Soo. Zool. XXII. 1887-1888, p. 144, pl. ix. fig. 11, and Archiv f. Naturges. LIII. 1888, i. p. 361, pl. xv. fig. 6, and in Weber's Zool. Ergebn. Niederl. Ost. Ind. II. p. 314:

Richters, in Mobins, Meeresf. Manrit. p. 156 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 190 : Lenz \& Richters, Abh. Senck. Nat. Ges. XII. 1881, p. 425 : Müller, Verh. Nut. Ges. Basel, VIII. p. 475 : Ozorio, Journ. Sci. Nat. Lisb. XI. p. 227 : Henderson, Trans. Linn. Soc., Zool., (2) V, 1893, p. 390 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 701: Whitelegge, Mem. Anstral. Mas. III. 1897, p. 139 : Nobili, Ann. Mus. Genov. (2) XX. 1899, p. 265.

Grapsus Gaimardi, Savigny, Descr. Egypt. Crnst. pl. ii. fig. 3.
Metopograpsus Eydouxi and intermediur, Milne Edwards, Ann. Sci. Nat., Zool., (2) XX. 1853, p. 165 (sec. Kingsley, l.c.).

Pachygrapsus æthiopicus, Hilgendorf, in v. d. Decken, Reisen Ost-Afr., Crnst. p 88, pl. iv. fig. 2 (fide Kossmann, l.c., and Hilgendorf, l.c.).

Carapace about four-fifths as long as broad, the sides distinctly convergent posteriorly; besides the oblique markings on the lateral parts of the epibranchial regions, there are some fine transverse markings on the post-frontal region.

Front about three-fifths the grentest breadth of the carapace, its free edge beaded, thin and prominent but hardly laminar, and slightly sinuous. Orbits little oblique, their major diameter is a little more than a third the width of the front: the inner angle of the lower border is denticulate.

Chelipeds nnequal, the length of the larger one about $1 \frac{1}{2}$ times that. of the carapace : there are wrinkles or squamiform markings on the upper surface of the arm and wrist and-along with some vesiculous granules-on the apper and lower borders of the hand. The inner border of the ischinm is denticulate, the inner border of the arm is spinate and is expanded distally to form a laciniate lobe, and there is a spine, which may be double, at the inner angle of the wrist: the fingers have blunt tips, and the dactylus is not very mach longer than the upper border of the palm.

Of the legs the 1st pair is the smallest and the 3rd pair the longest -about twice the length of the carapace: in all, the upper border of the merus ends in a spine and the lobe at the far end of the lower border is spinate: in the last three pairs the greatest breadth of the merus is lialf its length.

The terminal segment of the male abdomen is simply triangular.
In the Indian Museam nre 56 specimens, from Karachi, Bombay, the Orissa coast, the Ganges Delta, the Arakan coast, and the Andamans. The carapace of the largest specimen is $23 \frac{1}{2}$ millim. long and 30 millim. broad.
87. Metopograpsis maculatus, Edw.

Metopograpsus maculatus, Milne Edwards, Ann. Sci. Nat. Zool. (3) XX. 1853, p. 165 : de Man, Journ. Linn. Soc., Zool., XXIT. 1887-88, p. 145, pl. x. fige. 1-8.

Distingaished from the only other Indian species by the following characters:-

The carapace is much more elongate, its length being seven-eighths of its breadth, its sides are very markedly convergent posteriorly, and there are no transverse markings on the poot-frontal region:

The front is nearly three-fourths the greatest breadth of the cavapace, and its free odge is deoidedly laminar and nearly straight.

The orbits are oblique : their major diameter is less than a thind the breadth of the front and the inner angle of their lower border is not denticulate.

The fingers of the ohele, though their tipe are spooned, are not very blant: the dectylus is much longer than the upper border of the palm.

Except perhaps in the last pair of legs, the meropodites are marrower, their greatest breadth being decidedly less than half their longth.

In the male abdomen the terminal segment has a somewhat threelobed appearance.

In the Indian Museum are two speaimens from Morgai. It meoms to me very doubtful whether they are distinct from M, latifrome, White (Jukes, Voy "Fly," II. 337, pl. ii. fig. 2).

Pachygrapses, Randall, Stimpson.
Pachygrapsus, Randall, Proe. Ao. Nat. Sci. Philad. 1889, p. 126 : Milne Fdwards, Ann. Sci. Nat., Zool., (3) XX. 1858, p. 166 : Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 101: Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, pp. 188, 198 : Miers, Challenger Brachyura, p. 259.

Differs from Metopograpsus only in the following particulars:-
(1) the tooth or lobe at the inner angle of the lower border of the orbit is small and does not fill the orbital hiatus, so that the antenne are not excladed from the orbit; (2) there may be a tooth or two on the laterad border of the garapace immediately behind the outer orbital augle.

Distributiem : Wept Indies eaptwards, through the Mediterranean; to the American Pacific coast.

88. Pachygrapsus minutus, A. M. Edw.

Pachygrapers minutus, A. Milne Edwards, Noav. Archiv. da Mas. IX. 1878, p. 202, pl. xir. fig. 2 : Kingeley, Proc. Ac. Nat. Sci. Philad. 1880, p. 201 : de Man, Noteg Leyden Mun. V. 1883, p. 168, and Archiv f. Naturgen. LIII. 1887, i. p, 898, and Joarn. Linn. Aoc., Zool., XXII. 1888, p. 148 : Cano, Boll. Soc. Nat. Napol. III. 1889, p. 240.

Canapsos a good deal broeder than loug, its whole dofsel surfaco. marked with fine transverse and oblique lines: the lataral bardors are J. II. 52
strongly convergent posteriorly, and have no spine behind the acnte outer orbital angle.

Front abont three-fifths the greatest breadth of the carapace, moderately deflexed, its free edge slightly sinuous. Orbits little oblique, their major diameter more than a third the breadth of the front, their lower border not denticulate.

The chelipeds in the male are sabequal and vastly more massive than the lega, and are about twice the length of the carapace, and, except for some squamiform markings on the arm, are smooth: the inner border of the ischinm and both borders of the arm are crenulate, and the distal end of the inner border of the arm is expanded to form a denticulate lobe: the inner angle of the wrist is dentiform: the fingers are stont and blunt.

Of the legs the two middle pairs are the longest, being not twice the length of the carapace. In all the last three joints are bristly, and the merns has a spine at the far end of the anterior border and two largish spines at the fni end of the posterior border.

The terminal joint of the male abdomen is simply triangular.
A small species: the carapace of the single specimen (from Mergai) in the Indian Mnseum is 6.5 millim. long and 10 millim. broad.

Subfamily Varunine.
Varuna, Edin.

Vuruna, Milne Edwards, Dict. Hist. Nat. XYI. p. 511 (1830), and Hist. Nat. Crust. II. 94, and Ann. Sci. Nat. Zool., (3) XX. 1853, p. 176 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, pp. 188, 205 : Miers, Challenger Brachyura, p. 265.

Trichopus, De Haan, Faun. Japon. Crust. p. 32.
Carapace very little broader than long, depressed, with thin sharp edges, the regious fairly well indicated. Front a little more than half the breadth of the anterior border and a little more than a third the greatest breadth of the carapace, straight, prominent, sublaminar, little deflexed. Antero-lateral borders of the carapace arched, cat into 3 teeth including the outer orbital angle.

Orbits small, of good depth, their lower border broken and incomplete. The antennules fold obliquely and the interanteunulary septum is broad. Antennæ of fair size, standing in the orbital hiatus.

Epistome of good length, well defined. Buccal cavern square. The external maxillipeds gape, but not very widely: their exognath is not nearly as broad as the ischinm : their merus is shorter, but anteriorly much broader, than the ischinm, its antero-external angle being considerably produced, so that the palp articulates near the middle of the anterior border.

Chelipeds equal, but variable in size. In old males they aro considerably longer, and vastly more massive, than the legs: in the female they are shorter, and though stouter are not vastly stouter than the legs. The fingers, though sharp pointed, are a little hollow-tipped.

The legs have the three terminal joints compressed, dilated, and plumed, for swimming: the 2 middle pairs are the longest, the last pair is the shortest.

The abdomen in both sexes consists of 7 separate segments : in the male it does not completely cover the sternum between the last pair of legs.

Distributed throughout the Indo-Pacific, ascending estuaries even into freshwater. Commonly found at sea on drift logs.

89. Varuna litterata (Fabr.) Edw.

Oancer litteratue, Fabricius, Ent. Syst. Sappl. p. 342: Herbst, Krabben, III. i. 58, pl. xlviii. fig. 4.

Grapsus litteratus, Bosc, Hist. Nat. Crust. I. p. 208, and Latreille, Hist. Nat. Crast. et Ins. VI. p. 71.

Varuna litterata, Milne Edwards, Dist. d'Hist. Nat. XVI. p. 611.
Trichopus litteratus, De Haan, Fann. Japon. Crast. p. 32: Dana, U. S. Expl. Exp. Orast. pt. I. p. 836, pl. xx. fig. 8.

Varuna litterata, Milne Edwards, Hist. Nat. Crast. II. p. 95, and Ann. 8ci. Nat. Zool., (3) XX. 1858, p. 176 : Lucas, Hist. Nat. Anim. Artic., Crust., p. 78, pl. iii. fig. 4: Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 103 : Heller, Novara Crust. p. 51, A. Milne Edwards, Nouv. Archiv. du Mus. IV. 1868, p. 71, and IX. 1873, p. 295 : Brocehi, Ann. Sci. Nat. (6) II. 1875, (male appendages) : Miers, Cat. Crust. New Zealand, p. 40, and Ann. Mag. Nat. Hist. (5) V. 1880, p. 310, and Challenger Brachyura, p. 285: T'ozzetti, Magenta Crast. p. 122, pl. viii. figs. 2 a-g: Hilgendorf, MB. Ak. Berl. 1878, p. 808 : Neumann, Crust. Heidelb. Mas., p. 27 : Nauck, Zeits. Wise. Zool. XXXIV. 1880, p. 29 (gastric teeth): Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 205 : Sluiter, Tijds. Nederl. Ind. XL. 1881, p. 164: Haswell, Cat. Anstral. Crast. p. 108: Filhol, Crust. Nouv. Zel. in Miss. l'ile Campbell, p. 390: de Man, Archiv fur Nat. LIII. 1887, i. p. 371, and in Weber's Zool. Ergebn. Niederl. Ost. Ind. II. 1892, p. 315, and Zool. Jahrb., Syst. IX. 1895, p. 112: Henderson, Trans. Zool. Soc. (2) V. 1898, p. 891 : Ortmann, Zool. Jahrb. Syst., VII. 1893-94, p. 718 : Max Weber, Zool. Jahrb. Syst. X. 1898, p. 157 : Nobili, Ann. Mas. Genov. (2) XX. 1899, p. 267.

Carapace curiously pitted and frosted above, the regions well enough defined by grooves, which in places are broad shallow and uneven; the disposition of these grooves in the middle of the carapace makes a letter H. The borders of the carapace are thin and are sharply defined and finely beaded or milled: the antero-lateral borders are arched and are cut iuto three teeth, including the outer orbital angle : the postero-lateral boundary of the carapace, on each side, is a distinct facet.

The ohelipeds vary, according to sex and aye, from a little over once (in the female) to a little over twice (in old males) the length of the aarapece. The borders of the arm are denticulated, especially the inner border; the inner angle of the wrist forme a large sharp spine with some spinules at its base; the inner surface of the palm is more or less granular, the outer surface has some fine retioulate markings and -ranning parallel with the lower border, on to the fixed fingara raised line : the fingere are stont and atrongly toothed, the deotylus being longer than the apper border of the palm.

The 2 nd and 3 rd pair of legs, which are about equal, are over $1 \frac{1}{\frac{1}{2}}$ times the length of the carapace: the lst pair are a little more than a dactyl-length, the ath pair a little less than a dactyl-length longer than the carapace. The only armature of the legs, which are typical swimming padales, is a subberminal apine on the auterior border of the meropodite.

In the Indian Maseum are 63 specimens from the seas of India. The carapase of the largest male is 50 millim. long and 56 millim. broad.

Ptychognathus, Stimpzon.

Ptychngnathus, Stimpson, Proc. Ac. Nat. Sci. Philad, 1858, p. 104 : Kingaley, Proc. Ac. Nat. Sci. Philad. 1880, pp. 188, 203 : de Man, Zool. Jahrb., Syst., IX. 1895, p. 90.

Gnathograpsus, A. Milne Edwards, Nouv. Archiv. du Mus. IV. 1868, p. 180.
Goelochirus, Nauck, Zeits. Wiss. Zool. XXXIV. 1880, pp. 30, 66 (teote de Man).
Very closely resembles Varuna, from which it diffiers only in the following particulars :-
(1) the exopodite of the external maxillipeds is of remarkable breadth, being at least as broad as, and usually maob broader than, the isohinm of those appendages:
(2) the regions of the carapace are not always so well defined.
(3) the dactyli of the legs, though compressed, are not so broad.

Distribution: Islands of the Indo-Pacific, entering fresh water above any tidal influence.

Key to the Indian species of Ptychoynathus.
I. Oarapace hardly broeder than long: front prominent, straight or hardly sinuons: the antennules fold very obliquely :-

1. Teeth of the antero-lateral border sharp and salient : regions of the orrapace fairly well deflned : fingers of the female ohele nude:-
i. Innor angle of the wriat dentiform, but not prodaced: a large shaegy patoh of hairs on the inner surface of the hand of the male... P. dentata.
ii. Inner angle of the wrist produced to form a long spine: a patch of hair on the outer surface of the hand of the male, near the
finger cleft.
P. onyx.
2. Teeth of the antero-lateral border not salient, in. conspioncus : regions of the carmpace not, or hardly, indicated :-
is. A subterminal patch of bristles on the oater surface of the fixed finger of the female......
ii. Fingers of female nude
P. andamanica.
P. pusilla.
3. Carapace decidedly broader than long : front little prominent and decidedly sinuous: the antennulen fold nearly transversely \qquad

90. Ptychognathus dentata, de Man.

Ptychognathus dentatus, de Man, in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. 1898, p. 318; pl. ztili. fg. 9.

Oarapace inappreciably broader than long, flat but not particularly. depressed, its regions quite distinct, as also are the cervical and branchial groves and a pair of poat-frontal tubercles : on the posterior part of each epibranchial region, obliquely parallel with the postero-lateral borders, is a fine ridge.

Front prominent, laninar, nearly straight, its extent is two-fifths the greatest breadth of the carapace.

Antero-lateral borders of the carapace cut into three sharp salient teeth, of which the first is mach the largest, and the third much the smallest.

Upper border of the orbit very sinuous. The antennules fold very obliquely. Anterior border of the buccal cavern not granular, but having a median horizontal tooth.

Erognatli oval, with a smooth and strongly conivex surface : its grentest breadth in the male is more than twice that of the ischiognakh, but in the female is only a little more than that of the isohiognath.

Ohelipeds of the male more than $1 \frac{1}{3}$ times the length of the carapace, smooth : inuer angle of the wrist acute, but not spiniform : palm higher than long, inflated at the postero-inferior angle, and having a tussock of hairs in the middle of its inner surface: diactylus more than twice the length of the upper border of the palm, longer slenderer and less strongly toothed than the fixed finger: both fingers though hollowed at the tip are sharp-pointed. In the female the chelipeds are about as long as the carapace; the inner angle of the wrist is spiniform; the palm is not swollen and is nude, and its outer surface is traversed, near the lower border, by a fine raised line which extende nearly to the tip of the fixed finger.

The 2nd and 3rd pairs of legs are about lof times, the 1st pair are not quite $1 \frac{1}{3}$ times, and the 4th pair are are not $1 \frac{1}{3}$ times, the length of the carapace: on the anterior border of the merus of the first three pairs is a subterminal spine.

The sidewall of the carapace and the basal joints of the legs have little tomentum.

In the Indian Museam are 2 males and an egg-laden female from "the Bay of Bengal" and 2 young females from Upper Tenasserim.

The carapace of the largest male is 19 millim. long and not quite 20 millim. in its greatest breadth.

91. Pbychognathus onyx, n. sp.

[^57]This species very nearly resembles P. dentata, from which it differs, young males being compared with females of the samesize, only in the following particulars :-
(1) the carapace though otherwise similar is much thinner and more depressed and its markings are not quite so distinct :
(2) in the middle of the anterior border of the buccal cavern is a slight prominence, bat no distinct tooth :
(3) the exognath (in the young male) is, as in the female of P. dentata, but little broader than the ischiognath :
(4) in the chelipeds of the young male the inner angle of the wrist is produced to form a long spine; there is no hair on the inner surface of the palm, but on the onter surface, in the finger-cleft and extending along the fixed finger, there is a tuft of hair; the outer sarface of the palm also, as in the female of P. dentata, is traversed, close to the lower border, by a raised line, which runs to the tip of the fixed finger; finally the fingers are blunter, and the dactylus is only about twice as long as the upper border of the palm.

Practically the chief distinction between this species and P. dentata is that in the male of this species the inner angle of the wrist forms a long spine, and the hair is on the outside instead of on the inside of the hand.

In the Indian Museum are two joung males probably from Tavoy. The carapace is a little over 12 millim. long and 13 millim. broad.

92. Ptychognathus andamanica, n. sp.

Closely reluted to P. pusilla, of which it may be an Andaman variety.
Carapace not much broader than long, quite flat, much depressed, the regions are hardly indicated, even when the carapace is quite dry,
but the H-shaped mark in the middle is always plainly visible, the whole sarface is closely and finely punctate: there are no post-frontal tabercles, but on the posterior part of either epibranchial region there is a fine line ranning obliquely-parallel with the postero-lateral borders.

Front prominent, laminar, slightly sinuous, its extent is two-fifths the greatest breadth of the carapace.

The antero-lateral borders are cut into 3 not very acute or distinct lobes (iucluding the outer orbital angle), of which the first is much the largest, and the last much the smallest.

Upper border of the orbit slightly sinuous: the antennales fold very obliquely. The anterior border of the buccal cavern is granular and a little concave.
'Ihe exognath is long and elliptical; its breadth in the female, is nearly twice that of the ischiognath.

The chelipeds in the female (male nnknown) are about as long as the carapace, and their outer surface is very finely reticulate-granular: inner angle of wrist pronounced, but not spiniform : palm without hair, but there is a characteristic brush of stiffish hair at the tip of the fixed finger on its outer surface. The fingers have broad tips, especially the fixed finger, which is stouter and more strongly toothed than the dactylus: the dactylus is about twice as long as the upper border of the palin : the outer surface of the palm and fixed finger is traversed, near the lower border, by a fine raised granular line.

The legs have not much tomentum on the basal joints, but the anterior border of the meropodites is rather thickly fringed: the subterminal denticle on the anterior border of the meropodites is small, blunt, inconspicuous, or obsolescent. 'I'he 2nd and 3rd pair of legs, which are the longest, are about $1 \frac{1}{2}$ times, the lst pair are not $1 \frac{1}{4}$ times, and the 4th pair are little more than once, the length of the carapace.

In the Indian Museum are two young females from a freshwater stream at the base of Saddle Hill in North Andaman Island. Their colour is dark mottled green. The carapace is a little over 13 millim. long and about 14 millim. broad.

93. Ptychognathus pusilla, Heller.

Ptychognathus pusillus, Heller, Novara Orust. p. 60 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880. p. 204: de Man, Note Leyden Mas. V. 1883, p. 161, and Zool. Jahrb. Syst. IV. 1888-89, p. 440, and in Weber's, Zool. Ergebn Niederl. OstInd. II. p. 325, and Zool. Jahrb. Syst. IX. 1895, p. 99, and X. 1898, pl. xxriii. fig. 22 : Ortmann, Zool. Jahrb., Syst. VII. 1893-94, p. 712.

This species, which was first found in the Nicobar Islands, is not represented in the Museam collection and I have never seen it.

94. Ptychognathus barbata (A. M. Edw.).

Anathograpsus barbatus, A. Milne Edwards, Nonv. Archiv. dn Mns. IX. 1878, p. 316, pl. zvii. fig. 4.

Ptychognathus barbatus, Ortmann, Zool. Jahrb. Gyst. VII, 18ps-94, p. 712 : de Man, Zool. Jahrb., Syst., IX. 1895, p. 105.

Carapace decidedly broader than long, flat; depressed, the regions indistinct: the two postfiontal tubercles are fairly distinct, but there is no distinct raised line on the posterior part of the epibranchial regions, ranning obliquely parallel with the posterior borders, such as is present in all the other Indian species. There is a good deal of tomentum on the sides of the carapace.

Front decidedly sinuous, not prominent, its extent is a little more than two-fifths the greatest breadth of the carapace.

The anfero-lateral borders of the carapace are cut into 3 not very conspicuous teeth (including the outer orbital angle) of which the first is much the largest and the third much the smallest, as usual.

Upper border of the orbit little sinuous: the antennules fold nearly transversely. Anterior border of the buccal cavern finely granular.

The exognath is elliptical, with a slightly convex surface: in the male its greatest breadth is more than that of the ischiognath, in the female it is slightly narrower than in the male.

Chelipeds in the male about 1娄 times the length of the carapace, the inner angle of the wrist little pronounced; the hand massive, with a tuft of hair in the finger-cleft and running some little distance along the outer surface of both fingers; the fingers are rather blunt, the dactylus, which is about twice the length of the upper border of the palm is longer slenderer and less strongly toothed thau the fixed fiuger, against which it closes rather obliquely. In the female the chelipeds are about as long as the carapace and are not very massive, the inner angle of the wrist is dentiform, there is no hair on the hand or fingers, and the onter surface of the hand and fixed finger is traversed near the lower border by a raised line.

The leg-joints are less expanded and less abundantly plumed than in the other Indian species, and there is no subterminal spine on the anterior border of the meropodites. The 2ad and 3 rd pairs of legs are about $1 \frac{3}{3}$ times, the lst pair about $1 \frac{1}{2}$ times, and the last pair a little over once, the length of the carapace.

In the Indian Museum are 3 specimens from Diamond Island off the Pegu coast and from Akyab, (besides numerous specimens from Samoa). The carapace of an apparently adult male is 11 millim. long and 14 millim. broad.

Pixidognatios, A. M. Edw.
Pywidognathus, A. Milne Edwards, Bull. Soc. Philom. Paris (7) III. 1878, p. 109 : de Man, Notes Leyden Mus. V. 1883, p. 160, and Journ. Linn. Soc., Zool., XXII. 1888, p. 148.

Hypsilograpsus, de Man, Notes Leyden Mns. I. 1879, p. 72 (ipso teste).
This genus is closely related to Varuna and Ptychognathus. It differs from Varuna in the same particulars that Ptychognathus does, that is to say, the exognath of the external maxillipeds is much broader than the ischiognath, and the dactyli of the legs though compressed are not dilated. It farther differs, both from Varuna and Ptychognathus in the following characters :-
(l) the carapace is decidedly transverse, is deep, and is dorsally strongly convex in both directions: it is also anteriorly declivous with the front deflexed, and its antero-lateral borders are hardly arched :
(2) the antennules fold transversely :
(3) the lower border of the orbit is complete, except of course at the orbital hiatus :
(4) the carpopodites and propodites of the legs are not particularly broad.

Distribution : Indo-Pacific in fresh or brackish water.
Key to the Indian species of Pyxidognathus.
I. A single spine on the posterior border of the meropodites of the legs
P. fuviatilis.
II. More than one spine on the posterior border of the meropodites of the legs
P. deianira.
95. Pyxidognathus deianira, de Man.

Pyxidognathus deianira, de Man, Joarn. Linn. Soo., Zool., XXII. 1888, p. 148, pl. x. figg. 4-6.

Carapace about $\frac{8}{4}$ as long as broad, convex, smootb, without distinction of regions excepting a faintish H-shaped mark in the middle. Free edge of front sinuous or four-lobed, as in the next species.

Antero-lateral borders of the carapace cut into three prominent acnte teeth (including the outer orbital angle), the first of which is the largest, and the last of which is spine-like.

Upper border of orbit slightly sinuous, lower border finely denticulate.

Exognath of the external maxillipeds, in the male, very much broader than the ischiognath, and having a smooth convex surface.

Chelipeds in the young male about $1 \frac{1}{2}$ times the length of the carapace : inner border of ischium, arm, and wrist denticulate; inner angle of J. II. 53
wrist spiniform; the upper border of the palm is granulate, a finely beaded raised line traverses the lower part of the outer surface of the palm and fixed finger, and there is a very short series of granules near the middle of the inner surface of the palm : the palm is nearly as high as long, and the dactylus is mach longer than the apper border of the palm and closes against the fixed finger ly the tip only.

The 2nd pair of legs, which are the longest, are not much short of twice the length of the carapnce; the 4 th pair, which are the shortest, are bat little longer than the carapace. In all the legs, the meropodite has some fine ragosities on its upper surface, a spine near the far end of the anterior border, and some spines on the posterior border-these being most numerons in the case of the 4th pair of legs : and in all, the edges of the 3 terminal joints are hairy but not plumose, nor are these joints broadened or compressed.

In the Indian Museum are two very small male specimens from Mergui.

96. Pyxidognathus fluviatilis, n. sp.

Carapace transverse, markedly convex, finely punctate, the regions indicated only by an H -shaped mark in its centre.

Front between two-fifths and a third the greatest breadth of the carapace, deflexed, sinuous or four-lobed, the two middle lobes broad, the outer lobes ($=$ inner orbital angles) subacute.

Antero-lateral borders of the carapace slightly arched, cut into three prominent acate teeth (including the outer orbital angle) of which the first is the largest and least acute, and the third is spine-like.

Orbits of good depth, the apper border slightly sinuous; the lower border defined by a granular ridge running close behind the prominent denticulated ridge that bounds the infra-orbital region of the carapace.

Anterior border of buccal cavern prominent, finely crenulate. Exognath in the female broader than the ischiognath, and having 2 smooth convex surface.

Chelipeds in the female about as long as the carapace, more massive than the legs: inner angle of wrist acuminate : a raised line runs along the outer surface of the palm and fixed finger, close to the lower border: fingers rather sharp though spooned at tip, dactylus hardly twice the length of the upper border of the palm, longer and rather less strongly toothed than the fixed finger.

All the leg-joints are plumed, and all the dactyli are long compressed and recurved. In all the legs there is a very strong spine in the distal
half of the posterior border of the meropodite, and in the first 3 pairs there is a smaller subterminal spine on the anterior border of the sume joint. The 2nd and 3rd pairs of legs are about $1 \frac{3}{4}$ times, the lst pair are not quite $1 \frac{1}{2}$ times, and the 4th pair are about $1 \frac{1}{4}$ times the length of the carapace.

Colour mottled dark green. A single female was found clinging to the floats of a fisherman's net in the R. Ichamutty above Bongong in the Jessore District: its carapace is 15 millim. long and 19 millim. broad.

The legs are obviously adapted for swimming, and the recurved dactyli and sping meropodites appear to be adaptations to a swift current.

The chief difference between this species and P. deianira-the female of the former being compared with the male of the latter-is that in this species the three terminal joints of the legs are more compressed and the posterior border of the meropodites is armed with a single spine.

Sub-family Sesarmine, Dana.
Sesaema, Say.

Sesarma, Say, Journ. Acad. Nat. Sci. Philad. I. 1817, p. 76 : Milne Edwards, Hist. Nat. Crast. II. 71, and Ann. Sci. Nat. Zool. (3) XX. 1853, p. 181 : A. Milne Edwards, Nonv. Arohiv. du Mus. IX. 1873, p. 301 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 218 : Miers, Challenger Braohyura, p. 269 : de Man, Zool. Juhrb., Syat., II. 1886-87, p. 641 and IX. 1895-97, p. 128 : Bürger, Zool. Jahrb., Syst., VII, 1893-94, p 613.

Pachysoma, De Haan, Fann. Japon. Crust., p. 33.
Holometopus, Milue Edwards, Ann. Sci. Nat. Zool. (3) XX. 185゙3, p. 187.
Carapace squarish or actually square (the sides being straight and usually nearly parallel), usually deep (though occasionally shallow and much depressed), seldom very convex: the gastric region is almost always very well delimited, and is commouly divided into 5 subregions, and in most cases the 4 antero-lateral subregions project as 4 prominent post-frontal tabercles.

The side-walls of the carapace have every where a characteristic finemeshed reticulate texture as regular as that of a sieve. This appearance is due to a multitude of small uniform granules arranged in pairs in close-set parallel rows : between each pair of granules is a little row of bristles, one of which in each row is long and points diagonally forwards.

The front occupies half, or more, of the anterior border of the carapace, and is obliquely or vertically deflexed.

The orbits, which occupy the rest of the anterior border of the carapace, are oval and of good depth : below their outer angle is a deepish gap leading into a system of grooves which open into a notch at the antero-lateral angle of the buccal cavern. At the inner angle of the orbit is the usual tooth, belonging to the inner of the two fosse into which (as in all the crabs of this subfamily) the orbit is so plainly divided. The eyes are of no great length.

The antennules fold nearly transversely into rather narrow fosse : the inter-antennular septum is very broad.

The antero-external angle of the 2 nd joint of the antennal peduncle is a good deal prodaced : the antennal flagellum, which is slender and rather short, lies in the orbital hiatus.

Epistome well defined, prominent, rather short fore and aft. Buccal cavern square. The external maxillipeds leave between them a large rhomboidal gap, which is a good deal filled up by a hairy fringe: they are obliquely traversed, from a point behind the antero-external angle of the ischium to the antero-internal angle of the merus, by a conspicuous line or crest of hairs: the palp, which is rather coarse, is attached to the rounded summit of the obliquely-directed merus.

Chelipeds massive-not always so in the female-usually sabequal, of no great length : palm high and short, the fingers though subacute, are hollowed at the tip.

The legs do not usually differ. very markedly in length, though the third pair are the longest and the first and last (4th) pairs the shortest : the meropodites are thin, and are usually, but not always, broad.

The abdomen in both sexes consists of 7 separate segments : in the male it occupies the whole breadth of the sternum between the bases of the last pair of legs. In both sexes the second segment, as well as the exposed portion of the first, are narrow fore and aft. In the female the last segmeut is small and narrow from side to side, and is more or less impacted in the broad 6th segment : in the male also the last segment is much narrower than the one that precedes it.

Distribution : all tropical and subtropical seas: not found in the Mediterranean.

I am not inclined to adopt the subgenera proposed by Dr. de Man, although I must admit that his system is convenient in practice, for identifying species.

I may also mention here that specific distinctions based merely on the scolptare of the dactylus of the male chelæ are inadmissible, as the sculptaring frequently differs in the two fingers of the same individual.

Key to the Indian species of Sesarma.

I. Carapace deepish, its length decidedly less than its breadth between the antero-lateral angles, its sides nearly parallelnever markedly divergent posteriorly :-

1. The inner border of the arm bears, near its far end, a large acate tooth : on the upper sarface of the palm of the male are at least two oharacteristic oblique comb-like ridges : the apper surface of the movable finger of the male is milled :-
i. Posterior border of the meropodites of the legs entire :-
a. No tooth on the lateral border of the carapace behind the orbital angle :-
a. Front more than half the extent of the anterior border of the carapace
S. quadratum.
B. Front exactly half the extent of the anterior border of the carapace
S. pictum.
b. A tooth on the lateral border of the carapace, behind the orbital angle
S. bidens.
ii. Distal end of the posterior border of the meropodites of the legs acutely serrate (no tooth behind the outer orbital angle)
S. Andersoni.
2. The inner border of the arm does not end in a large spine or acate lobe, though it may be a little dilated distally: there are no oblique pectinated ridges on the apper surface of the palm, and the upper surface of the movable finger of the male though it may be granular is not milled :-
i. A tooth at the inner angle of the wrist (a tooth on the lateral border of the carapace behind the orbital angle) :-
a. The breadth of the carapace between the antero-lateral angles is equal to, or more than, the breadth between the epibranchial teeth
b. The breadth of the carapace between the antero-lateral angles is decidedly less than the breadth between the epibranchial teeth, the sides of the carapace being markedly sinuous. \qquad
ii. No spine at the inner angle of the wrist :-
a. Carapace and appendages not uniformly tomentose : two acate teeth-the second of which is hardly visible-on the lateral border, behind the acate orbital angle. \qquad
3. Edwardsi.
S. Meinerti.
b. Carapace and appendages covered with a short but very dense fur, amid which are prominent tubercle-like tufte of hair: lateral borders cut into three blunt lobes (inclading the orbital angle) of equal size
S. lanatum.
II. Carapace nearly square, its length being little less than its breadth between the antero-lateral angles : the inner border of the arm ends in an acnte serrated lobe : a very finely peotinated ridge traverses the upper surface of the palm, fore and aft, close to the upper border: (a tooth on the lateral border of the carapace behind the orbital angle) :-
4. Carapace deep, its sides nearly parallel : a transverse granular ridge on the inner surface of the palm : dactyli of the legs of good length :-
i. Upper border of movable finger of male with an elegantly milled orest of 40 to 60 fine lamella
ii. Upper border of movable finger of male with a coarsely crenulate crest. \qquad
5. Carapace shallow and depressed, its sides divergent posteriorly : no transverse granular crest on the inner surface of the palm : dictyli of the legs short: (a milled crest of about 25 very fine lamellm on the upper border of the movable finger of the male).
III. Carapace somewhat elongate (its length being decidedly more than its breadth at the antero-lateral angles), shallow and depressed:-
6. No tooth on the lateral border of the carapace behind the orbital angle: legs with remarkably broad meropodite and remarkably short propodite : upper border of movable finger of male with an elegantly milled crest of about 40 fine lamellæ \qquad
7. Two teeth on the lateral border behind the orbital angle : movable finger withoat any milling :-
i. Post-frontal tubercles of the gastric region serrated: legs with meropodites of good breadth and dactyli of good length \qquad
ii. Post-frontal tnbercles smooth : legs with rather narrow meropodites and short dactyli \qquad
IV. The length of the carapace is just equal to its breadth at the antero-lateral angles: legs long and slender, with elongate dactyli :-
8. Carapace shallow, depressed, perfectly square, its sides quite parallel: two little teeth on the lateral border behind the orbital angle.
S. Pinni.
S. Brockii.
9. latifemur.
S. politum.
S. oceanicum.
10. Carapace deepish, its sides strongly divergent posteriorly where its breadth is much greater than its length : two teeth (not iucluding the orbital angle)
```
on the lateral border, the posterior one being very
small :-
    i. Third pair of legs not three times the length
        of the carapace
        e.....................................
    S. longipes.
                        S. kraussi.
    ii. Third pair of legs more than three-and-a-half
        times the length of the carapace
```


97. Sesarma quulratum (Fabr.).

Cancer quadratus, Frbricius, Ent. Syst. Snppl. p. 341.
Ocypoda quadrata, Bosc, Hist. Nat. Crust. I. p. 198.
Ocypoda plicata, Latreille, Hist. Nat. Crust. \&c. VI. p. 47.
Besarma quadrata, Milne Edwards, Hist. Nat. Crust. II. 75, and Ann. Sci. Nat., Zool., (3) XX. 1853, p. 183.

Besarma quadratum, A. Milne Edwards, Nonv. Archiv. du Mus. IX. 1878, p. 302 : Miers, Phil. Trans. Vol. 168, 1879, p. 490.

Sesarma quadrata, Richters, in Mobins' Meeresf. Manrit. p. 157: Kingsley, Proc. Ac. Nat. Sci. Philud. 1880, p. 217 : Lenz and Richters, Abh. Senck. Nat. Ges. XII. 188, p. 425 : de Man, Zool. Jahrb. Syst. II. 1887, p. 655, pl. xvii. fig. 2 and p. 683, and IV. 1889, p. 434, and IX. 1895-97, pp. 181, 182, and Notes Leyden Mus. XII. 1890, p. 99, and in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. p. 328 : Thallwitz, Abh. Mus. Dresden, 1890-91, No. 3, p. 37 : Henderson, Trans. Linn. Soo. Zool., (2) V. 1893, p. 392 : Ortmann, Zool. Jahrb. Syst. VII. 1893-94, p. 724.

Grapsus (Pachysoma) affinis, De Haan, Faan. Jap. p. 66, pl. xviii. fig 5.
Sesarma affinis, Krauss, Sndafr. Crust. p. 45 : Milne Edwards, Ann. Sci. Nat. Zool. (3) XX., 1853, p. 183: Heller, Novara Crust. p. 62 : de Man, Notes Leyden Mas. II. 1880, p. 22 : Miers, Ann. Nag. Nat. Hist. (5) V. 1880, p. 312 : Kingsley, l.c. sup:a, p. 213 : Ortmann, l.c. supra, p. 724.

Sesarma ungulata : Milne Edwards, Ann. Sci. Nut., Zool. (3) XX. 1853, p. 181: Kingsley, l.c. supra, p. 218.

Besarma aspera, Heller, Novara Crust. p. 63, pl. vi. fig. 1 : Kingsley, l.c. supra, p. 214 : Müller, Verh. Nat. Ges. Basel, 1886, p. 476 : de Man, Zool. Jahrb. II. 1887, p. 656 and Journ. Linn. Soc. Zool. XX1I. 1887-88, p. 169.

Sesarma melissa, de Man, Zool. Jahrb. Syst., II. 1887, p. 656, and Journ. Linn. Soc., Zool., XXII. 1888, p. 170, pl. xii. figs. 5-7, and Zool. Jahrb. Syst., IV. 1889, p. 434 .

Carapace hardly conver, decidedly broader than long, its length being about four-fifths its breadth between the antero-lateral angles, deep; the 4 post-frontal lobes prominent equal and a little rugose transversely, the rugm being sparsely tufted with hair; the cardiac and intestinal regions very much less distinct than the gastric: some oblique striations on the epibranchial regions.

Front decidedly more than half the greatest breadth of the carapace, not very deep, its free margin asually but slightly sinuons. Lateral borders of carapace nearly parallel, a little divergent anteriorly, without any tooth behind the acute orbital angle.

The chelipeds differ in the sexes, being about $1 \frac{3}{4}$ times the length
of the carapace in the male and mach more massive than the legs, but in the female hardly $1 \frac{1}{3}$ times the length of the carapace and not more massive than the legs. In both sexes the outer surface of the arm wrist and palm are granular, the granules on the arm and wrist having a squamiform arrangement, the inner border of the arm bears a subterminal spine of large size, the upper border of the arm ending in a much smaller spine, the inner angle of the wrist is not dentiform, and the inner surface of the palm is more or less granular. In the male the palm is a little swollen below and has, on its upper surface, some short oblique crests, of which two are most elegantly pectinated : in the female the palm is not swollen and the crests are simply granular. The dactylus is less than twice the length of the apper border of the hand (palm) and its dorsal surface is elegantly milled with from 11 to 19 blunt, rather coarse, transverse lamellæ: in the female this milling is incomplete and very indistinct. In neither sex is there any great gap between the closed fingers.

The meropodites of the legs are foliaceous, their greatest breadth in the 2 nd and 3 rd pairs being more than half their length, their anterior border ends at an acute subterminal spine, and their dorsal surface has some fine transverse squamiform sculpture. The anterior border of the last three joints of the legs, and part of the posterior border of the last two, is fringed with tufts of bristles. The 3rd pair of legs, which are slightly the longest, are about twice the length of the carapace, and their dactylus is about three-fourths the length of their propodite.

In the Indian Musenm are 42 specimens from both coasts of the Peninsula, Ceylon, the Andamans and the Nicobars.

In a male of good size the carapace is 16 millim. long and 20 millim. broad.

98. Sesarma pictum, De Haan.

Grapsus (Pachysoma) pictus, De Haan, Faun. Japon. Crust. p. 61, pl. xvi. fig. 6.
Sesarma picta, Krauss, Sndafr. Crust. p. 45 : Milne Edwards, Ann. Sci. Nat., Zool., (3) XX. 1853, p. 184: Stimpson, Proo. Ao. Nat. Sci. Philad. 1858, p. 106 : de Man, Notes Leyden Mus. II. 1880, p. 22, and Zool. Jahrb., Byst., II. 1887, p. 657, and IX. 1895-97, pp. 181, 182, and Journ. Linn. Soc., Zool., XXII. 1888, p. 171 : Bürger, Zool. Jahrb., Syst., VII. 1893-94, p. 626 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 725.

Agrees with S. quadratum in everything but the following particulars :-
(1) the carapace is not so broad, its length being about five-sixths of its breadth between the antero-lateral angles:
(2) the front is not so broad, its extent being only half the breadth of the carapace:
(3) the meropodites of the legs are not so broadly foliaceons, their greatest breadth, in the middle two pairs, being less than lialf their length.

The Indian Maseum possesses a single specimen from Mergui.

99. Sesarma bidens (De Haan).

Grapsus (Pachysoma) bidens, De Haan, Faun. Japon. Crust. p. 60, pl. xvi. ig. 4, and pl. xi. fig. 4.

Sesarma bidens, Dana, U. S. Expl. Kxp. Crust. pt. I. p. 353 : Milne Edwards, Ann. Sci. Nat., Zool., (3) XX. 1853, p. 185 : Stimpson, Proo. Ac. Nat. Sci. Philad. 1858, p. 105 : Heller, Novara Crast. p. 64 : Hilgendorf, in v. d. Deoken's Reisen Ost-Afr., Crast., p. 91, pl. iii. fig. 3a: Hoffmann, in Pollen \& Van Dam, Fann. Madag. Crust. p. 24 : Miers, Ann. Mag. Nat. Hist. (5) V. 1880, p. 318, and Zool. H. M. S. Alert, pp. 184, 246 : Kingsley, Proo. Ac. Nat. Sci. Philad. 1880, p. 214 : de Man, Notes Leyden Mus. II. 1880, p. 28, and Zool. Jahrb., Syst., II. 1887, p. 658, and in Weber's Zool. Ergebn. Niederl. Ont-Ind. II. p. 330 : Lenz \& Richters, Abh. Senck. Nat. Ges. XII. 1881, p. 425 : Bürger, Zool. Jahrb., Syst., VII. 1899-94, p. 628 : Ortmann, ibid. p. 726 : Nobili, Ann. Mus. Genova (2) XX. 1899, p. 269.

Sesarma Dussumieri, Milne Edwards, l. c. supra: Tozzetti "Magenta" Crast. p. 145, pl. ix. fige. 3 a.f: Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 215 : de Man, Zool. Jahrb. Syst. II. 1887, p. 659, and IX. 1895-97, p. 208, and Joarn. Linn. Soc., Zool., XXII. 1888, p. 177, pl. xii. figs. 8-12: Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 726.

Sesarma lividum, A. Milne Edwards, Nouv. Archiv. du Mus., V. 1869, Ball. p. 25, and IX. 1873, p. 303, pl. xvi. fig. 2 : Brocchi, Ann. Sci. Nat., Zool., (6) II. 1875, Art. 2, p. 83 (male appendages) : Kingsley, tom. cit. supra, p. 216: de Man, Arohiv. f. Naturges. LIII. 1887, i. p. 381, pl. xvii. fig. .1, and Zool. Jahrb. Syst. II. 1887, p. 659, and Journ. Linn. Soc., Zool., XXII. 1888, p. 180.

Sesarma Haswelli, de Man, Zool. Jahrb., Syst., II. 1887, p. 658, and Journ. Linn. Soc., Zool., XXII. 1888, p. 175.

This species very closely resembles 8. quadratum, from which it differs in the following characters :-
(1) there is a small sharp tooth on the lateral border of the carapace, immediately behind the outer orbital angle :
(2) the carapace is slightly less transverse (though decidedly broader than long) :
(3) the transverse ridges on the upper surface of the dactylus of the male chelæ are coarser and shorter and more tubercle-like.

In the Indian Museum are 52 specimens from the coasts of the Bay of Bengal, Andamans, Nicobars and Ceylon.
J. II. 54
100. Sesarma Edzardsi, de Man.

Sesarma Edwardsi, de Man, Zool. Jahrb., Syst., II. 1887, p. 649, and Journ. Linn. Soc., Zool., XXII. 1888, p. 185, pl. xiii. Gigs. 1-4 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 721.

Differs from S. quadratum in the following particulars :-
(1) the carapace is squarer and less transverse, and the four postfrontal lobes of the gastric region are more prominent; the front also is slightly, but distinctly, broader :
(3) there is a sharp tooth on the lateral border of the carapace immediately behind the antero-lateral angle:
(3) the upper border of the arm does not end in a spine, and though there may be a slight subterminal dilatation of the crenulated inner border of the arm there is no large spine:
(4) there is a sharp tooth or spine just below the inner angle of the worist:
(5) the upper surface of the wrist and outer surface of the palm are covered-usually very closely covered-with vesiculous tubercles; and there are smaller and sharper tubercles on the opper surface of the dactylus and the lower surface of the fixed finger of the chels:
(6) there are no oblique pectinated crests on the palm :
(7) the male abdomen is singularly broad.

In the Indian Museum are 126 specimens, most of which came from the Burma coast from Arakan to Tavoy, the rest from the Gangetic delta, the Andamans and Ceylon.

In the variety separated by de Man as crassimana the abdomen is not quite so broad as it is in the typical form, and the palm of the male is larger and more swollen.

101. Sesarnia intermedium (De Haan).

Grapers (Pachysoma) intermedius, De Hasn, Faan. Japon. Crust. p. 61, pl. xvi. fig. 6.

Sesarma intermedia, Milne Edwards, Ann. Sci. Nat., Zool., (8) XX. 1858, p. 186 : Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 105: Heller, Novara Crust. p. 64: Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 216 : Miers, Ann. Mag. Nat. Hist. (5) V. 1880, p. 314 : de Man, Notes Leyden Mus. II. 1880, p. 25, and Zool. Jahrb., Syst., II, 1887, p. 649, and Journ. Liun. Soo., Zool., XXII. 1888, p. 182 : Ortmann, Zool. Jahrb. Syst. VII. 1893-94, p. 721.

Differs from S. quadratum in the following particalnrs :-
(1) the carapace is more quadrate and less transverse, the postfrontal lobes are less promineut aud mach smoother, and the front is broader:
(2) there is a tooth-and sometimes also a socond radimentary tooth-on the lateral border immediately behind the orbital angle:
(3) there is no large subterminal spine on the inner border of the arm, nor does the upper border end in a spine :
(4) in the corner of the upper sarface of the palm there are in the male some oblique granular lines, but no pectinated crests; and on the inner sarface of the palm there is a conspicuous transverse granular crest :
(5) the upper surface of the dactylus of the male chelmis granular in its proximal half, but is not milled with transverse lamellæ.

From S. Edwardsi it is distinguished by numerous characters, but the absence of a spine at the inner angle of the wrist is sufficiently characteristic.

In the Indian Museum are 5 specimens from Mergui.

102. Sesarma Meinerti, de Man.

Sesarma Meinerti, de Man, Zool. Jahrb., Syst., II. 1887, pp. 648, 668, and IX. 1895-97, p. 166 : Bürger, Zool. Jahrb. Syst. VII. 1893-94, p. 617, and Ortmann, ibid. p. 720.

Gesarma tetragona, Edw. (wec Fabr.), Milne Edwards, Hist. Nat. Crust. II. 73, and Ann. Sci. Nat., Zool., (3) XX. 1853, p. 184: A. Milne Edwards, Nouv. Arohiv. dn Mus. IV. 1868, p. 71, and IX. 1873, p. 304, pl. xvi. fig. 4: Hilgendorf, in $\mathbf{\nabla}$. d. Decken's Reisen Ost-Afr., Crust. p. 90: Hoffmann, in Pollen \& Van Dam, Faun. Madag. Crnst. p. 23 : Hilgendorf, MB. Ak. Berl. 1878, p. 809 : Kingsley, Proc. Aa. Nat. Sci. Philad. 1880, p. 218.

Carapace convex, especially fore and aft, a little broader than long, deep: the 4 post-frontal lobes promivent, unequal-the outer ones being much narrower than the middle pair; the cardiac and intestinal regions are quite distinct, and the usual oblique striations are found on the epibranchial regions: the whole dorsal surface of the carapace is rather profusely covered with tufts of hair.

Front decidedly more than half the greatest breadth of the carapace, which is just behind the orbital angles, not very deep, its free edge sinuous. Lateral borders of the carapace somewhat sinuous, armed with a large tooth behind the orbital angle: there may even be Ω trace of a second epibranchial tooth.

Chelipeds subequal, almost equally massive in both sexes, about twice as long as the carapace. The outer surface of the arm and wrist is finely rugose, that of the palm is only pitted : neither the upper nor the inner border of the arm end in a tooth : inner angle of wrist pronounced but not dentiform : no pectinated crests of any kind on the palm : the fingers are a good deal arched and meet only at tip, the upper surface of the dactylus in the male has a row of iuconspicuous denticles: on the inner surface of the palm there is an oblique granular crest.

The meropodites of the legs are foliaceons, but their breadth is not twice their length; but otherwise the legs are as in S. quadratum.

The abdomen of the male is decidedly narrow.
In the Indian Museum are 26 specimens from the Andamans and one from Madras. The carapace of a large one is 33 millim. long and 38 millim. broad : in the female the carapace is not so broad.

103. Sesarma Andersoni, de Man.

Sesarma Andersoni, de Man, Zool. Jahrb., Syst., II. 1887, p. 657, and Joarn. Linn. Soo. Zool. XXII. 1888, p. 172, pl. xii. figs. 1-4.

Carapace moderately deep, hardly convex, considerably broader than long, the four post-frontal lobes of the gastric region ouly moderately prominent, nearly equal, pitted; the cardiac and intestinal regions faintly indicated; the oblique striations of the epibranchial regions very sharp and distinct, one of them almost projects beyond the lateral border as a tooth behind the orbital angle.

Front more than half the greatest breadth of the carapace, not very deep, its free margin a little convex but nearly straight. The lateral borders of the carapace are slightly convergent posteriorly : except for the afore-mentioned projection of the first branchial ridge there is no tooth behind the orbital angle.

Chelipeds mach larger in the male than in the female, but the difference is not so marked as in S. quadratum. The inner border of the arm ends in a very acute denticulated lobe: the palm is traversed on the outer surface, near the lower border, by a fine raised line, and on the upper surface in the male are numerous short parallel oblique strim one of which at least is most elegantly pectinate: in the female these crests are less namerous and less distinct: the upper surface of the dactylus of the male is milled, the lamellæ increasing in size and coarseness from behind forwards.

At the distal end of the posterior border of the meropodites of the legs are three or four strong spines, decreasing in size from behind forwards, but there is no subterminal spine on the anterior border: in other respects, except that the dactyli are slightly shorter, the legs are very similar to those of S. quadratum. The male abdomen is broad.

In the Indian Museum are 8 specimens from Mergui : the carapace of the largest is 7 millim. long and 9 millim. broad.
104. Sesarna lanatum, n. sp.

Carapace deepish, dorsally flat, everywhere covered, as also are the appendages, with a dense fur amid which are freely scattered little dense
adherent tufts of hair resembling tubercles. When this covering is removed the surface of the carapace is smooth and polished, with the gastric region aud its four post-frontal tubercles distinct.

The length of the carapace is considerably less than its breadth between the antero-lateral angles.

Front a little niore than half the breadth of the carapace, obliquely deflexed, its free margin nearly straight. The lateral borders of the carapace are nearly parallel and anteriorly are cut into three blunt lobes of nearly equal size-including the outer orbital angle.

The chelipeds when denuded have a smooth surface and sharp borders: they are similar in the two sexes, except that they are much more massive in the male. There is a blunt angular projection at the far end of the inner border of the arm, the inner angle of the wrist is pronounced but not dentiform, and the upper border of the palm is traversed fore and aft by a fine sharp crest: in the male the palm is at least as high as long: the upper border of the dactylus is faintly crenulate in its proximal two-thirds.

The meropodites of the legs are foliaceous, but their breadth is less than half their length : their borders are entire. The dactyli of the legs are claw-like, their length being about three-fourths that of the propodites.

The abdomen of the male is narrow.
In the Indian Museum are 4 specimens from Bombay and Karachi: the carapace of the largest is $8 \frac{1}{2}$ millim. long and 10 millim. broad.

105. Sesarma tæniolatum, White.

Sesarma tæniolatum, White, List Crust. Brit. Mns. p. 38 (1847): Miers, P. Z.S. 1877, p. 137, and Ann. Mag. Nat. Hist. (5) V. 1880, p. 313: de Man, Notes Leyden Mas. IL. 1880, p. 26 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 218: de Man, Zool. Jahrb., Syst., II. 1887, pp. 647, 666, and IX. 1895-97, p. 166, and Journ. Linn. Soc., Zool., XXII. 1888, p. 181, and in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. p. 330 : Bürger, Zool. Jahrb., Syst., VII. 1893-94, p. 615, and Ortmann, ibid. p. 720.

Sesarma Mederi, Milne Edwards, Ann. Sci. Nat. Zool. (3) XX. 1853, p. 185: Tozzetti, "Magenta" Crast. p. 136, pl. ix. figs. 1 a-i.

Carapace deep, nearly flat dorsally, square, its length being slightly less than its breadth between the antero-lateral angles. All the regions are quite well defined, and the 4 post-frontal tubercles-the middle two of which are not very mach broader than the outer ones-are very prominent. The whole dorsum of the carapace is covered with tufts of hair, which are largest and longest anteriorly. There are some oblique strim on the sides of the epibranchial regions.

Front half, or a little more than half, the breadth of the carapace,
not very deep, its free margin strougly sinuous. Lateral borders of the carapace nearly parallel, armed with one acute tooth behind the acute outer orbital angle.

The chelipeds are similar in the two sexes, except that they are a good deal more massive and more sharply scalptured in the male. They are not quite twice the length of the carapnce : the outer surface of the arm and wrist are granular-rugose, the outer surface of the palm is granular, and there is a transverse granular ridge on the inner surface of the palm : the upper border of the arm is crest-like and ends in a sharp tooth, and the distal end of the inner border forms an acate angular serrate lobe: the inner angle of the wrist is dentiform : close to and nearly parallel with the upper border of the palm rans a fine and very finely and evenly pectinate crest: along the apper border of the dactylus runs a very elegantly milled crest of from 40 to 60 fine teeth. In the male the palm is at least as high as long, the fingers meet only at tip, and the dactylus is about twice the length of the upper border of the palm.

The meropodites of the legs are foliaceous, but their greatest breadth is not quite half their length : there is a sharp subterminal spine on their anterior border only. The dactyli of the legs are twothirds, or more, the length of the propodites. The 3rd pair of legs, which are the longest, are a little more than twice the length of the carapace.

In the Indian Museum are 9 specimens, from Mergai, the Andamans, and Penang. The carapace of a large specimen is nearly 38 millim. long and nearly 40 broad.

106. Sesarma tetragonum (Fabr.).

Cancer tetragonus, Fabricius, Ent. Syst., Suppl. p. 341.
Cancer fascicularis, Herbst, Krabben etc. III. i. 49, pl. xlvii. fig. 5.
Sesarma tetragona, de Man, Zool. Jahrb., Syst., II. 1887, p. 646 : Henderson, Traus. Linn. Soc., Zool., (2) V. 1893, p. 382.

This species closely resembles S. troniohtum, from which it differs in the following characters:-
(1) the carapace is slightly broader:
(2) the subterminal lobe of the inner border of the arm is smaller, while the tooth at the inner angle of the wrist is more pronounced :
(3) the fine striated crest along the apper border of the palm is shorter :
(4) the crest of the upper surface of the movable finger of the chelæ is coarsely crenulate.

In the Indian Museum are 8 specimens from Ceylon, Madras, the Mahanaddi Delta, and the Ganges Delta. The carapace of a large one is 40 millim. long and 43 millim. broad.

107. Sesarma Brockii, de Man.

Sesarma Brockii, de Man, Zool. Jahrb., Syst., 1887, p. 651, and IX. 1895-97, p. 171, and Δ rchiv f. Naturges. LIII. 1887, i. p. 373, pl. xvi. fig. 3 : Thallwite, Abhand. Zool. Mus. Dresden, 1890-91, No. 3, p. 39 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 721.

Resembles S. tæniolatum, but differs in the following characters:-
(I) the carapace is shallow and much depressed, its length is just equal to its breadth between the antero-lateral angles, its dorsal surface is not so liairy, and its sculpture though similar is not so deeply cut: the front is not so sinuous.
(2) the lateral borders of the carapace are slightly divergent posteriorly, and there are two teeth-the posterior of which is, however, extremely small-behind the onter orbital angle :
(3) no subterminal spine on the upper border of the arm: no transverse granular crest on the inner surface of the palm :
(4) the milled crest along the apper border of the dactylus of the chelm is lower and has only about 25 teeth :
(5) the legs are longer, their meropodites are narrower and their dactyli-except in the case of the lst pair of legs-are barely half the length of their propodites.

In the Indian Museum there is a young male from the Andamans. In this specimen the chelipeds are not massive and are very little longer than the carapace.

108. Sesarma latifemur, n. sp.

Closely related to B. elongatusn, A. M. Edw.
This species belongs to the same natural group as 8. troniolatum, from which it differs only in the following characters:-
(1) the carapace is shallow and much depressed, and its length is decidedly more than its breadth between the antero-lateral angles, its dorsal surface is not quite so hairy and its post-frontal lobes are deeper cut:
(2) the lateral borders of the carapace are decidedly divergent posteriorly and have no tooth behind the orbital angle:
(3) the male chelipeds are little longer than the carapace: the crest-like upper border of the arm does not end in a spine: the inner
angle of the wrist, though well pronounced, is not spiniform : the transverse beaded ridge on the inner surface of the palm is very short:
(4) the dactylus of the chelm is not nearly twice the length of the upper border of the palm, and the milled crest on its upper surface consists of not more than 40 teeth :
(5) the meropodites of the legs are remarkably foliaceons, their greatest breadth, in the case of the 2nd and 3rd pairs, being more than half their length : all the leg joints are thinner and flatter :
(6) the dactyli of the legs are remarkably short, their length, in the case of the 2nd and 3rd pairs, being less than half the length of their propodites.

In the Indian Museum is a single male from the Andamans: its carapace is nearly 35 millim. long, and a little over 30 millim. broad across the antero-lateral angles.

109. Sesarma politum, de Man.

Sesarma polita, de Man, Zool. Jahrb. Syst. II. 1887, p. 654: Journ. Linn. Soc., Zool., XXII. 1888, p. 189, pl. xiii. figs.7-9.

Carapace shallow and much depressed, a good deal longer than broad, all the regions well defined : the four post-frontal lobes of the gastric subregions are deep-cut and very prominent, their anterior overhanging edges are serrated and their surface bears some transversely arranged sharpish tubercles : the two middle lobes are decidedly larger than the outer ones. There are no oblique strim on the epibranchial regions.

Front more than half the breadth of the carapace, its free margin markedly sinuous. The lateral borders of the carapace are nearly parallel though slightly sinuous: there are two well cut teeth behind the outer orbital angle.

Chelipeds equal, and not so very much longer than the carapace: the outer surface of the arm wrist and hand are closely beset with small tubercles, which in places have a squamiform look, and the inner surface of the palm is granular but has no transverse ridge: the inner and outer borders of the arm, the inner border of the wrist, and the upper border of the palm and movable finger are conspicuously serrulate, and there is also a noticeable dilatation near the far end of the inner border of the arm. There are no pectinated crests of any sort on the palm, and the fingers-both surfaces of which are smooth and polished-have no large gap between them when closed.

The legs are shortish, the 3rd pair being hardly $1 \frac{2}{3}$ times the length
of the carapaee, and rather slender. The meropodites are nearly three times as long as broad, they have a subterminal spine on the anterior border and in the case of the lst pair their posterior border is distinctly serrulate. The dactyli are rather short, their length, in the third pair, being less than two-thirds the length of the propodite: they are remarkably tomentose.

In the Indian Museum there is a single specimen from Mergai: its carapace is 38 millim. long and 35 millim. broad.

110. Sesarma oceanicum, de Man.

Sesarma ocsanica, de Man, Zool. Jahrb., Syst., IV. 1809, p. 429, pl. x. fig. 9, and Notes Loyden Mas. XIII. 1891, p. 68.

Carapace shallow, depressed, its length greater than its breadth between the antero-lateral angles; all the regions are fairly well defined and the 4 post-frontal lobes of the gastric subregions are prominent, the middle pair being more than twice as broad as the two outer ones: the surface of the carapace is granular anteriorly and punctate posteriorly, and near the sides are numerons short oblique strix.

Front half the breadth of the carapaoe, deepish, its free margin a a little sinuons: orbits not at all oblique: the lateral borders of the carapace have a slight, but distinct, convex curve, and there are two teeth-the posterior of which is extremely small-belind the outer orbital angle.

Chelipeds equal, not much longer than the carapace: the outer surface of the arm and wrist are ragose and both surfaces of the palm are studded with sharpish granules: there is a small angular lobe near the far end of the inner border of the arm, and the inner angle of the wrist is dentiform : the palm is not quite as high as long, olose to and nearly parallel with its upper border is a fine and finely granular ridge: the dactylus is about half as long again as the apper border of the palm, and there are some sharpish granules along its apper sarface.

The legs are slender: their meropodites are more than three times as long as broad and are not foliaceous, they have a subterminal spine on the anterior border only: their dactyli are shortish, those of the 3rd pair being less than two-thirds the length of their propodites, and are densely plamed : the 3rd pair of legs are aboat $2 \frac{1}{8}$ times the length of the carapace.

In the Indian Maseum is a single specimen from the Nicobars: its carapace is 20 millim. long, and 16.5 millim. acrass the antero-lataral angles.
J. 11. 55

111. Sesarma Finni, n. sp.

Near 8. maculata, de Man.
Carapace shallow, depressed, flat, perfectly square, its length being equal to its breadth at the antero-lateral angles and its sides being parallel : the regions are indicated, but not emphasized, and the 4 postfrontal lobes are sharply prominent, the middle pair being much broader than the outer ones.

Front half the breadth of the carapace, deepish, its free edge nearly straight: two little teeth on the lateral border of the carapace, behind the outer orbital angle.

In the chelipeds of the female the outer surface of the arm wrist and hand are granular; the upper border of the arm ends acutely, and the inner border ends in a spine; the inner angle of the wrist is pronounced, but is not dentiform; and the upper surface of the palm is traversed, fore and aft, close to the upper border, by a fine and finely milled ridge.

Legs long and slender, the 3rd pair being more than $2 \frac{7}{2}$ times the length of the carapace : their meropodites are not foliaceous, being about three times as long as broad, and they have a subterminal spinale on the anterior border only: their dactyli are long and slender, those of the 3rd pair being more than three-fourths the length of the propodite: the propodites and dactyli of all the legs are fringed with short stiff sharp bristles.

The species is represented by a small female from the Andamans : its carapace is not quite 11 millim. in either diameter.

112. Sesarma longipes, Krauss.

Sesarma longipes, Kranss, Sudafr. Crust. p. 44, pl. iii. fig. 2: Milne Edwards, Ann. Sci. Nat., Zool., (8) XX. 1853, p. 199 : Kingsley, Proo. Ac. Nat. Sci. Philad. 1880, p. 216 : de Man, Zool. Jahrb., Syst., II. 1887, p. 651.

The length of the carapace is equal to its breadth at the anterolateral angles, but as the lateral borders of the carapace diverge considerably, from before backwards, the greatest breadth of the carapace (at the level of the 2 nd pair of legs) is considerably more than the length.

Carapace deepish, very slightly convex; its regions are not very well defined, but the median longitudinal groove of the gastric region is deep, and the 4 post-frontal lobes are sharply prominent, the middle pair being much broader than the outer ones.

Front half the extent of the anterior border of the carapace, the free margin slightly sinuous: the divergent lateral borders of the carapace have a tooth of good size behind the outer orbital angles.

Chelipeds in the female not half as long again as the carapace : the outer surface of the arm and wrist are rugulose, and both surfaces of the palm are studded with sharpish granules: the apper border of the arm ends acutely, but there is no spine at the end of the inner border; the inner angle of the wrist is pronounced, almost dentiform; there are no granular or pectinated crests of any kind on the palm : the fingers are little bent and leave no large gap between them when closed, there are some sharpish granules along the upper border of the dactylus, and along the lower border of the fixed finger.

The legs are remarkably uneven in length, the third pair being more than $2 \frac{1}{3}$ times the length of the carapace; the meropodites are not exactly foliaceons, their greatest breadth being hardly two-fifths of their length, and they have a subterminal spine on the anterior border only; the dactyli are remarkably long, those of the third pair being as long as their propodites.

In the Indian Museam are 2 females from the Andamans: the carapace of the larger one is 18 millim. long and 20 millim. in its greatest breadth posteriorly.

113. Sesarnıa Kraussi, de Man.

Sesarma Kraussi, de Man, Zool. Jahrb., Byst., II. 1887, p. 652, and Journ. Linn. Soc., Zool., XXII. 1888, p. 193, pl. xiv. figs. 1-3.

Differs from S. longipes, which it closely resembles, in the following characters:-
(1) the four post-frontal lobes are not so prominent, the outer ones, indeed, being very inconspicuous :
(2) the free edge of the front is more sinuons, owing to the depth of the median notch :
(3) there are two distinct teeth on the lateral border of the carapace, behind the outer orbital angle :
(4) the outer surface of the wrist and both surfaces of the palm are nearly smooth, and there is a row of sharp granules along the outer surface of the fixed finger : the upper border of the arm does not end acutely :
(5) the legs are even longer and slenderer, the 3rd pair being more than $3 \frac{1}{\frac{1}{3}}$ times the length of the carapace: the meropodites of the legs are at least 3 times as long as broad.

In the Indian Musenm is a single male from the Nicobars: its carapace is 9 millim. long and 11 millim. in greatest breadth.

Heller ("Novara" Crast. pp. 64, 65) includes the following speoiee in the Indian fauna :-
S. IFydoumi, Milne Edwardg, Ann. Sci. Nat., Zool., (8) XX. p. 184 (Madran).
8. indica, Milne Ddwards, tonn. cit. p. 186 (Ceylon, Nicobars).
8. gracilipes, Milne Fdwarde, tem. cit. p. 188 (Nicobere).

Sarmativm, Dana.
Sarmativm, Dana, Silliman's Amor. Journ. Sci. (2) XII. 1851, p. 288, and Proc. Ac. Nat. \$ci. Philad. 1851, p. 251, and U. S. Expl. Exp. Crast. pt. I. p. 357 : Kingsloy, Proc. Ac. Nat. Sci. Philad. 1880, p. 212 : de Man, Zool. Jahrb., Syst., II, 1887, p. 659.

Metagrapsus, Minne Edwarde, Ann. Soi. Nat., Zool., (8) XX. 1858, p. 188.
This genus, which I almost agree with Dr. de Man in regarding as only a subgenus of Sesarma, differs from Sesarma in the following particulars:-
(1) the front, instead of being abruptly and vertically deflexed, is gradually declivous and obliquely deflexed :
(2) the antero-lateral borders of the carapace are usually a little arched, instead of being in the same straight line with the posterolateral borders:
(3) the abdomen of the male does not completely coincide with the breadth of the sternum at the level of the 5th pair of legs; and in the female the terminal segment is not deeply impacted in the penaltimate segment.

Distribution: West Indies, West coast of Africa, Indo-Pacific.

114. Sarmatium crasoum, Dana.

Sarmatium crassum, Dans, Proo. Ac. Nat. Sci. Philad. 1851, p. 251 ; U. S. Expl. Exp. Crust. pt. I. p. 858, pl. xxiii. fige. 1 a-d : Milne Edwards, Ann. Sci. Nat., Zool., (8) XX. 1858, p. 189 : Kingsley, Proc. Ac. Nat. Soi. Philad. 1880, p. 212 : de Man, Zool. Jahrb. Byst. II. 1887, p. 660.

Carapace deep, broader than long, broader behind than in front, emooth, with very faint indications of regions and no oblique striæ on the epibranchial regions : of the post-frontal lobes the two middle ones alone are distinct, and they are not prominent, they occupy almost all the space between the orbits.

The front is half the extent of the anterior border of the carapace, its free edge is very little concave in the middle line. The anterolateral borders of the carapace are distinctly arched and are cut into 2 broad blunt lobes (one of which is the orbital angle) followed by a small tooth.

Chelipeds " of male short, hand above transversely four to fiveplicate, externally nearly smooth, moveable finger with four short rudiments of spines, carpns mostly smooth, a few seriate granules above." In the female the transverse plications of the apper surface of the hand are very indistinct and the dactylus is smooth.

Lege not muoh compressed : the meropodites are not broadened, there is a spinule at the distal end of their anterior border: the dactyli are slender but are shorter than the propodites.

In the Indian Museum is a young female from the Nicobars : its carapace is 8 millim. long and 9 broad.

Hendermon (Trang. Linn. Soc., Zool., (2) V. 1898, p. 398) describes a variety of Sarmatium indicum (Milne Edwards, Nouv. Arohiv. du Mus. IV. 1868, p. 174, pl. xxvi. Ags. 1-6) from Coohin.

Metasbabma, Edw.

Kcdascestma, Minne Fidwarde, Ann. Soi. Nat. Zool. (8) XX. 1858, p. 188 : Kingeley, Proc. Aoad. Nat. Bci. Philad. 1880, p. 211 : de Man, Zool. Jahrb., Syst. IX. 1895-97, p. 128.

The most marked difference between this genus and Sesarma, which it closely resembles, is that the tooth at the inner angle of the orbit moets the thickened angle of the front, so as to completely exclude the antennee from the orbit.

The regions of the carapace are not defined, and the post-frontal tubercles are inconspicuous : the front is vertically deflexed as in Sesarma, but is deeper and overhangs the epistome : the reticulate appearance of the pterygostomian and neighbouring regions is finer, closer, and more confused: the orbits are more open below : the antenne are much smaller : the legs are not so broad and compressed.

The Metasesarmata are land and fresh-water crabs of the IndoPacific region.

115. Metasesarma Rousseauxii, Edw.

Metasesarma Rousseaumii, Milne Edwards, Ann. Sci. Nat., Zool. (3) XX. 1858, p. 188, and Archiv. du Mns. VII. 1855, p. 158, pl. x. figs. 1 a-c: Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 211 : de Man, Zool. Jahrb., Syst., IV. 1889, p. 439, and IX. 1895-97, p. 138, and X. 1898, pl. xxix. fig. 28, and in Weber's Zool. Frgebn. Niederl. Ost-Ind. II. p. 350 : Henderson, Trans. Linn. Soc., Zool., (8) V. 1808, p. 892: Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 717.

Sesarma Aubryi, de Man (nec A. M. Fdw.), Joarn. Linn. Soo., Zool., XXII. 1888, p. 168.

Carapace deepish, a little broeder than long, smooth to the naked eye, slightly conver fore and aft: a short semilunar groove separates the gastric from the cardiao region, and there is a median longitudinal post-frontal groove of some depth : the middle puir of post-frontal tubercles are distinct, though not prominent, but the outer ones are hardly distinguishable.

Front a little more than half the breadth of the carapace, vertical, deep, somewhat spathulate, the free edge convex and very slightly sinuous.

Sides of the carapace slightly curved and convergent posteriorly, no tooth behind the outer orbital angle.

The chelipeds are longer and more massive in the male, but are otherwise similar in both sexes : in the male they are less than $1 \frac{1}{2}$ times the length of the carapace. To the naked eye they are smooth, except for a patch of vesiculous granules in the middle of the inner sarface of the palm. The inner angle of the wrist is sharply pronounced, and the apper border of the palm and of the base of the dactylus have a few small blant serrulations. The palm is as high as long, the dactylus is about $1 \frac{1}{2}$ times the length of the upper border of the palm, the fingers, though a little hollowed at tip, are subacute and have no gap between them when closed.

Legs rather slender, smooth and unarmed to the naked eye : the meropodites are not broadened : the dactyli are as long as their propodites and like them are fringed with dark spine-like bristles. The 3rd pair of legs, which are the longest, are less than twice the length of the carapace.

In the Indian Museum are 61 specimens from the Andamans and Nicobars, Mergai, Ganges Delta, Madras, and Minnikoy (Laccadives). Many of the specimens were taken on land, hiding under timber, in which sitastion their curions mottled coloration must be protective. The largest specimen has a carapace 14 millim. long by nearly 17 broad.

Clistoceroma, A. M. Edw.

Clistocceloma, A. Milue Edwards, Nouv. Archiv. du Mus. IX. 1873, p. 310 : Kingaley, Proc. Ac. Nat. Sci. Philad. 1880, p. 219.

Differs from Sesarma only in the following characters :-
(1) the tooth at the inner angle of the lower border of the orbit meets the front, as in Metasesarma, so as to completely exclude the antennæ from the orbit:
(2) the reticulation of the sidewalls of the carapace resembles that of Sesarma, but, on denudation, the lines of granules are found to be absent, so that the meshwork is made up of hairs entirely :
(3) the merus of the external maxillipeds is shorter.

From Metasesarma this genus is distinguished by the lobalation of the dorsum of the carapace and the dentate lateral borders.

If Metasesarma is to be classed as a subgenus of Sesarma as it has been, and with undoubted reason, by Dr. de Man, the same course might be taken with Clistocceloma.

116. Olistocoeloma balanses, Edw.

Olistocosloma balansex, A. Milne Edwards, Nouv. Archiv. du Mus. IX. 1873, p. 311, pl. xvii. fig. 1.

The whole body and the appendages, except the tips of the dactyli of the legs, are every where covered with a dark dense adherent fur, amid whioh, on the dorsal aspect, are namerous clamps of tomentum that look like tabercles: the legs, in addition, have a shaggy fringe of coarse hair.

Carapace square, as long as broad, somewhat depressed: when denuded it is smooth and polished, with all the regions well defined and boldly and symmetrically lobulated, and the post-frontal lobes prominent, the outer ones being again subdivided into two tabercles.

Front much more than half the breadth of the carapace, nearly vertically deflexed, deepish, its free margin sinuous and turned up to form a trenchant horizontal edge.

The lateral borders of the carapace are cut, anteriorly, into three lobes including the outer orbital angle.

Chelipeds sabequal, nearly similar in size in both sexes, not more massive than the legs, shorter even than the lst pair of legs, which are little longer than the carapace. When denuded they are smooth, except that the upper surface of the wrist is a little lumpy : the inner border of the arm is a little conver distally, but does not expand into an undoubted lobe : the palm is higher than long, but is by no means swollen or massive, and in the male only its upper surface is traversed, obliquely fore and aft, as close as possible to the upper border, by a fine microscopically-pectinate crest: the fingers are subacute, though slightly hollowed at tip, and have no wide gap between them when closed, and the fixed finger is shorter and deeper than the dactylus, the dactylus is nearly twice as long as the apper border of the palm, and in the male its npper border is milled with about 14 or 15 lamellæ.

Legs markedly unequal : the third pair, which are the longest, are not quite twice as long as the carapace. In all, the meropodites are thin and broad, and the dactyli are not two-thirds as long as their propodites.

In the Indian Museam are a male and two females from the Nicobars. The carapace of the largest is 19 millim. in either diameter.

117. Olistoccoloma morguiense, de Man.

Clistocosloma merguiensis, de Man, Journ. Linn. Soc., Zool., XXII. 1888, p. 195, pl. ziii, fig. 10, and Notes Leyden Mus. XII. 1890, p. 92 : and Zool. Jahrb., Bysto, IX. 1895-97, p. 889, and X. 1898, pl. xxxi. fig. 40.

This species differs from O. balances in the following particulars:-
(1) the carapace is decidedly broader than long, its lobulations are not nearly so bold and convex, and the outer post-frontal lobules may be entire:
(2) the free edge of the front is not turned ap to form a trenchant horizontal orest, although it is well defined :
(3) the chelipeds of the male are far more massive than any of the legs; the inner border of the arm is dilated distally; the palm is a good deal swollen, the pectinate crest that traverses its upper surface is longer, and its inner surface is more granular; the fingers are more widely separated when closed, and the lamellar tubercles along the upper border of the dactylus are more numerous:
(4) it is a smaller species.

In the Indian Museum are 10 specimens from the Nicobars: the carapace of the largest egg-laden female is 10 millim. long and 12 broad.

Metaplat, Edw.

Metaplas, Milne Kdwards, Ann. Sci. Nat. Zool. (3) XVIII. 1852, p. 161.
Rhaconotus, Gerstaecker, Arohiv f. Naturgea. XXII. 1856, i. p. 140, and Kingsley, Proo. Ac. Nat. Goi. Philad., 1880, p. 218.

Metaplas, de Man, Journ. Linn. Soo., Zool., XXII. 1888, pp. 168-155.
Carapace quadrilateral, somewhat depressed, a good deal broader than long, the regions well or fairly defined and the cervical and branchial grooves distinct.

Front declivous, its breadth about a third or a fourth that of the carapace, the convexity of its free edge impinges on the epistome to help in forming the broad interantennulary septum.

Lateral borders of the carapace straight, or a little arched anteriorly, nearly parallel, cut into 4 or 5 teeth of which the last one or two are very inconspicuous. The posterior part of the sidewalls of the carapace with some hairs curving towards the incurrent branchial opening.

Orbits of good depth : their outer wall incomplete, their lower border crenulate : the eyes do not fill the orbits and the ejestalks are not prolonged.

The antennules fold nearly transversely: the septum between them is broad. The antennes lie in the orbital hiatus, their basal joint is extromely short, their flagellum is of fair length.

Epistome short, but well defined and prominent: buccal cavern squarish : the external maxillipeds leare between them a large rhomb-
oidal gap, in which the mandibles are exposed : a broad oblique groove, bounded internally by a line of hairs, runs from a point behind the antero-external angle of the isohinm to the anterior edge of the merus : the merus is truncated, and the foliaceous propodite articulates near its antero-external angle.

The chelipeds differ very markedly in the sexes: in the female they are shorter and slenderer than the legs, but in the male they are longer and much more massive than the legs. In the male there is always a short oblique horny crest, either on or close to and parallel with, the inner border of the arm, as in many species of Macrophthalmus: it probably, as Dr. de Man suggests, is scraped against the lower border of the orbit to produce a musical sound.

Legs slender, the first and last pairs much shorter than the 2nd and 3rd pairs-the 3rd pair the longest.

The abdomen in the male does not quite cover the sternum between the bases of the last pair of legs : it may have all 7 segments distinct, or, rarely, the 3rd 4th and 5th segments may be fused together : in the female all 7 segments are separate and the 7 th is small and deeply impacted in the 6th, as in Sesarma.

Distribution : Estuaries and mudflats of the Oriental littoral.
The species of Metaplax have many points of resemblance with the Ocypodoid genus Macrophthalmus, and this is all the more likely to lead to confusion as the two genera share the same habitat and have the same manner of life; but there is no doubt of the true position of Metaplax among the Sesarminse.

Key to the Indian species of Metaplax.

I. Anterior border of carpi and propodites of legs apiny : ohelipeds in the male 3 times the length of the carapace.......
II. Anterior border of carpopodites and propodites of legs smooth : male chelipeds less than 3 times the length of the carapece :-

1. Dactylus of cheles of male withont any prominent lobe on its dentary edge: chelipeds of male equal :-
i. 8rd 4th and 5th abdominal segments fused together in the male.
M. indica.
ii. All the abdominal segments separate :-
a. Length of the carapace about threefourths the breadth: orbital portion of lower border of orbit with 4 or 5 teeth...
M. dentipes.
b. Length of the carapace less than threefourths the breadth: orbital portion of lower border of orbit with 9 or 10 teeth... M. distincta.
J. II. 56
2. Dactylus of chels of male with a prominent lobe projecting on the dentary edge: chelipeds of male markedly unequal :-
i. Palm of larger cheliped of male longer than high. M. elegans.
ii. Palm of larger cheliped of male higher than long.
M. intermedia.

118. Metaplax indica, Edw.

Metaplax indicus, Milne Edwards, Ann. Sci. Nat., Zool,, (3) XVIII. 1852, p. 161, and Archiv. du Mus. VII. 1855, p. 165, pl. xi. figs. 2-2c.

Carapace about two-thirds as long as broad, deepish, a little convex, its surface smooth, the regions and the cervical and epibranchial grooves faint.

Front about a third the greatest breadth of the carapace. Lateral borders of the carapace nearly straight, cut into 4 teeth, of which the first 2 are large, the 3 rd very small, and the 4 th very inconspicnous.
. Lower border of the orbit of the male continued to the level of the first notch in the lateral border of the carapace, unevenly crenulate.

Chelipeds of the male equal, more than $2 \frac{1}{9}$ times the length of the carapace, smooth and unarmed, to the naked eje: arm long and slender, projecting far beyond the carapace, its musical crest is almost on the inner border, close to its proximal end : palm nearly twice as long as high, increasing in height from its proximal to its distal end : fingers slender, acute, not noticeably channelled and only moderately incurved, neither of them have any large lobes on their dentary edge, the dactylus is hardly shorter than the upper border of the palm, and though it is deflexed is not hooked.

Legs quite unarmed, the carpopodites and propodites of the two middle pairs remarkably tomentose: the third pair of legs are a little more than twice as long as the carapace.

The 3rd 4th and 5th abdominal segments of the male are fased together-though the sutures are not obliterated on either side, but only in the middle-to form a single piece.

In the female the chelipeds are very slender, quite smooth, a little longer than the carapace, and the lower border of the orbit is finely and evenly serrulate.

In the Indian Museum are a male and a female from Karachi : the carapace of the male is 10 millim. long and 14.5 millim. broad.

119. Metaplax distincta, Edw.

Metaplas distinetus, Milne Edwards, Ann. Sci. Nat., Zool., (3) XVIII. 1852, p. 162, pl. iv. fig. 27 : de Man, Journ. Linn. Soc., Zool., XXII. 1888, p. 158, pl. x. figs. 7-9 : Henderson, Trans. Linn. Soc., Zool, (2) V. 1898, p. 391.

Differs from M. indica in the following characters:-
(l) the carapece is more than two-thirds-nearly three-quartersas long as broad :
(2) the lower border of the orbit of the male is prolonged to the level of the second notch in the lateral border of the carapace, and its orbital portion is cat into 9 or 10 little, blant, obscurely-bilobulate teeth, which decrease very regularly in size from within outwards:
(3) the chelipeds of the male are hardly $2 \frac{1}{2}$ times the length of the carapace; the arm has denticulate borders-the inner border being a little dilated distnlly-and is not elongate and slender, its musical crest rans obliquely away from the inner border and is nearer to the middle of that border: the palm is only about half again as long as high : the fingers are obliquely-truncated and channelled at tip, the fixed finger has a lobe (thongh not a very large one) on its dentary edge, the dactylus is hardly shorter than the upper border of the palm and has a strong hook-like curre:
(4) the anterior border of the meropodites of the legs is armed, in the first and last pairs with a single subterminal spine, in the middle two pairs with several spines; the tomentum on the earpopodites and propodites of the middle two pairs of legs is not so thick :
(5) the abdomen of the male consists of 7 separate segments.

In the Indian Museum are 8 specimens from Madras, Coconada, Mergui, and the Nicobars: the carapace of the largest male is $\mathbf{1 5}$ millim. long and 21 broad.

120. Metaplax dentipes (Heller).

Helice dentipas, Heller, Novara Crast. p. 62, pl. v. fig. 5 : Kingsley, Proc. Aa Nat. Sci. Philad. 1880, p. 220.

Metapla» dentipes, de Man, Journ. Linn. Soc., Zoel., XXII, 1888, p. 162, pl. xi. figg. 1-3.

This is little more than a large variety of M. distincta, from which it differs in the following particulars:-
(1) the carapace is less transverse, its length being slightly more than three-fourths of its breadth :
(2) the lower border of the orbit of the male is divided, in its orbital portion, into 4 or 5 blunt, broad, compressed teeth decreasing in size from within outwards, and each tooth has a little cusp at its outer end :
(3) in the chelipeds, the inner border of the arm is more dilated distally; the lobe on the dentary edge of the fixed finger is not so conver, and the dactylus is as long as the upper border of the palm
and is not so strongly hooked; the dactylus also sometimes has an enlarged tooth-not a distinct lobe-near the middle of its dentary border:
(4) the anterior border of the meropodites of the legs is very often quite free from spines, but sometimes there are inconspicuous spinules where spines exist in M. distincta.

In the Indian Maseum are 23 specimens from the banks of the Hooghly, the mad-flats of Arakan and Tenasserim, and Mergui. The carapace of a large male is a little over 21 millim. long and 29 millim. brond.

121. Metaplax elegans, de Man.

Metaplaw elegans, de Man, Journ. Linn. Soc., Zool., XXII. 1888, p. 164, pl. xi. figs. 4-6, and Zool. Jahrb., Syst., VIII. 1894-95, p. 596.

Metaplam crassipes, de Man, in Weber's Zool. Ergebn. Niederl. Ost-Ind. II. 1892, p. 325, pl. xix. fig. 12 (ipso teste).

Resembles M. indica in the form of the carapace, but can be recognized by the following characters :-
(1) the groves of the carapace are fainter:
(2) the lower border of the orbit instead of being irregularly cat into dentiform lobules is very finely and regularly pectinate :
(3) the chelipeds in the male are not $2 \frac{1}{2}$ times as long as the carapace and are distinctly unequal, the hand of one being decidedly larger than its fellow : the arm is not elongate, its edges are granular, and its musical crest, which is very fine, stands at the middle of the inner border, running obliquely parallel with that border: the larger palm is only a little longer than high and its inner surface is granular, its fingers are obliquely truncate and strongly channelled, and both of them have a lobe near the middle of their dentary border, the dactylus also is strongly curved, at any rate in the larger hand :
(4) in the first pair of legs the meropodites have a single subterminal spine on the anterior border, in the 2nd pair there are from three to six spines, and in the 3rd and 4th pairs from seven to ten : moreover at the extreme distal end of the posterior border of the meropodites of the two middle pairs of legs there may be two or three spinules:
(5) the abdomen of the male is broader, and has all 7 segments separate.

In the Indian Maseum are 32 specimens from the Godarari Delta and from Mergui : the carapace of the largest male is 10.5 millim. long and 16 broad.

Hetapla» intermedius, de Man, Journ. Linn. Soc., Zool., XXII. 1888, p. 166, pl. xi. figs. 7-9.

Differs from M. indica in the following characters:-
(1) In the male the lower border of the orbit is continued a little beyond the first notch in the antero-lateral border of the carapace, and at its inner end it is cut into a series of 5 or 6 little even teeth that decrease in size from within ontwards, and then it gradually becomes minately and regularly pectinate:
(2) the chelipeds of the male are markedly unequal, the difference in size being in the hand : their length is about $2 \frac{1}{2}$ times that of the carapace: the arm is of no great length and is somewhat broadened across the middle, its edges are granular, and its musical crest lies in the middle of the inner border, close to and nearly parallel with that border: the palm has granular edges and is much compressed at its antero-inferior corner; in the larger cheliped the hand is at least as high as long: the fingers are obliquely truncated and strongly channelled; in the larger hand the dactylus is hooked and has a lobe on its cutting edge near the proximal end, while the fixed finger is broad, is thin and compressed at its basal end, and presents on its cutting edge a notch (corresponding with the lobe on the dactylus) followed by a high lobe that descends obliquely to the tip of the finger :
(3) near the far end of the anterior border of the meropodites of the legs is a spine :
(4) the abdomen of the male has all 7 segments distinct, and is rather broadly triangular.

Iu the Indian Museum are 11 specimens from the Godavari Delta, the Gangetic Delta and Mergui. The carapace of the largest male is $9 \frac{1}{2}$ millim. long and 15 broad.

123. Metaplax crenulata, Gerstaecker.

Rhaconotus crenulatus, Gerstrecker, Aroh. f. Naturges. XXII. i. 1856, p. 142, pl. v. fig. 5 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 213.

Metaplam crenulatus, de Man, Journ. Linn. Soc., Zool., XXII. 1888, p. 156, and Zool. Jahrb., Syst., IV. 1889, p. 439.

Carapace about three-fourths as long as broad, convex, with the regions well defined and the cervical and epibranchial furrows deep and coarse, its surface pitted.

Front about a fourth the greatest breadth of the carapace. Lateral borders of the carapace ont into five teeth, the edges of which are serrated; the anterior part of the lateral borders is distinctly arched.

The lower border of the orbit, in the male, extends beyond the first notch of the lateral border of the carapace, its inner end is sharp entire and sinnons, but all the rest of its extent is elegantly beaded.

Chelipeds of the male three times the length of the carapace, the borders of the wrist and hand, and the inner border of the wrist, sbarply granular or serrulate: arm long and slender, somewhat dilated at its proximal end, the musical crest close to the proximal end and almost on the inner border : the palm gradually increases in height from behind forwards, its greatest height is about half its length, along the middle of its inner surface is a row of granules ending in a granular patch : fingers slender, acate, incarved, not channelled, the extreme length of the dactylus is only aboat three-fourths that of the apper border of the palm : there are no prominent lobes on the dentary edges of the fingers.

Both borders of the meropodites of the legs, as well as the anterior border of the carpopodites and propodites, are spinalate. The third pair of legs are nearly as long as the male chelipeds.

In the abdomen of the male, which is narrow, all 7 segments are distinct, the penultimate segment being square.

In the female the ohelipeds are very slender and are abont $1 \frac{1}{2}$ times the length of the carapace, and the lower border of the orbit is elegantly pectinate.

In the Indian Maseum are 11 specimens from the Sunderbands and Mergai. The carapace of the largest male is 30 millim. long and 40 broad.

Sub-family Plagosinge, Dana.
Plagusia, Latreille.
Plagusia (part), Latreille, Gen. Crust. et Ins. p. 33 (1806) : Desmarest, Consid. Gen. Crust. p 126 (part) : De Haan, Fann. Japon. Crust. p. 31: Milne Edwards (part), Hist. Nat. Crust. II. 90, and Ann. Sci. Nat. Zool., (8) XX. 1853, p. 178 : Miers, Ann. Mag. Nat Hist. (5) I. 1878, p. 148, and Challenger Braohyura, p. 271 : Kingsley, Proc. Ac. Nat. Sci. Philad., 1880, pp. 189, 223.

Philyra, De Haan, l.c. supra.
Carapace subcircular, depressed, the antero-lateral borders toothed. The interorbital space is broad, being nearly a third the greatest breadth of the carapace; but there is no true front, so that the antennular fosso, into which the antennules fold nearly vertically, are visible in a dorsal view as deep clefts in the anterior border of the carapace. The interantennular septum is broad. Orbits deep : the antenne stand in the wide orbital hiatus, their flagellum is short.

Epistome short: buccal cavern squarish, its anterior border is crenate aud projects strongly in a horizontal direction. The external maxillipeds do not meet across the buccal cavern, but the space between them, which is not very broad, is occluded by bristles : their merus is as broad as the ischinm and carries the palp at its summit: their exognath has no flagellum.

Chelipeds and legs dorsally ragose. Chelipeds sabequal: in the male they are more massive than the legs, and longer than those of the first and last pairs, in the female they are shorter and slenderer than any of the legs : the fingers are stout and have rounded hollowed-out tips.

Legs very stont, with broad massive meri and short stout serrated dactyli.

The abdomen of the male is triangular and rather broad: it covers all the sternum between the last pair of legs, and it may have all 7 segments distinct or the 3 rd 4 th and 5 th fused. In the female the abdomen is broad and consists of 7 segments, but the 3rd 4th and 5th do not move independently of one another.

Distribution: all warm seas, and extending into the Mediterranean.
In habit the Plagusis to a certain extent resemble the Grapsi, dodging about rocks that are awash at high tide, and hiding in crannies when pursued. They also resemble Varuna in being able to make themselves at home on drift timber in the open sea. This will account for the very wide range of some of the species.

The presence of two species in the Mediterranean implies nothing, of itself, for they may very probably have been carried there by ships. On the "Investigator" one could always see a Plagusia adhering to the ship's side near the water-line.

12 \&. Plagusia depressa var. squamosa (Hbst.).

? Cancer depressus, Herbst (nec Fabr.), Krabben do. I. ii. 117, pl. iii. Ags. 35 a-d.
Oancer squamosue, Herbst, I. ii. 260, pl. 8x. fig. 118 (v. Hilgendorf, SB. Ges. Nat. Frennde, 1882, p. 24).

Plagusia squamosa, Latreille, Gen. Crast. p. 34, and Noav. Dict. Hist. Nat. XXVI. p. 588, and (?) Enoycl. Méthod. X. 1825, p. 145 : Lamarck, Hist. Nat. Anim. Sans Verh. p. 246: Milne Edwards, Hist. Nat. Crust. II. 94 : Kranss, Sudafr. Crust. p. 42 : Milne Edwards, Ann. Soi. Nat., Zool., (8) XX. 1853, p. 178 : Heller, 8B. Akad. Wien, XLIII. 1861, p. 363, and Novara Crust. p. 51 : A. Milne Edwards, Nouv. Archiv. du Mus. IX. 1873, p. 298: Richters, in Möbins, Meeresf. Marit. p. 157 : Hilgendorf, SB. Ges. Nat. Freande, Berlin, 1882, p. 24.

Plagusia tuberculata, Lamarck, l.c. p. 247 : Latreille, Encyol. Méthod. X. p. 146 : Milne Edwards, l.c. p. 94: Miers, Ann. Mag. Nat. Hist. (5) I. 1878, p. 148 : Haswell, Cat. Austral. Crust. p. 110: Müller, Verh. Ges. Basal, VIII. 1886, p. 476 : de Man, Notes Leyden Mas. V. 1888, p. 168, and Zool. Jahrb., Syst., IX. 1895-97,
p. 358 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 730 : M. J. Rathban, P. U. 8. Nat. Mas. XXI. 1898, p. 605.

Plagusia immaculata, Lamarck, l. c. p. 247 : Miers, l. c., p. 150, and Challenger Brachyara, p. 278, pl. xxii. fig. 1 : Haswell, l. c.: de Man, Archiv für Natargea. LIII. 1887, i. p. 371 : Cano, Boll. Soc. Nat. Napol. III. 1889, p. 246 : Henderson, Trans. Linn. Soc., Zool., (8) V. 1893, p. 891 : Ortmann, l. c.: Nobili, Ann. Mus. Genov. (2) XX. 1899, p. 271.

Plagusia depressa, Latreille (nec Fabr.), Encyol. Méth. X. 145 : Milne Edwards, Hist. Nat. Crust. II. 93, and Ann. Sci. Nat., Zool., (8) XX. 1853, p. 179 : Heller, Novara Orust. p. 51.

Plagusia orientalis, Stimpson, Proc. Ao. Nat. Soi. Philad. 1858, p. 103, and Ann. Lyc. Nat. Hist. New York, VII. 1860, p. 231.

All the regions of the carapace are distinct, and the surface is covered with flat pearly or squamiform tubercles which are fringed anteriorly with little close-set bristles of uniform length.

The tabercles vary: sometimes they are prominent, sometimes depressed, and sometimes they are almost obsolete on the most convex portions of the carapace. The little fringes of bristles also vary: sometimes they fill all the space between the tabercles, somtimes they can only be made out with a lens, sometimes they are absent.

The antero-lateral border of the carapace is armed with four teeth (including the orbital angle) which decrease in size from before backwards. The epistome is prominent beyoud the anterior border of the carapace and is usually cut into seven lobes.

The chelipeds of the adult male are massive and are about half again as long as the carapace, but in the female they are slender and only about as long as the carapace. The inner angle of the wrist is coarsely dentiform : the tubercles on the upper surface of the palm and dactylus are arranged in high relief in longitudinal rows, those on the outer surface of the palm-especially at the upper part of it-have a tendency to fall into transverse rows.

On the posterior edge of the dorsal surface of the basipodites of the legs is a subacute tooth or blunt lobe with entire edges, this tooth being most conspicuous in the 2nd and 3rd pair of legs: on the anterior border of the meropodites there is a single strong spine, sabterminal in position : the upper surface of the carpopodites propodites and dactyli is traversed longitudinally by a dense strip of long bristles. The 3rd pair of legs, which are the longest, are not quite twice the length of the carapace.

In the Indian Museum are 31 specimens from the Bay of Bengal and Arabian Sea: many of them were taken from drift timber in the open sea. Old specimens are commonly encrusted with barnacles and acorn-shells. The largest specimen in the collection has a carapace 54 millim. long and 56 broad.

Leiolophus, Miers, Cat. Crast. New Zealand, p. 46 (1876), and Ann. Mag. Nat. Hist. (5) I. 1878, p. 153.

Acanthopus, De Haan, Faun. Japon. Crast. p. 29 : Dana, U.S. Expl. Exp. Crust. pt. I. p. 872 : Milne Edwards, Ann. Sci. Nat., Zool., (3) XX. 1858, p. 180 (nom. przocc.).

As in Plagusia, the antennæ fold nearly vertically in deep slitsvisible in a dorsal view-cut in the anterior border of the carapace, the slits dividing the interorbital space into three deep lobes; and the exognath of the external maxillipeds has no flagellam.

The difference from Plagusia is as follows :-
The carapace is extremely flat and depressed-being quite disk-like-and is longer than broad: the interantennular septum is of no great breadth : the epistome is almost linear : the merus of the external maxillipeds is very small, being mach narrower than the ischinm, and is disposed obliquely in repose: the chelipeds and legs, though in places spiny, are not rugose: the legs are much slenderer, and though the meropodites are broad they are very thin: the copulatory organ of the male ends in a claw : finally, the exognath of the external maxillipeds is extremely short and slender.

As in the Indian species of Plagusia, the abdomen of the male consists of 5 segments, the 3 rd 4 th and 5 th being fused. The abdomen of the female is similar in this respect to that of the male.

Distribution: as Plagusia, but not in the Mediterranean.
125. Liolophus planissimus (Hbst.).

Cancer planipes, Seba, Thesanrus III. p. 49, pl. xix. fig. 21 (1758).
Cancer planissimus, Herbst, Krabben \&o. III. iv. 8, pl. lix. fig. 3 (1804).
Plagusia clavimana, Latreille, Gen. Crust. p. 34 : Lamarok, Hist. Nat. Anim. Sans Vert., Crast., p. 247 : Desmarest, Dict. Sci. Nat. XXVIII. p. 246 : Latreille, Encyol. Méthod. X. p. 146 : Desmarest, Consid. Gen. Crust. p. 127, pl. xiv. fig. 2 : Milne Edwarda, Hist. Nat. Orast. II. 92, and in Cavier, Règne Animal, Orust. pl. xxiii. fig. 3 : Hess, Arohiv f. Nat. XXXI. 1865, i. p. 154 : Desbonne et Sohramm, Crust. Guadaloupe, p. 50 : Richters in Möbina' Meeresf. Manrit. p. 157.

Plagusia serripes, Lamarck, loc. cit. : Latreille, Encyol. Méthod loc. cit.
Acanthopus planissimus, De Haan, Faun. Japon. Crast. p. 30 : Dana, U. S. Expl. Exp. Crast. pt. I. p. 872 : Milne Edwards, Ann. Sci. Nat., Zool., (3) XX. p 180 : Heller, 8B. Ak. Wien, XLIII. 1861, p. 364 : 8timpson, Ann. Lyc. Nat. Hist. New York, VII. 1862, p. 232 : Heller, Novara Crast. p. 51 : A. Milne Edwards, Nouv. Arohiv. du Mus. IX. 1873, p. 299 : Brocohi, Ann. Sci. Nat., Zool., (6) II. 1875, Art. 2 (male appendages) : Nauck, Zaits. Wiss. Zool. XXXIV. 1880, p. 31 (gastric teeth).

Acanthopus clavimanus, Kranss, Sudafr. Crast., p. 42.
Acanthopus Gibbesi, Milne Edwards, Ann. Soi. Nat. Zool. loc. cit.
Loiolophus planissimus, Miers, Cat. Crust. N. Z. p. 46, and Ann. Mng. Nat. Hist. (5) I. 1878, p. 153, and P. Z. S. 1879, p. 38, and Zool. H. M. S. Alort, Pp. 518, 545 : J. II 57

Filhol, Crust. N. Z., Miss. l'ile Campbell, p. 894: Haswell, Cat. Austral. Crast. p. 112 : Müller, Verh. Ges. Nat. Basel, 1886, p. 476 : de Man, Arch. f. Nat. LIII. 1887, i. p. 372, and Notes Leyden Mus. XV. 1893, p. 287, and Zool. Jahrb., 8yst., IX. 1895-97, p. 358 : Pocock, Journ. Linn. Soc., Zool., XX. 1890, p. 518 : Henderson, Trans. Linn. Soc. Zool. (2) V. 1893, p. 891 : Ortmann, Zool. Jahrb., Byst., VII. 189394, p. 731 : Whitelegge, Mem. Anstral. Mas. III. 1897, p. 189 : M. J. Rathbun, Ann. Inst. Jamaica, I. 1897, p. 86.

Carapace thin, disk-like, covered with little short bristles which, however, leave certain symmetrical raised linear patches bare: the meropodites of the legs are clad in the same way, and have two long bare stripes.

The front, the antennular and supra-orbital angles, and the epistome are all acutely spinous : the autero-lateral border of the carapace is armed with 4 acute spines: the middle of the npper border of the orbit is more or less serrate. The eyes are large and reniform.

The chelipeds vary according to age and sex, but the arm and wrist are always armed with spines; the palm is smooth, nude, oval, and somewhat compressed; and the fingers are short, blunt, and hollowed at tip. In the adult male the palms, or one of them, are remarkably deep.

The anterior border of the meropodites of all the legs is armed along its whole length with remarkably large and even spines, the posterior border ends in a spine : in the case of the first two meropodites there is a second row of spinules parallel with the anterior border, but this is very indistinct in the meropodites of the 3rd pair, and quite absent in those of the 4th.

The colour in life is dark green, the nude streaks being bright green. In the Indian Museum are 36 specimens from the Andamans, Ceylon, and Laccadives : the carapace of the largest is 23 millim. long and 21 broad.

Family GEOCARCINIDA, Dana.

Key to the Indian Genera.

I. Fronto-orbital border more than half the maximam breadth of the carapace: interantennalar septum broad: epistome well defined and prominent : dactyli of legs with 4 rows of spines :-

1. Buccal cavern not elongate : exognath of external maxillipeds without a flagellum : opposed edges of the basal joints of the 2nd and 3rd pairs of lega heavily fringed with hair much as in Ocypoda :-
i. Antero-lateral borders of carapace dentate..... Grapsodes.
ii. Antero-lateral borders of carapace entire......... Epigrapsos.
2. Buccal cavern elongate : exognath of external maxillipeds with a flagellum : no hairy fringe on the basal joints of the 2nd and 3rd pairs of legs.

Cardiosoma.
II. Fronto-orbital border less than half the greatest breadth of the carapace : interantennular septum narrow: epistome ill-defined and sunken: dactyli of legs with 6 rows of spines: exognath of external maxillipeds without a flagellam

Pelocarcinus.

Grapsodes, Heller.

Grapsodes, Heller, Novara Crust. p. 58 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, pp. 188, 197.

Carapace depressed, little broader than long, declivous anteriorly, the regions faintly indicated, the dorsal surface without ridges or wrinkles, the lateral borders well arched and irregularly dentate.

Front about half the width of the anterior border, or about a third the greatest breadth of the carapace, strongly deflexed, its free edge nearly straight.

Orbits small, shallow, the lower border is wanting except for the tooth at the inner angle. The antennules fold nearly transversely in fosso which are widely open externally: interantennular septum very broad. Antennal flagella slender and very short, standing in the orbital hiatus.

Epistome of moderate length fore and aft. External maxillipeds baving a rhomboidal gap between them, in which the mandibles are visible : the merus is narrower than, but about the same leugth as, the ischinm, and is a little oblique : the palp, which though coarse is small, articulates at the antero-external angle of the merus.

Chelipeds in both sexes sabequal : in the male they are very much more massive than the legs and longer than the first and last pairs : in the female they are relatively shorter and much less massive than in the male. The tips of the fingers are acute.

Legs stout, their joints are not particularly broad or compressed but have their edges armed with stout bristles: the dactyli are long, acute, and thorny. The 2ud and 3rd pair of legs are the longest, and between their bases is a recess fringed with hairs resembling that found in Ocypoda and Gelasimets, and probably indicating terrestrial or amphibious habits.

The abdomen in both sexes consists of seven segments, and in the male its base covers all the breadth of the sternum between the last pair of legs.

Distribution: Islands of East Indian Archipelago.

This genus is really identical with Epigrapsus (=Nectograpsus), from which it only differs in having the regions of the carapace even more indistinct, the lateral borders of the carapace entire, the male chelipeds remarkably nnequal, and the dactylus of the legs alone hirsute.

126. Grapsodes notatus, Heller.

Grapsodes notatus, Heller, Novara Crust. p. 58, pl. v. fig. 2 : Miers, P. Z. S. 1877, p. 136 : J. 8. Kingsley, Proo. Ac. Nat. Sci. Philad. 1880, p. 197 : de Man, Notes Leyden Mus. V. 1883, p. 160.

Carapace five-sixths as long as broad, the regions defined, though faintly, the surface smooth except sometimes for some granules near the lateral borders. The antero-lateral borders are cut into three shallow teeth or lobes behind which are some inconspicuons crenulations. On the line of flexion of the front are two eminences separated by a notch. Epistome and pterygostomian regions tomentose.

The chelipeds differ considerably in the sexes, though always smooth. In the adult male they are nearly twice the length of the carapace, the inner angle of the wrist is pronounced but not spiniform, the palm (which is as high as long) has a strong bulge at the inferoposterior angle, the dactylus (which is twice as long as the apper border of the palm) is much longer than the immobile finger and closes very obliquely, and there are two molariform teeth, one near the base of the dactylus, the other nearer the tip of the immobile finger.

In the female the chelipeds are hardly $1 \frac{1}{8}$ times the length of the carapace, the inner angle of the wrist is dentiform or spiniform, the palm is not enlarged or inflated, and the fingers are of nearly equal length, meet in the greater part of their extent, and are finely denticulated except near the tips.

The second pair of legs, which are the longest, are about twice the length of the carapace, the third pair are a little shorter than the second, and the first and last pair are about $1 \frac{1}{a}$ times the length of the carapace.

In the Indian Museam are 8 specimens from the Nicobars. The carapace of the largest male is 25 millim. long and 30 millim. broad, but a female is somewhat larger than this.

That this species is probably terrestrial is evidenced by the vaulted branchial cavities, and also by the folding of the membrane that lines them, which is practically the same as that of Ocypoda, Cardiosoma, and Pelocarcinus.

Epigrapbus, Hellet.
Epigrapsus, Heller, Verh. zool.-bot. Ges. Wien, XII. 1862, p. 522 : Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, pp. 188, 192 : Miers "Challenger" Brachyara, p. 265.

Nectograpaus, Heller, Novara Crust. p. 56.
This genus is really identical with Grapsodes, from which it differs in no single point of importance.

The trivial characters that separate it from Grapsodes are the following :-

The regions of the carapace are hardly distinguishable, and the lnteral margins are entire: the chelipeds in the male are markedly nnequal, one of them being longer and vastly more massive than the legs, the other being hardly larger than those of the female (which resemble those of Arapsodes): though the legs resemble those of Grapsodes in proportions and in the singalar length of the dactyli, they differ in having only the terminal joint hirsute.

Distribution: lslands of the East Indian Archipelago and Polynesia.

127. Epigrapsus politus, Heller.

Epigrapsus politus, Heller, Verh. sool.-bot. Ges. Wien, XII. 1862, p. 522: Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, p. 192 : Miers, Challenger Brachyura, p. 266 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 703: de Man, Zool. Jahrb. Syst. IX. 1895-97, p. 79.

Nectograpsus politus, Heller, Novara Crust. p. 57, pl. v. fig. 3.
Carapace about seven-eighths as long as broad, perfectly smooth, the oater orbital angle not pronounced and the lateral margins entire in the adult. The line of flexion of the front is a little concave in the middle. Epistome and pterygostomian regions tomentose.

Chelipeds smooth, equal in the female, markedly unequal in the male. In the male the larger cheliped is more than twice the length of the carapace, the inner angle of the wrist is not pronounced, the palm is about as high as long and has a strong bulge at its posteroinferior angle, the dactylus is much longer than the immobile finger, and the dactylus has 2 or 3 small molariform teeth while the immobile finger has a single one.

In the female the chelipeds are little longer than the carapace, have the inner angle of the wrist pronounced, the palm not enlarged or inflated, and the fingers finely and inconspicuously toothed and nearly equal in length.

The smaller cheliped of the male is bat little larger than those of the female.

Of the legs the 2nd pair are the longest, being twice the length of the carapace, and the 3rd pair are slightly shorter: the lat pair are nearly $1 \frac{1}{3}$ times, the 4 th pair about $1 \frac{1}{3}$ times the length of the carapace.

In the Indian Museum are 4 specimens, from the Andamans and Nicobars : the carapace of the largest male is 14 millim. long and 16 millim. broad.

Cardiosoma, Latreille.

Cardisoma, Latreille, Enoyol. Méthod. X. p. 685 (1825) : De Haan, Faan. Japon. Crust. p. 27 : Milne Edwards, Hist. Nat. Crast. II. 22, and Ann. Sci. Nat. Zool. (3) XX. 1853, p. 203 : Smith, Trans. Conneot. Acad. Soi. II. 1870, p. 142 : Miers, Challenger Brachyara, p. 219 : Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 732.
? Discoplax, A. Milne Edwards, Ann. Soc. Entom. France, (4) VII. 1867, p, 248, and Nouv. Arohiv. du Mag. IX. 1873, p. 293.

Carapace deep, convex fore and aft, transversely oval, with the lateral borders tumid and strongly arched owing to the vault-like expansion of the gill-chambers, the pterygostomian regions densely tomentose.

The fronto-orbital border is much more than half, and the deflexed and nearly straight front is about a fourth, the greatest breadth of the carapace. Orbits deep, with the outer angle defined by a denticle, and with the tooth at the inner angle well developed but distant from the front : the eyes are very loose in the orbits.

The antennules fold obliquely beneath the front, by which they are Ω good deal concealed : the inter-antennular septum is very broad. The antennm lie in the orbital hiatus, which their broad basal joint nearly fills: their flagellum is very short.

Epistome short, prominent and well defined : buccal cavern elongate squarish, the external maxillipeds do not close it but leave between them a rhomboidal gap in which the mandibles are exposed. In the external maxillipeds the merus is a longish joint and carries the palp, which is large and not at all concealed, at its antero-external angle : the exognath, which carries a flagellum, is exposed in much the greater part of its extent. The exognaths of the other maxillipeds are heavily fringed with coarse hair.

The chelipeds, which are mach more massive than the legs, may either be equal or markedly unequal, differing little in the sexes: they alter considerably with age-one or both-the arm and fingers becoming elongated, and the whole hand increasing in size until it becomes longer than the carapace is broad and more than half as high as the carapace is long.

The legs are stout: some of their joints are fringed with bristles, and
their long strong dactyli are square in section and have a series of spines along all four edges.

The abdomen in both sexes consists of 7 separate segments, and in the male its base covers the whole width of the sternum between the last pair of legs.

The branchim are eight in number on either side : the gill chambers are vaulted and remarkably capacious, aud they are lined by a thick vascular membrane folded to form a sort of pocket, and as in several other crabs-such as Gelasimus and Ocypoda - that spend most of their time ont of water, a sort of "choroid process" of this membrane, shaped like a gill-plume, projects laterally over the pleura of the penultimate pair of legs.

The species of this genus live on land. They are very common in the jungles of the Andamans where they may be found in the day time crouching ander roots, fallen logs, \&c., sometimes in burrows near the shore.

Distribution: West Indies and neighbouring coasts of America, Cape Verde Is. and West Coast of Africa, Indo-Pacific from Madagascar to Chili.

Key to the Indian species of Cardiosoma.

I. Carapace very strongly convex fore and aft, the regions indistinct : breadth of the orbit not much more than half its length : merus of the legs with bristles only at its distal end
C. carnifex.
II. Carapace very moderately conver fore and aft, the regions distinct: breadth of the orbit about two-thirds its length : merus of the legs with bristles along its whole length.
O. hirtipes.
128. Oardiosoma carnifex, (Hbst.).

Cancer carnifes and hydromus, Herbst, Krabben eto. II. v. 168, 164, pl. xli. figs. 1, 2 (1794).

Cardisoma carnifes, Latreille, Knoyol. Méthod. X. p. 685 : Milne Edwards, Hist. Nat. Crast. II. 23 : Gá́cin, Icon. Règne An., Crast. pl. v. fig. 2 : Dana, U. B. Expl. Exp. Crast. pt. I. p. 377 : Milne Edwardeg; Ann. Soi. Nat. Zool. (3) XX. 1853, p. 204 : Heller, Novara Crast. p. 85 : A. Milne Edwards, Nouv. Archiv. da Mas. IV. 1868, p. 71, and IX. 1873, p. 264 : Hoffmann, in Pollen and van Dam, Fann. Madagasc., Crust. p. 12: Broochi, Ann. Sci. Nat., Zool., (6) II. 1875, Art. 2, p. 85, pl. xvii. figs. 117, 118 (male appendages) : Miers, P. Z. S. 1877, p. 137, and Phil. Trans. 1879, p. 490, and Challenger Brachyura, p. 220 : Hilgendorf, MB. Ak. Berl. 1878, p. 801 : de Man, Notes Leyden Mus. II. 1880, p. 31, and in Weber's Zool. Ergebn. Niederl. Ost.-Ind. II. p. 285 : Richters, in M8bias, Meeresf. Maarit. p. 157: Lenz and Richters, Alh. Senck. Nat. Ges. XII. 1881, p. 422 : Taschenberg, Zeitsohr. f.

Nuturwiss. LVI. 1883, p. 171 : Henderson, Trans. Linn. Soo., Zool., (2) V. 1893, p. 380 : Nobili, Ann. Mus. Genov. (2) XX. 1899, p. 271.

Cardisomu Guanhumi var. carnifex, Ortmann, Zool. Jahrb., Syst., VII. 1893-94, p. 735.

Cardisoma obesum, Dana, Proc. Ac. Nat. Soi. Philad. V. 1851, p. 252, and U. 8. Expl. Exp. Crust. pt. I. p. 875, pl. xxiv. fig. 1 : Milne Edwards, Ann. Sci. Nat., t.c. p. 205 : Stimpson, Proc. Ac. Nat. Sci. Philad. 1858, p. 100 : Streets, Bull. U. 8. Nat. Mus. VII. 1877, p. 114: P de Man, Notes Leyden Mus. II. 1880, p. 35.

Cardisomu Urvillei, Milne Edwards, Ann. Sci. Nat. t.c. p. 20t: de Mau, Notes Leyden Mus. t.c., p. 33.

Carapace strongly convex fore and aft, especially in the young, the regions are indicated by inequalities of level, but the posterior limit of the gastric region and the cardiaco-intestinal region are defined by grooves : the posterior areola of the gastric region is always tumid.

The antero-lateral border of the carapace is defined by a fine raised line, becoming indistinct with age, which is not continuous with the small tooth at the outer orbital angle, but starts at a little denticle of its own.

The sides of the front (inner boundaries of the orbit) are very oblique: the sinuous upper border of the orbit runs very slightly backward to the base of the outer orbital tooth : the greatest width (height) of the orbit is little more than half the length of that cavity. The basal antenna-joint is large, touching the front.

The breadth of the buccal cavern, measured across the middle of the external maxillipeds, is equal to its length in the middle line.

In both sexes the chelipeds are unequal : they are smooth, except for a few small tabercles or wrinkles or denticles or granules along the edges of some of the joints : the inner angle of the wrist is dentiform, the palm is higher than long, especially in the larger hand, the stout fingers meet only at tip, especially in the larger hand.

The size of the larger cheliped varies with age. In adults of moderate size it is about twice the length of the carapace, the ischiom hardly projects beyond the carapace, and the length of the dactylus is about equal to the height of the palm. In old specimens, especially in the male sex, it is about $2 \frac{8}{4}$ times the length of the carapace, the ischinm projects far beyond the carapace, and the length of the dactylus is $1 \frac{1}{2}$ times the height of the palm.

In the legs there are stiff bristlee, not very thickly set, at the distal end of the meras, on the anterior border and sarface of the carpus and on both borders of the propodite.

The 7th segment of the male abdomen is half or less than half the length of the 6th, measured in the middle line.

In the Indian Museum there are 13 specimens from the Andamans and the Coromandel coast (besides apecimens from Tahiti and Madagascar).

Ortmann considers that this form is only a variety of the West Indian O. Guanhumi, with which he regards the West African O. armatum as synonymous. So far as I can judge from single specimens of these two supposed species, I should think that this view is correct.

129. Oardiosoma hirtipes, Dana.

Cardisoma hirtipes, Dana, Proc. Ao. Nat. Sci. Philad. 1851, p. 253, and U. s. Expl. Exp. Crast. pt. I. p. 376, pl. xxiv. figa. 2, a-d : Milne Edwards, Ann. Sci. Nat., Zool., (3) XX. 1853, p. 205 : Hess, Archiv f. Natarges. XXXI. 1865, i. p. 140 : Heller, Novara Crust. p. 35 : Miers, Cat. Crust. New Zealand, p. 63 : de Man, Notes Leyden Mus. II. 1880, p. 34, and Archiv f. Natarges. LIII. 1887, i. p. 349, pl. xiv. fig. 3 : E. Nanok, Zeits. Wiss. Zool. XXXIV. 1880, p. 26 (gastric teeth) : Filhol, Crast. N. Z. in Miss. l'ile Campbell, p. 460 : Ortmann, Zool. Jahrb., Sgst., VII. 1898-94, p. 737 : Whitelegge, Mem. Austral. Mus. III. 1897, p. 188 : Nobili, Ann. Mus. Genov. (2) XX. 1899, p. 271.

Discoplam longipes, A. Milne Edwards, Ann. Soc. Fintomol. Franoe, (4) VII. 1867, p. 284, and Nouv. Arohiv. du Mus. IX. 1873, p. 294, pl. xv. (sec Ortmann, l.c.).

This species is easily distinguished from O. carnifes by the following characters:-
(1) the carapace is much less convex, the regions are mach more distinctly defined, and the gastric region is distinctly subdivided, by grooves, into 3 areolm: moreover there are some fine oblique striæ on the sides of the epibranchial regions:
(2) the sides of the front, or inner boundaries of the orbit, are not nearly so oblique : the upper border of the orbit is less sinuous and runs slightly forwards to the onter orbital angle: the greatest width of the orbit is nearly two-thirds the length of that cavity. The basal antenna joint does not touch the front:
(3) the breadth of the buccal cavern, measured across the middle of the meri of the external maxillipeds, falls considerably short of the length measured in the middle line :
(4) the chelipeds may be unequal but are far more commonly equal, even in old specimens in which the palms and fingers have grown long and the palm become enlarged :
(5) the bristles on the legs are more thickly set, and they occar along the whole of the anterior border of the merus:
(6) the 7th segment of the male abdomen is more than half the length of the 6 th, measured in the middle line.
J. II. 58

In the Indian Museam are 18 specimens from the Nicobars and Andamans (besides 4 from the "South Seas" and Madagascar).

In life the carapace is dark violet and the chelm bright cinnabar red.

Pelocarcinos, Edf.

Gecarcoidea, Milne Edwards, Hist. Nat. Crust. II. 25 (1837).
Pelocarcinus, Milne Edwards, Ann. Sci. Nat. Zool. (3) XX. 1853, p. 203, and Archiv. du Mas. VII. 1854-55, p. 188 : A. Milne Edwards, Nouv. Arohiv. du Mas. (3) II. 1890, p. 171 (et synon.).

Hyleocarcinus, Wood-Mason, J.A.S.B. XLII. 1873, pt. 2, p. 258, and Ann. Mag. Nat. Hist. (4) XIV. 1874, p. 189.

Limnocarcinus, de Man, Notes Leyden Mus. I. 1879, p. 65.
Gecarcoidea, Ortmann, Zool. Jahrb., Syst., VII. 1899-94, pp. 732, 738.
Carapace transversely oval, somewhat depressed, with the lateral borders tumid and strongly arched owing to the vault-like expansion of the gill-chambers : the gastric region particalarly well defined.

The extent of the fronto-orbital border is less than half the greatest brendth of the carapace, that of the strongly deflexed and nearly straight front is from a sixth to a seventh the greatest breadth of the carapace.

Orbits deep, broadly oval, demarcated dorsally by a sharpish slightly raised border, their outer angle not defined, a wide gap in their lower border: at the inner angle there is a strong tooth which may or may not, even in the same species from the same jangle, meet the front: if it does so, the antennæ, which are much reduced in size, are excleded from the orbit.

The antennules fold obliquely beneath the front, and the interanteunular septum is not very broad.

Epistome sanken, hairy posteriorly so as to appear ill defined from the palate. Buccal cavern rounded anteriorly, not nearly closed by the external maxillipeds, which leave between them a wide rhomboidal gap in which the mandibles are exposed.

The external maxillipeds are rather short : their meras lies obliquely, and its anterior edge is excavated for the insertion of the palp, which is short and coarse and is completely exposed : their exognath is very short and almost entirely concealed and is withont a flagellam. The exngaths of the other maxillipeds are heavily fringed with hair.

Chelipeds much more massive than the legs, usually equal in both sexes, though larger and longer in the male than in the female.

Legs stont: in all, the anterior border of the carpus and all the borders of the propodite and dactylus are spiny, there being six rows of spines on the dactylus.

The abdomen in both sexes consists of 7 separate segments, and in the male its base covers all the breadth of the sternum between the last pair of legs.

The gill-chamber and its lining membrane, and the number of branchiz, are as in Cardiosoma.

The Pelocurcini are land-crabs. The single Indian species is very common in the jungles of the Andamans, where, especially on the smaller islets, it grows to a large size.

Distribution: Brazil, Andamans and Nicobars, Celebes, Philippines, New Gainea, Loyalty Is.

Ortmann (l.c.) throws doubt on the locality Brazil, but, as it appears to me, without anfficient reason, seeing that the elder Mine Edwards states definitely that the type of the species was found in that country by a collector of the Paris Museam. Pelocarcinus is by no means the only form of animal life that has this very carious and saggestive distribution, which we also find, among Mammals in the Tapirs, among Birds, as Mr. Finn informs me, in the Picalets of the genus Picumnus, among Reptiles in the Ilysiidæs, and among fishes in the freshwater eels of the genus $S y m b r a n c h u s$.

130. Pelocarciaus Humei (Wood-Mason).

Hylæocarcinus Humei, Wood-Mason, Journ. Ae. Soa. Bengal, Vol. XLII. 1873, pt. 2, p. 260, pls. xv, xvi, and Ann. Mag. Nat. Hist. (4) XIV. 1874, p. 190.

Carapace transversely oval, becoming broader with age, its lateral borders tumid and ill defined. The gastio region is particularly well delimited and is divided into three subregions-two antero-lateral and one postero-median-the anterior two of which are separated from one another by a deep groove: the cardiac-intestinal region is fairly well defined.

In adults the carapace is smooth, except for some oblique strim on the lateral borders, which become squamiform markings on the pterygostomian regions, these regions being devoid of tomentum.

Front nearly vertically deflexed, somewhat spatulate but with the free edge straight. The tooth at the inner angle of the orbit does not usually touch the front, bat sometimes it does and excludes the small antennø from the orbit.

The chelipeds in the adult male are usually equal and are abont $2 \frac{1}{2}$ times the length of the carapace: the arm projects a long way beyond the carapace, and its upper and inner borders are ragose or irregularly tuberculate; the inner angle of the wrist is truncated; the palm is enlarged, its length is about $1 \frac{1}{2}$ times its height and about as long as the
dactylus; the fingers, thongh they only meet at tip, are not widely separated.

In the adult female the chelipeds are about $1 \frac{1}{2}$ times the length of the carapace : the arm projects but little, the hand is not much enlarged, and the fingers almost meet throughout their length.

In many young females the inner edge of the wrist is serrated and there are also a few denticles along the apper border of the palm.

The second pair of legs, which are the longest, are hardly twice the length of the carapace.

Colours in life : carapace violet with some dirty yellow markings : chelipeds and legs yellowish with a livid reddish tinge.

In the Indian Maseam are specimens from the Nicobars and from numerous islands of the Andaman group. The largest one has a carapace 82 millim. long and 110 broad.

Family PALICID As, Rathban.

Palicos, Philippi.
Cymopolia, Roux, Crast. Médit. pl, xxi. 1888 : Milne Edwards, Hist. Nat. Orust. II. 158: Miers, Challenger Brachyura, p. 333 (nom preocc.).

Palicus, Mary J. Rathban, Proc. Biol. Soc., Washington, XI, 1897, pp. 93, 165 [" Philippi, Zweiter Jahresber. d. Vereins f. Natark. in Cassel, 11, 1838."].

Carapace depressed, broader than long, covered with granules and with symmetrical tubercles or ragosities that have a tendency to fall into transverse series.

Front about a third the greatest breadth of the carapace, little or not at all deflexed, usually lobed or toothed. Lateral borders of the carapace hardly curved, serrated anteriorly.

Orbits deep, the upper border is cut into several teeth by deep clefts, and there are usually two clefts in the lower border.

The antenuules fold nearly transversely beneath the front: the iuterantennular septum is a narrow plate. The antennæ commonly have the basal joint, which stands in the orbital hiatus, enlarged : the flagellum is well developed.

Epistome sunken, not defined. Buccal cavern square. The external maxillipeds do not close the buccal cavern anteriorly : their merns is very small and is much narrower than the ischinm : the ischium has its antero-internal angle and the merus its antero-external angle mach produced : the palp articulates near the middle of the coucave summit of the obliquely-placed merus.

Chelipeds sliort and usually slender in the female: in the adult male one of them may be enlarged-rarely both.

The two middle pairs of legs are much the largest: the first pair, except that they are mach shorter and slenderer, resemble the middle pairs, but the fourth pair are weak, sometimes filiform, and are elevated above the third pair as in Dorippe, etc.

The abdomen in both sexes consists of 7 separate segments, the basal segments being very narrow fore and aft and the lst linear.

In the female the geuital openings are on the 2nd segment of the sternum close to the suture between it and the first.

Distribution : Atlantic coasts of Central America and of the United States, Cape Verde and Mediterranean, Indo-Pacific from Scychelles to California.

The Indian species of Palicus live among coral shingle at a depth of from 10 to 40 fathoms, where their mottled coloration and granular rugose carapace afford a good concealment.

Key to the Indian species of Palicus.
I. 'Posterior border of the propodites and dactyli of the first 3 pairs of legs entire:-

1. Front cut into two lobes:-
i. Lobes of front broad: propodites and dactyli of the two middle pairs of legs sub-foliaceons
ii. Lobes of front sabacate: propodites and dactyli of the two middle pairs of legs compressed but not broadened P. Whitei.
2. Front cat into four lobes, the middle two sab. acate, the onter ones broad
P. Wood-Masoni.
II. Posterior border of the propodites and dactyli of the first 3 pairs of legs elegantly serrate :-
3. Front out into foar blunt teeth : propodites and dactyli of the two middle pairs of legs broadly foliaceons
P. serripes.
4. Front cut into four acute teeth : propodites and dactyli of the two middle pairs of legs compressed bat not foliaceons
P. investigntoris.

131. Palicus Jukesii (White).

Cymopolia Jukesii, White, in Jakes' Voy. H. M. S. "Fly," p. 338, pl. ii. fig. 1 : Miers Zool. H. M. S. "Erebus" and "Terror," Crast. p. 3, pl. iii. fige. 4.4c, and Challenger Brachyura, p. 835 : Haswell, Cat. Austral. Crust. p. 138 : Henderson, Trans. Linn. Soo., Zool., (2) V. 1893, p. 405.

Carapace with the regions well defined, and with the surface thrown into four transverse wrinkles, the two middle ones of which are the most convex and best defined : the whole surface is also closely
covered with vesiculous and crystalline granules, which are largest on the convexities.

Front divided into two broad rounded lobes: antero-lateral border of the carapace cut into three teeth includiug the orbital angle: posterior border of the carapace raised, but not cut into well-spaced lobules.

Upper border of the orbit with two deep notches between the inner and outer orbital angles, both of these angles having a concave margin: lower border with two deep notches. There is a leaf-like lobule on the granular eye-stalk, another at the outer angle of the basal antenna-joint, and another in the gap between the antenna and the outer angle of the buccal cavern. The exposed surface of the ischiam of the external maxillipeds is obliquely traversed by two ridges which meet at the produced antero-internal angle of the joint.

The chelipeds of the adult male are granular and downy and are usually markedly unequal. The larger one is stout, is more than $1 \frac{1}{2}$ times the length of the carapace and has a swollen (subcylindrical) club-shaped palm of which the length is not twice the greatest height: the fingers are short and stumpy, the dactylus being little more than a third the length of the palm, and meet only at tip : the smaller cheliped of the male is short and slender, sometimes however it is almost as large as its fellow.

In the female the chelipeds are equal, are hardly longer than the carapace and hardly stouter than the last pair of legs: they have a palm which is as slender and nearly as long as the ischium, and incurved fingers which nearly meet throughout their length.

In the first 3 pairs of legs the merus is stout and broad with a granular dorsal surface and coarsely and unevenly serrulate edges, the anterior edge ending in a crest-like tooth; the carpus is dorsally carinate, and its anterior border has the form of a two-lobed carina; and the propodite and dactylus are sabfoliaceons owing to the depth of the thin sharp carin\neq of their edges-these carinæ being plumed. The 4th pair of legs are short weak and granular as far as the dactylus, which is much shorter than the propodite.

The lst pair of legs are a little longer, the 4th pair a little shorter, than the carapace: the 2nd and 3rd pairs are about $1 \frac{2}{3}$ times the length of the carapace.

In both sexes all the abdominal terga, except the last, are transversely carinate, the carin$¥$ of the 2nd and 3rd terga being most conspicuous. Also on either side of the sternnm there are two crests, one behind the base of the last pair of legs, the other almost in a line with the 3rd abdominal carina.

In the Indian Musenm are 32 specimens, from the Andamans (up to 36 fath.), the Maldives ($15-30$ fath.), and Ceylon (34 fath.). The carapace of the largest female is 13 millim. long and 15 broad.

132. Palicus Whitei (Miers).

Cymopolia Whitei, Miers, Zool. H. M. S. "Alert," pp. 518, 551, pl. xlix. fig. C.
At once distinguished from P. Jukesii, which it closely resembles, by the sharper and more prominent lobes of the front, and by the slenderer form of the first 3 pairs of legs, in which the edges of the meri are not serrated, the anterior borders of the carpi are not cristiform, and the propodites and dactyli are not in any way subfoliaceous, their edges not being produced to form high thin carinæ.

Other differences, to be noted on closer inspection, are the follow-ing:-

The transverse arrangement of the ruge of the carapace is not marked: the faint transverse carinæ of the 5th and 6th abdominal terga are absent.

In the Indian Museum are 2 adult females and a non-adult female, from the Andamans.

133. Palicus Wood-Masoni, n. sp.

Carapace with the regions distinct and areolated in high relief: except posteriorly, the areolm have no tendency to arrange themselves transversely: the convexities of the areolm, but not the interspaces, bear clumps of crystalline granules.

Front cut into 4 teeth, the middle pair narrower, slightly more prominent, and on a rather lower plane than the others: lateral border of the carapace cut into three teeth, including the very large and acute orbital angle: posterior border raised and irregularly lobnlate.

In the apper border of the orbit there are three deep notches, in the lower border a netch and a fissure.

There is only one cheliped in the single specimen known: it is short, not stouter than the legs, and has some blunt denticles on the far end of the arm, on the wrist, and on the apper surface of the hand.

In the first 3 pairs of legs the meri are stout and have a granular dorsal surface and coarsely serrulate edges, the anterior edge ending in a coarse spine ; the carpi are dorsally carinate, and their anterior edge has the form of a two-lobed crest; while the propodites and dactyli are elongate and compressed with thin, but not cristiform, plumed edges. The filamentons 4th pair are granular up to the dactylus, which is not mnch shorter than the propodite.

The 1st pair of legs are about $1 \frac{1}{2}$ times, the 2 nd and $3 \cdot d$ pairs are about $2 \frac{1}{4}$ times, the length of the carapace, while the 4th pair are about as long as the carapace.

In the male (female auknown) the first 5 abdomiual terga are transversely cariuated, but the 4th and 5th carinæ are faint. The sternum is also carinated ou either side of the abdomen; as in P. Jukesii, but the crests are much lower.

In the Indian Museum is a single male specimen from the Andamans: its carapace is 9 millim. long and 11 broad.

134. Pulicus serripes, Alcock \& Anderson.

Cymopolia serripes, Alcook \& Anderson, Journ. As. Soc. Bengal, Vol. LXIII. pt. 2, 1894, p. 208: Illustrations of the Zoology of the lnvestigator, Crust. pl. xxiv. fig. 7.

Carapace with the regions well defined and cut up into a multitude of symmetrical convex areolø, its whole surface is covered with crystalline granules which are enlarged on the convexities of some of the areola.

Front cat into 4 teeth, the middle two of which, though deflexed and on a lower plane, are much sharper and more prominent than the others: lateral borders of the carapace posteriorly divergent, cat into five ragged teeth, inclusive of the orbital angle: posterior border cut into from eight to ten well spaced even tooth-like lobes.

Upper border of orbit with 3 deep notches, lower border with a notch and a fissure: eyestalks sharply granular. Ischinm of the external maxillipeds longitudinally grooved.

The chelipeds of the female (male unknown) though shorter than the carapace are stouter than the first pair of legs: they may be subequal or unequal : the arm, wrist, and the upper surface of the palm are sharply granular, the palm is rather full and is not elongate, being about half agaiu as long as high and less than half again as long as the fingers.

The lst pair of legs are about as long as the carapace: their morus is sharply granular and its anterior border ends in a spine: their propodite and dactylus are thin and compressed bat not broadened, and their posterior border is evenly serrated.

The 2nd and 3rd pair of legs are a little over $1 \frac{1}{2}$ times the length of the carapace: their merus is very stout and broad, with a granular dorsal surface and sharply though irregularly serrated edges: their carpus has the anterior border cristiform and irregularly serrate, and the posterior border subcristiform up to a terminal spine: their propodite and ductylus are short and broadly foliaceous, with the posterior
border elegantly and evenly serrated and the anterior border fringed with long hair.

The 4th pair are filiform, not nearly as long as the carapace, and are granalar up to the dactylus which is slightly longer than the propodite.

In the female the first 3 abdominal terga are transversely carinate : the carina of the first tergam, which alone is prominent, ends off in a sort of scroll, which flanks the postero-lateral angles of the carapace.

In the Indian Museum are 9 specimens, all adult females, from off the Madras coast in the neighbourhood of Palk Strait and from off Ceylon 34 fathoms. The carapace of the largest is 9.5 millim. long and 11 broad.

135. Palicus investigatoris, n. sp.

This species is closely related to P. serripes, bat differs in the following characters :-

The areolm of the carapace are capped, not by clusters of granules, but by sharp little tabercles between which the surface is smooth : except on the lateral regions of the carapace there is only one such tabercle to each areola :
(1) the four teeth of the front are all equally acute: the five teeth of the lateral borders of the carapace, though irregular in size, are all very sharp and clean cut: the teeth of the posterior border are smaller and sharper:
(2) there is no fissure towards the inner end of the lower border of the orbit:
(3) there are denticles or sharp tubercles, instead of granules, on the arm, wrist, and apper surface of the hand:
(4) the legs only differ in the case of the 2nd and 3rd pairs in which none of the joints are so broad : the serration of the edges of the meras is different, the terminal spine of the anterior border being greatly enlarged; the anterior border of the carpus has a spine at each end, but is not otherwise serrated; and the dactylas and propodite, though thin and compressed, and otherwise quite like those of P. serripes, are not broadened, being mach less foliaceons.

In the Indian Museum is a single non-adult male from off the Andamans: its carapace is nearly 7 millim. long and 8 millim. broad.

Family PTENOPLACID压.
Ptenoplax, Alcock \& Anderson.
Archreoplax, Alcock and Anderson, Joarn. As. Soc. Bengal, Vol. LXIII. pt. 2, 1894, p. 180.
J. I. 59

Ptenoplam, Alcook and Anderson, Illustrations of the Zoology of the Investigator, Crust. pl. xv. 1895 : Alcook, Investigator Brachyura, p. 78.

As the generic diagnosis has already been published in this Journal (loc. cit. Archæoplax) the above references are sufficient.
136. Ptenoplax notopus, Alcock \& Anderson.

Archæoplax notopus, Alcock and Anderson, Journ. As. Soc. Bengal, LXIII. pt. 2, 1894, p. 18I, pl. ix. fig. 3.

Ptenoplas notopus, Alcock and Anderson, Ill. Zool. Investigator, Crust., pl. xr. fig. 2 : Aloock, Investigator Brachyara, p. 79.

JOURNAL

OF THE

ASIATIC SOCIETY OF BENGAL.

+eeron

Vol. LXIX. Part II.-NATURAL SCIENCE.

No. IV.-1900.
XVII.-The relationship of the water-supply, water-logging, and the distribution of Anopheles Mosquitos respectively, to the prevalence of Malaria north of Calcutta.-By Leonard Rogers, M.D., M.R.C.P., I.M.S., Professor of Pathology, Medical College.
[With a Map.]
[Received and read 4th July, 1900.]
The tract of country in which the present inquiry was carried out extends along the East bank of the Hooghly river from Calcutta to Naihati, a distance of 25 miles. The area is fairly typical of Lower Bengal, and has for a long time been looked on as water-logged and very malarious. In 1889 Dr. Gregg, then Sanitary Commissioner of Bengal, after a careful inspection, came to the couclusion that the unhealthiness was due to certain drainage channels having been silted up, and a scheme for re-excavating some of them was prepared, but has not yet been carried out. Owing to an unusual prevalence of fever in 1899 a further inquiry into the health of the tract was ordered, and was carried out by me iu February last.

The plan of the enquiry was as follows. As the essential point to be determined was the proportion of the inhabitants of the various parts of the area who were suffering from malaria, a large number of persons were examined for enlargement of the spleen; its size being noted as either just felt, two fingers breadth below the ribs, four fingers breadth below, or extending beyond the navel. The spleencount as a test for the degree of malaria in a tract of country was

$$
\text { J. II. } 60
$$

used by Major Dyson in the Punjab in a similar inquiry, and by others, and is perhaps the most reliable and easily carried out method, especially in the season of the year when fever is at a minimum. Secondly, the level of the ground-water was taken in as many wells as possible, and inquiries were made as to the height to which the ground-water rose during the rainy season, so as to enable the degree of water-logging to be estimated. Thirdly, the drinking-water supply was carefully noted. Fourthly, the number of fever cases treated at various dispensaries month by month was compared with the monthly rainfall over a series of years, and worked out in charts, in order to ascertain the influence of seasons and raiufall on the fever rate. Lastly, some observations have been made on the distribution and monthly variations of the distribution of the Anopheles Mosquitos, which have furnished some rather surprising results.

In carrying out the spleen-count the whole area was divided up into thirteen Municipalities, and as far as possible 100 persons, about half of whom were children, were examined in each Ward of each Municipality, over 5,000 persons having been examined in all. As children suffer from enlarged spleen more commonly than adults, just as Koch has recently shown that the malarial organism is also found in a larger percentage of children, the figures have been corrected so as to represent the spleen rate of 50 children and 50 adults in each Ward, so that the figures of the different areas should be strictly comparable. Visits were made from house to house so as to get a fair sample of the actual inhabitants of the Wards, and every precantion was taken to obtain accurate results, every single person being examined by myself, a month being taken over the inquiry.

The results are embodied in the accompanying map, in which the different municipal areas are shaded in accordance with the percentage of persons who were found to have enlarged spleens, the darker areas representing the highest percentages and vice versâ. The dotted lines within the municipal areas enclose the Wards or areas separately examined, and the large figures within them indicate the spleen percentage, while the figures enclosed in a circle are those of the distance of the ground water-level below the surface in feet and inches, the upper figures being the distance in the dry cold weather taken in the month of February, while the lower ones indicate the distance during the height of the previous rainy season. The small figares in brackets refer to the number of the Wards given in the left-hand margin of the map, and correspond with those in the tables given further on.

The general results of tee spleen-count.
The following table shows the percentage of people who were found
to be suffering from enlarged spleen in each Manicipality. They are arranged in order from above downwards as they are situated on the map from north to south, while the westernly ones, which lie on the east bank of the Hooghly, are placed on the left, and the easternly ones, which are at a little distance from the river, are placed in the right-hand column, so that the table roughly represents their position on the map.

TABLE I.

Manicipality.	Spleen percentages		Municipality.			Spleen percentages.
Naihati		19.9	(Gobardanga)			$(55 \cdot 5)$
Bhatpara		$20 \cdot 0$				
Garulia .		$33 \cdot 8$				
North Barrackpore	...	365	(Busirhat)	\ldots		(52.8)
Titagarh	\cdots	$37 \cdot 8$	Baraset			52.9
South Barrackpore		$25 \cdot 2$	South Barrac	pore		$56 \cdot 0$
Kamarhati (West)	...	18.8	Kamarhati			$34 \cdot 8$
Baranagar	...	$17 \cdot 8$	North Dum		. 0	$68 \cdot 1$
Chitpore-Cossipore	..0	11.2	South Dam D		. 0	$32 \cdot 3$
			Maniktolla	...		$13 \cdot 2$
Average	24.5	Average	41.0

A glance at the above table or at the shaded map will show that the places situated on the bank of the Hooghly river have a much lower spleen percentage than those further to the east, even when the latter are but two miles from the river as in the case of the last five in the right-hand colamn of the table, with the exception of part of North Dum Dum. This having been ascertained, the question arose whether the lower rate on the banks of the Hoog hly was to be regarded as the normal rate, and the higher figures of the inner tract as being due to water-logging or other abnormal conditions, or whether the latter must be taken as the usual state of affairs in this part of Lower Bengal, and the banks of the Hooghly as being exceptionally healthy. In order to solve this problem it was necessary to visit other places still further to the east, and Gobardanga and Basirhat, which are situated on the next flowing river to the east of the Hooghly, namely, the Ichahamati, were selected as the most suitable for the purpose. The former is some 20 miles to the east of Naihati, while the latter is 26 miles to the east of Baraset. The former is uearly surrounded by a bend of the river on two sides and by marsh land on the other sides, so that cannot be considered to be well situated from the health point of view, but Basirhat, on the other hand, would appear to be likely to be as healthy as any place in this portion of the Gangetic delta. Nevertheless, both show a spleen-rate of over 50 per cent., which, agreeing as it does with Dr. Gregg's statements about this tract of country, may be taken as
approximately the normal figure for this part of Lower Bengal. It would, therefore, appear that the east bank of the Hooghly is exceptionally healthy, although some of the Manicipalities in the low-lying tract a little to the east of the river show very high spleen-rates, more especially North Dum Dum and the portion of South Barrackpore to the east of the railway, whose figares are 68 and 56 per cent. respectively. It may also be at once mentioned that last year, namely, 1899, was an exceptionally feverish one on account of the excess and uneven distribution of the rainfall.

On looking more closely at the figures it will be observed that there is one marked exception to the rule above pointed out, for Maniktolla, although situated away from the river-bank and on extremely low-lying and water-logged land, has, nevertheless, the second lowest spleen-rate; an exception which has proved to be the key to a very important factor in the causation of the variations of the spleen-rate in the tract under consideration. The only groand on which the low spleen-rate of Maniktolla can be accounted for is the enjoyment by this advanced Manicipality of a good filtered water supply. It is also worthy of note that Chitpore-Cossipore, which has the lowest rate of all, namely, 11.2, has the double advantage of a filtered water supply and a situation on the east bank of the Hooghly. That these are the true reasons of its marked immunity is shown by the fact that the average rate of the two western Wards is only $7 \cdot 4$, while that of the two easternly Wards, sitaated from one to two miles from the river, is $14 \cdot 7$, that is almost the same as that of Maniktolla. The density of the popalation of Chitpore, and consequent smaller number of tanks, etc., may also be a slight factor in its healthiness, bat the details to be given immediately with regard to the spleen-rates of different parts of Maniktolla and other places show that this is not a factor of any great importance, but on the other hand they will prove conclusively the intimate relationship between a filtered water-supply and a low spleen rate, but as this point is one of the utmost practical importance it will be necessary to go somewhat into detail with regard to the spleen-rates of different Wards of the same Municipalities, more especially of those parts of which are being supplied with good water by mills situated within their boundaries. At the same time the data with regard to the ground waterlevels will be given, so that the question of water-logging can also be discassed.

Ward varlations in the spleen-rates. 1. Manigtolla.-This Municipality, as will be evident from the accompanying map, is situated between the Circular and the New Cut Canals, and this area is so flat that there is only a fall of some eight feet from west to east in a distunce of two miles. Its drainage is dependant on channels by the
sides of the four main roads, and is carried under the New Cut Canal by means of siphons into the Great Salt Water Lake, but these have to be closed at high tides to prevent the salt water ranning np into the drains, and they do not work very efficiently at present. The portion of the main drains in the western and more densely popalated portion of the Manicipality are brick-lined, but the eastern portions are of earth only. The water-level was taken in several wells, and in February it was found to average 5 feet from the surface of the ground, while evidence was obtained that it rises to within from one to two feet during the rainy season. A more typically water-logged place it would be difficult to find. For purposes of comparison it was divided up into western and eastern portions, and the spleen-rates were found to be 12.4 for the former and 14 for the latter, although it might have been expected that the less densely inhabited and more water-logged eastern portion would have had a decidedly higher rate. It was in the west part of this Municipality also in which the larve of the malarialbearing mosquito was found in from balf to two-thirds of the tanks as well as in some other pools, as will be detailed further on, so that none of the known canses of malaria were absent, in spite of which this Municipality, together with that of Chitpore and Cossipore, were the two which showed considerably the lowest spleen-rates of all the thirteen, and these two are the only ones which have a full filtered water supply.

The following table shows the above figures in a convenient form.

Chitpore-Cossipore.-This Municipality is situated immediately to the north of Calcutta, and extends eastwards as far as the Eastern Bengal Railway and northwards to the southern border of Baranagar. It is divided into four Wards, namely, Cbitpore and Cossipore West extending from the river to the Grand Trunk Road, the spleen percentages of which are 4.8 and 9.9 respectively; and Chitpore and Cossipore East, extending from the Grand Trank Road to the Railway, and consequently distant from one to two miles from the river bank, the spleen-rates of which are 13 and 16.75 per cent. respectively. The whole area is supplied fully with filtered water, while those people who do not drink this (and they are certainly a decided minority)
will take chiefly river water in the western Wards, and tank water in the eastern ones. The water-level in three wells varried only between 4 and 5 feet from the surface in February, and in the rainy season it had been within from 1 to 2 feet of it; so that here again there was considerable water-logging but the minimum amount of fever, while although the western portion is more densely populated, the eastern part presents numerous tanks, and is generally favourable to the developement of malaria, yet, apparently owing to the filtered water-supply, the spleen-rate is very low.

TABLE III.

Chitpore-Cossipore.						
Area.	Ground Water-Level.		Water-sapply.		Corrected	ges.
	Feb., 1900.	Rains, 1899.		Adalt Males.		General Total.
Chitpore, West (3)	4 ft .3 in .	1 ft .	Filtered.	$2 \cdot 05$	$7 \cdot 7$	4.85
Cossipore, West (4)	4 ft .9 in .	$2 \mathrm{ft}$.	9 in . do.	$10 \cdot 6$	$9 \cdot 3$	$9 \cdot 95$
Chitpore, East (5)	5 ft .1 in .	2 ft .	do.	16.0	10.0	13.00
Cossipore, East (6)			do.	$18 \cdot 3$	$15 \cdot 2$	16.75

South Dum Dum.-To the east of the railway, which bounds the Chitpore-Cossipore Manicipality, lies South Dum Dum, the most thickly inhabited portions of which are situated on the Jessore, Belgatia and Dum Dum roads, and it is divided into three Wards, which may roughly be taken as respectively including the parts adjoining these three roads. The inhabitants of Ward II who were examined mostly resided near the easternmost portion of the Dum Dum road, and the spleen rate was 37.9 . Those of Ward I. mostly lived around that portion of the Jessore road which joins the eastern ends of the Belgachia and Dum Dum roads, and its spleen-rate was 45%. Lastly, most of those examined in Ward III. lived around the western end of the Belgachia road just to the east of the railway, and consequently close to the Western Ward of Cossipore, and the spleen-rate among them was only $13 \cdot 7$, by far the lowest rate of any place to the east of the railway. Here again the probable explanation of this exception is that many of the inhabitants of this Ward obtain filtered water from the Cossipore Municipality as I ascertained both by inquiry and by seeing them carrying the water myself, while the portion of the other Wards which were examined were too far from Cossipore for the people to resort there for water to any extent. The conditions favourable to malaria are very similar in each Ward, for the Bajulla Khal flows right through Wards II. and III. as a broad swampy track with little or no current except during the rainy season, while the tide flows up it from the Salt Water Lakes at high water,
there being no sluice gate where it passes through the bund, while part of the houses of the Municipality are surrounded by rice fields. The waterlevel in a well in Ward I. was 8 ft .9 in . below the surface in February, while during the previous rainy season it had risen within 9 inches of the ground, when the water could be dipped out by hand without the use of any rope, so that there is no doubt about this Municipality being very water-logged.

TABLE IV.
South Dom Dum.

Ward.	Ground Water-Level.		Water-supply.		Correo en perc	tages.
	Feb.,	Rains,		Adult	Childr	Gener
I. 7		$1899 .$	Tank.	Males. 41.8	48.8	$45 \cdot 3$
II. (8)	do.	35.4	$40 \cdot 4$	$37 \cdot 9$
III. (9)	Partly filtered.	11.8	$15 \cdot 6$	$13 \cdot 7$

Baranagar.-This Municipality lies between the Hooghly and tlie Eastern Bengal Railway, extending northwards for nearly two miles above Cossipore. It is divided into four Wards, the first three of which are between the river and the Grand Trunk Road, and the fourth lies to the east of the former, being mostly between the Graud Trunk Road and the railway, and consequently is dependant for its water-supply on tanks, while the first three get theirs mainly from the river, although Ward I., which is the most southernly bordering on Cossipore, obtains a certain amount of filtered water from that Municipality. Ward I. has the lowest spleen-rate, it being only $11 \cdot 6$, Wards II. aud III. have intermediate rates of 14.3 and $18 \cdot 1$ respectively, while Ward IV. has the highest rate, namely, 26 ; differences which can only be explained by the varying water-supply, for although the last Ward also has a larger area under rice cultivation, that portion of it, whose iubabitants were examined, did not present materially different conditions from the other three Wards. Nor will the differences in the ground water-level, which are given in the Table below, account for those of the spleen-rates.

TABLE V.
Baranagar.

Ward.	Ground Water-Level.		Water-supply.			
	Feb., 1900.	$\begin{aligned} & \text { Rains, } \\ & 1899 . \end{aligned}$		Adult Males.	Cildr	General Total.
I. (10)	7 ft .7 in .	4 ft .	River and Tank \& some filtered.	$15 \cdot 0$	$8 \cdot 3$	$11 \cdot 6$
II. (11)	4 ft .1 in .	2 ft .	River and Tank.	$12 \cdot 3$	16.3	14.3
III. (12)	7 ft .6 in.	3 ft .	do. do.	$22 \cdot 9$	$13 \cdot 4$	$18 \cdot 1$
IV. (13)			Tank only.	$14 \cdot 6$	$37 \cdot 3$	$26 \cdot 0$

Kamarhati.-This Municipality lies immediately to the north of Baranagar, and consists of two Wards, namely, No. I. between the river and the Grand Trunk Road, and No. II. from the latter up to the Eastern Bengal Railway, and including Belgaria. The spleen-rate of the river Ward was found to be 18%, while that of the inland Ward was 34.8, a notable difference, while the first Ward mainly relies on the river for its water-supply, and the latter is dependant on tanks; for although there are a few wells in all the manicipalities, mostly belonging to private individuals, yet they appear from $m y$ inquiries to be little if at all used by the people for drinking purposes, especially if filtered water is available, while many intelligent natives informed me that those who drank filtered water suffered much less than those who drank that from any other source, including well water. The ground water was 7 feet below the surface in February in the riverine Ward, and had been within 1 ft .8 in . of it in the rainy season of 1899 , while it was 1 foot further down in both seasons in the case of the eastern Ward, so that from this point of view the latter should have been slightly the more healthy of the two, instead of entirely the reverse obtaining.

TABLE VI.

Kamarhati.

Ward.	Ground Water-Level.		Water-supply.		$\begin{aligned} & \text { orrec } \\ & \text { perc } \\ & \text { nide } \end{aligned}$	tages. Genera Total.
I. (14) West	7 ft .	1 ft .8 in.	River and Tank.	17.3	$20 \cdot 4$	18.8
1I. (15) East	8 ft .	2 ft .8 in .	Tank only.	$32 \cdot 5$	36.6	34.8

North Dum Dum.-This Municipality is situated to the east of Kamarhati, and extends from the railway to Nowi Nadi, a distance of some four miles, and it consists for the most part of rice fields surrounding several villages. It contains two Wards, the westeruly of which includes the large village of Nimta, while the easternly one includes Gouripur and Kadihati, which are situated on the Nowi Nadi, a sluggish stream which carries the surface drainage away to the south-east into the Kocho bhil. The water-level in a well in the western Ward was 7 ft .3 in. below the surface in February, and had risen to within 2 ft . 3 in . in the rainy season of 1899 , so that this part is certainly waterlogged. The spleen-rate in the western Ward was no less than 76.6 per cent., while among 58 boys of the Nimta High School, who mostly belonged to well-to-do families, it was 67. In the eastern W ard the percentage worked out at $59 \cdot 6$, which is also very high, the average of the two Wards being 68.1; an extremely high figare. The water-supply is
solely from tanks and a very few wells, while the villages are surrounded by flooded rice fields during the rainy season; both a bad water-supply and water-logging being present and factors in causing the marked unhealthiness of this area.

TABLE VII.

Ward.	North Dum Dum.					
	Ground Water-Level.		Water. sapply.	Corrected Spleen percentagos.		
	Feb., 1900.	Rains, 1899.		Adult Males.	ildren	General Total.
Western (16)	7 ft .3 in.	2 ft .3 in.	Tank	73.3	$80 \cdot 6$	$76 \cdot 6$
Eastern (17)	\ldots	\ldots	do.	56.6	62:5	59.6

Sodth Barrackpore.-This Manicipality is a very large and scattered one, mainly consisting of a riverine portion situated between the Hooglily and the Grand Trunk Road, the following four Wards of which (beginning from the south) were examined, namely; Agarpara, with a spleen-rate of 308 and a ground water-level of 7 ft . in February and 1 ft .8 in. below the surface in the rains of 1899 : Punilati, with a spleenrate of 31.25 : Sukchar, with a spleen-rate of $12 \cdot 1$ and a ground waterlevel of 8 ft . in February, and 2 ft . below the sarface in the rains of 1899 : and Khardaha, situated jast to the soath of the khal of the same name, with a spleen-rate of 26.75 and a ground water-level of 6 ft .6 in . down in Febraary. All these depend mainly for their water-sapply on the river, while the exceptionally low rate of Sukchar appears to be due to the unusual number of good pukka houses, many of which are two stories high, the inhabitants of which must have been mach better to do than the majority of those in most of the other Wards, while tanks are also fewer than usual in this Ward.

This Municipality also includes a large area of rice land with scattered villages to the east of the Grand Trunk Road, and extending across the Eastern Bengal Railway. Two portions of this were examined, namely, oue to the cast of Punilati and Sukchar, consisting mainly of the village Sodepore on either side of the Eastern Bengal Railway, but mostly to the east of it, and another village called Natagore to the east of the former. The spleen-rute of this area was $60 \cdot 4$, that of Sodepore having been 61.7 , and that of Natagore 64.4 . The ground water-levels in February were 10 ft .6 in . and 9 ft . respectively, and in the rainy season of $1899,2 \mathrm{ft}$. and 4 ft . below the surface, measurements which, it will be observed, are very similar to those of the riverine portions of this Municipality, the slight difference being in favour of the inland portions, although their spleenrates are very much higher than those of the parts on the banks of the J. 11. 61

Hooghly, so that the water-levels do not help in explaining the difference. On the other hand, the dwellers near the river will mostly drink river water, while those who live more inland are entirely dependant on tank water. The other part of the South Barrackpore Manicipality which was examined lies to the east of the railway opposite North Barrackpore, and consists of the villages of Chandanpakuria and Nona. The spleen-rate wns found to be $51 \cdot 6$, while the ground water-level was 10 ft .4 in . below the surface in February, but had risen to within 5 ft . during the rains of 1899 , figures which are much more favourable than those of Maniktolla and Chitpore-Cossipore, which have the lowest spleen-rates. This, the most north-easternly Ward of the South Barrackpore Municipality, is also dependant on tank water for its drinking supply. The much lower spleen-rate, then, of the parts near the river, as compared with those at a distance of two miles or more from it, is again borne out by this Municipality, the figares of which are given in the table below.

TABLE VIII.

Sodth Barrackpore.

Areas	Gronnd Water-Level. Feb., Rains, 1900. R	Water-supply.	Corrected Spleen percentages. Adalt Children. Genera Males. Total.		
Agarpara (18)	$7 \mathrm{ft} . \quad 1 \mathrm{ft}$.	River and Tank	$33 \cdot 3$	$28 \cdot 5$	$30 \cdot 8$
Punihati (19)	\cdots...	do. do.	$20 \cdot 0$	$42 \cdot 5$	$31 \cdot 2$
Sukchar (20)	8 ft . 2 ft .	do. do.	$19 \cdot 3$	6.9	$12 \cdot 1$
Khardaha (21)	$6 \mathrm{ft}$.6 in.	do. do.	32.5	21.0	$26 \cdot 7$
Sodepore (22)	9 ft . 4 ft .	'Tank only.	50.0	70.9	$60 \cdot 4$
Nonn (23)	$10 \mathrm{ft} .4 \mathrm{in}$.5 ft .	do.	36.5	66.8	51.6

Tittaghar.-This is a small Municipality which lies on the east bank of the Hooghly between South and North Barrackpore, and is bounded on the south by the Khardaha Khal, and on the north by the Tittaghar Khal, and on the east by the Grand Trunk Road. It is divided into four Wards numbered I. to IV. from north to south. Two Mills in Wards II. and III. supply n limited amount of filtered water more especially to the inbabitants of Ward II., but Wards I. and IV. on either side of the other two drink nearly entirely river and tank water. Here, then, was a very good opportunity of putting to a crucial test the question as to whether filtered water drinkers suffer less from enlargement of the spleen than do those who drink other kinds, so notes were made regarding nearly all of the people examined in this Municipality as to what water they asually drunk, whether filtered, Hooghly, or tank.

The results are as follows, beginning from the south as before, Ward IV., which is a narrow strip situated on the north bank of the Khardaha Khal, up to which the tidal water flows as far as a sluice gate in a bridge under the Grand Trunk Road, and which contains a series of bustees, had a spleen-rate of 48 per cent., that is a high one for a riparian area. The water-level was 10 ft .1 in . helow the surface in February, but had risen to within 1 ft .3 in . in the rains of.1899. Only 16 per cent. of those who were examined stated that they drank filtered water. In Ward III. 32 per cent. of those examined had drunk filtered water, and the spleen-rate was 30 per cent. The water-level had been 1 ft . 6 in . below the surface in the rains of 1899 , and was 10 ft .3 in . down in February, so that in this respect the conditions were just the same as in Ward IV., so this factor will not explain the considerable difference between the health of these two Wards; the water-supply only being different. Still more marked, however, was the difference between the spleen-rates of the two northern Wards, that of Ward III., which is opposite the Mills, being 19 per cent., and that of Ward IV.immediately further north, was 54:3; in spite of the ground water-level of the latter having been 6 ft . from the surface at the beight of the rains of 1899 , and 18 ft .4 in . down in February last; an exceptionally low rate. On the other hand, the number of the people examined in Ward III. who had drunk filtered water was no less than 82.5 per cent., while only 19.6 of those of the Ward I. stated that they drunk filtered water, and owing to their greater distance from the supply they were probably less regular in obtaining it than were the inhabitants of Ward II. at whose doors it was placed. These figures are sufficiently striking, especially as they confirm the data obtained in several other municipalities, to be given immediately, and they are also in entire agreement with the following results of the differences in the spleen-rate among the drinkers of the different kinds of water in this Municipality. Thus among 140 filtered water drinkers, 37 , or 26.4 per cent., had enlarged spleens; while among 179 river water drinkers 74 , or 41.3 per cent.. were similarly affected; but of 55 tank water drinkers no less than 33, or 67.2 per cent., had enlargement of this organ. Further, if we take the degree of enlargement among the different classes as detailed in Table IX, below, we find that of those who had eularged spleens the degree of enlargement was very slight in 62 per cents of the filtered water drinkers, in 43.2 per cent. of the river water drinkers, but only in 27 of those who drank tank water, it being considerable or very enlarged in the remainder. Not only, then, is the percentage of enlarged organs much greater in those who drank unfiltered water (the percentage of mixed river and tank water drinkers being 47.4), but the degree of enlargement of the organ was also much more marked in the latter classes as compared with the filtered water drinkers. (See Table X.).

TABLE IX.
Tittagari.

Ward.		und Level. Rains, 1899.	Water-supply.		Oorrected oen perce Children.	tages. General Total.
IV. (24)	10 ft .1 in .	1 ft .3 in.	River and Tank.	36.0	60.0	48.0
III. (25)	$10 \mathrm{ft} 6 in.$.	1 ft .6 in.	do. but $\frac{1}{3}$ of them drank filtered water.	$29 \cdot 2$	$30 \cdot 8$	$30 \cdot 0$
II. (26)	...	-..	do. bat 82% drank filtered water.	$19 * 0$	18.9	$19 \cdot 0$
I. (27)	$18 \mathrm{ft} 4 in.$.	6 ft .	River and tank water.	51-3	$57 \cdot 4$	$54 \cdot 3$

TABLE X.

Spleen gnlargement and water-supply in Tittagare.
Filtered water. River water. Tank water. Total.
$\begin{array}{lllll}\text { Spleen not enlarged } & 103.0 & 105.0 & 18.0 & 226.0\end{array}$
Spleen slightly en- $23.0(62 \%) \quad 32.0(43 \%) \quad 10.0(27 \%) \quad 65.0$ larged.
Spleen considerably $\quad 9.0(24 \%) \quad 26.0(36 \%) \quad 15.0(40.5 \%) \quad 50.0$ enlarged.
Spleen markedly $5.0(13 \%) \quad 16.0(21 \%) \quad 12.0(32.7 \%) \quad 33.0$ enlarged.
Total examined ... $140 \quad 179 \quad 55 \quad 37 \cdot 4$
$\begin{array}{lllll}\text { Percentage with en- } 26.4 & 41.3 & 67.2 & 39.5 \%\end{array}$ larged spleens.

North Barrackpore.-This is a small Municipality on the east bank of the Hooghly extending from the Tittaghar Khal on the south to the Ichapar Khal on the north, and bounded on the east by the Grand Trunk Road. It consists of three circles. Firstly, Monirampar, situated in the bend of the river to the west of Barrackpore Cantonment, the spleen-rate of which is 24 per cent., while the ground water is low, there having been no water in a well 8 ft .8 inches deep in February. The water-supply is mainly derived from the river. Secondly, Nawabgang, also placed on the bank of the river to the north of the last
named, its spleen-rate being $28 \cdot 6$ per cent., while the water-level was 9 ft . below the surface of the ground in February, and hadirisen to 5 ft . from the ground in the rains of 1899 . The water-supply is mainly derived from the river. Thirdly, Jchapar, which is situated to the north-east of the last circle, and the main portion of whose inhabitants reside at a distance of about one mile from the river, and near the Grand Trunk Road, and consequently are mainly dependant on tanks for their watersupply. The spleen-rate of this circle was 56 per cent., although as the ground water-level was 10 ft . from the surface in February and had not risen above 4 ft . in the rains of 1899 there was no difference in this respect from the other two circles which could possible account for the greatly ligher spleen-rate of Ichapur, whose water-supply from tanks instead of from the river appears to be the only possible explanation of the facts recorded.

TABLE XI.

North Barrackpore.

Gardira. - This small Municipality is situated between the Hooghly river and the Grand Trank Road immediately to the north of the Ichapar Khal, and its northern half has been supplied with filtered water from the Dunbar Cotton Mill for the past two years, but the inhabitants of the southern portion for the most part still drink river and tank water. As there was a very general opinion among the people living near the Mill that they had suffered much less from fever since the filtered water had been introdnced, I determined to examine 100 persons who resided near the Mill, and the great majority of whom (about 80 per cent.) were found on inquiry to have been drinking the filtered water; and another 100 a little further to the south, but all within one mile of the former, and who stated that they drank river or tank water. Among the former class the spleen-rate was found to be $21 \cdot 1$ per cent, while among the river and tank water drinkers it was 46.5 per cent., although the latter included 28 men who had arrived from the North-West Provinces only in November last, that is after the fever season is nearly over, and whose spleen-rate was only 10.7 per cent. If these men are excluded from the calculation, the spleen-rate of the permanent residents of this southern portion of the
L. Rogers-Relationship of the water-supply, water-logging [No. 4,

Municipality; rises tol 55.5 per cent., or just over two-and-a-half times as great as among the filtered water drinkers. A well in the northern part showed a water-level 9 ft . 6 inches below the surface of the ground in February, while it had risen to within 1 ft .6 in. during the rains of 1899, so that there must have been a considerable degree of waterlogging at that time, in spite of which the spleen-rate is low. These facts appear to admit of no other explanation than that the filtered water-supply was the cause of this low rate near the Mill as compared with a precisely similar area in other respects close by which had not the advantage of the stand-pipe water.

TABLE XII.

Garulia.

Area.	Ground Water-Level.		Water. supply.	Corrected Spleen percentages. Adult Children. General Males. Total.		
Northern part(31) (near Mill).	9 ft. 6 in.	1 ft .9 in.	Filtered water.	$17 \cdot 7$	$24 \cdot 6$	$21 \cdot 1$
Southern part (32)	River and tank water.	$50 \cdot 0$	$61 \cdot 1$	5.5 .5

Bhatpara.-This Municipality cousists of a narrow strip between the river Hooghly and the Eastern Bengal Railway and to the north of Garulia, and it is divided into three Wards, the northern two, Wards I. and II., of which, more particularly, and. to a somewhat less extent the southern one, Ward III., obtain some filtered water from the Mills situated within this area. The spleen-rates of all are low, that of the southern one being slightly higher than the other two, although there is not much difference in their water levels, which are slightly in favour of Ward III. The figures are given in Table XIII. below.

TABLE XIII.

Beatpara.

Ward.	Ground Water-Level.		Water-supply.	Corrected Spleen percentages.		
III. (33)	$10 \mathrm{ft}$.3 in .	4 ft .4 in.	Mainly river.	19.9	27.8	23.6
II. (34)	9 ft .8 in .	5 ft .	River and filtered.	22.0	12.0	$17 \cdot 0$
I. (35)	7 ft .	$2 \mathrm{ft}$.6 in .	do.	$27 \cdot 1$	$11 \cdot 5$	$19 \cdot 3$

Nailati.-This Municipality is situated between the Hooghly and the Eastern Bengal Railway extending from Naihati itself northwards
for five miles as far as the Bhagar Khal, and although narrow to the south it gradually widens out to the north, so that while the lower three Wards are mainly inhabited near the banks of the river, the majority of the people in the two northern Wards live at some little distance from the river at Halishahar aud Kanchrapara. Moreover, the Gauripur Jute Mills supply some filtered water to WardsII., so it is worthy of note that this Ward again has the lowest spleen-rate, namely, 10%, which is little more than half that of the Wards I. and III. on either side of it, which are dependant on the river for their supply. Further, Wards IV. and V. have the highest rates of all, being mainly dependant on tank water for their supplies, so that, and that in spite of their ground water-level being lower than that of Ward III.; so that the only way in which these variations can be explained is by the differences in the water-supplies of the various Wards, which are also in accordance with the results obtained in every previously considered instance.

TABLE XIV.

Naifati.

Ward.	Ground Water-Level.		Water-suppls.	Corrected Spleen percentages.		
	Feb., 1900.	Rains, 1899.		Adult Males.	Children.	General Total.
I. (36)	\ldots	...	Mainly River.	16.6	22.5	19.5
II. (37)		...	Partly filtered.	$6 \cdot 6$	$15 \cdot 0$	$10 \cdot 8$
III. (32)	7 ft .9 in		Mainly River.	$7 \cdot 1$	31.0	$19 \cdot 0$
	16 ft .6 in .	8 ft .				
IV. (39)	10 ft . 3 in .	4 ft .	Mainly Tank.	$15 \cdot 3$	$29 \cdot 4$	$22 \cdot 3$
V. (40)	10 ft .3 in .	4 fr .	Tank.	J3.3	$42 \cdot 5$	$27 \cdot 9$

Baraset.-This Municipality is situated on the Soonthee Nuai some eight miles east of the Hooghly river, and its surface drainage flows nway to the south-east into the Kocho Bhil. The Soonthee was formerly n large river, but now it resembles an elongated swamp with little or no current except during the rainy season, while its bed is encroached upon in numerous places by series of tanks which in places leave but n few yards between them for the stream, and fishing weirs, etc., also obstruct its course. The Municipality is divided into five Wards, Nos. I. and II. including the town, while Nos. IV. and V. are to the east on the Soonthee Klial, and No. III. to the south. \dot{I}_{n} all the spleen-rates are high, and the ground water-levels do not vary much, but are high in the rains, showing obstructed drainage and water-logging. The water-supply is from tanks, although one or two tube wells have been pat down

TABLE XV.

Baraset.

Ward.		G round Water-Ievel.		Water-supply.	CorrectedSpleen percentages.Adult Children. GenernlMales.		
I. \&	(41)	$12 \mathrm{ft}$.4 in .		Tank only	$52 \cdot 3$	$50 \cdot 4$	51.5
III.	(42)	16 ft .3 in .	4 ft .	do.	$38 \cdot 1$	$80 \cdot 3$	$59 \cdot 2$
IV.	(43)	8 ft .2 in .	0 ft .3 in .	do.	44:2	$70 \cdot 8$	$57 \cdot 5$
V.	(44)	12 ft .4 in .	4 ft .	do.	$38 \cdot 6$	51.2	44.9

Water-logging and the Railway.-It have already been pointed out in discussing the Ward variations of the spleen-rate that there is no definite relationship between the amount of malaria and the ground water-levels. Thus Maniktolla and Chitpore-Cossipore are the most water-logged parts of the whole area, yet they have the lowest spleenrates on account of their filtered water-supply. The fact that the bank of the Hooghly river is slightly higher than the country further to the east, so that the surface water flows away from the river, and eventually finds its way back through khals to the river or runs off to the south into the Great Salt Water Lakes, might at first sight seem to indicate that the ground water-level would be lower near the river than it is further to the east. Measurements in the wells, however, do not bear this ont, for there is very little difference in this respect in the water-level measured in wells on either side of the railway, while the differences noted were rather more frequently in favour of the eastern portions than the contrary. The differences in the spleen-rate, then, of the eastern and western parts cannot be explained on any theory of water-logging, while an examination of the whole area Ward by Ward shows no definite relationship between the spleen-rates and the height of the ground water-level, as a study of the Tables and Map will show.

The Eastern Bengal Railway, which runs from north to south through this area, and, together with the Grand Trunk Road, roughly divides it into western and eastern portions, has frequently been held responsible for the uuhealthiness of the country, for it lies across the line of surface drainage. As, however, the drainage flows to the east if it were materially obstructed the western part should be the more unhealthy, instead of which precisely the opposite holds good. Moreover, in the few places in which wells were found on either side of the railway, although at some distance from it, there was no constant or marked difference between either the level of the ground-water in the dry season, or the height to which it rose during the rains on either side of the road and railway. There is, then, no
evidence that the health of this tract has been influenced by the railway or the Grand Trunk Road, and the spleen variations cannot possibly be attributed to their action.

Distribution of the Anopheles Mosquitos.

It must now be taken as proved that malaria can be communicated to man by the bites of the Anopheles genus of mosquitos, which have previously bitten another case of malaria, and in whose body the plasmodium has undergone developemental changes. It still, however, remains to be proved that this is the only or even the most common way in which the disease is obtained, and it is worthy of note that Laveran, who was the first modern exponent of the mosquito theory, is still of the opinion that it will not explain all that is known of the etiology of the disease. Still enough is known to make it highly advisable to consider the question of the possibility of destroying the particular breed of mosquito which plays a part in distributing malaria. This should not be impossible in limited areas, at any rate, if Major Ross's statement as to their breeding-grounds is correct, namely, that they mainly breed in small pools which are not inhabited by fish, and yet are not so small that they will dry up in a few days, and consequently that such suitable pools are few and far between. In order to test this statement I searched for the larvo in several Municipalities, but regret to say that I have not been able to confirm Ross's statements. On the contrary, I found the Anopheles larvo in numerous tanks as well as in the small pools which Ross describes, and that too in spite of the former as well as some of the latter abounding in fish. This having been ascertained, a small portion of Maniktolla, measuring about one-sixteenth of a square mile, and containing some thirty tanks, was further examined. During the dry months of from February to May, which are the minimum fever months of the year, I found the Anopheles larva in from one-third to two-thirds of these tanks, often in enormous numbers, one of them for example, having been estimated to have contained several million larva on one day on which it was examined in May. In the earlier months especially they were also found in several small pools, but the numbers there were nothing as compared to those in the - tanks, which are certainly the common breeding-ground of the Anopheles in the dry season at any rate. Three pools in a low-lying area are of interest, for in one, some two yards square, and a second which was five yards in diameter, fairly numerous Anopheles larvæ were found in spite of the presence of small fish in both, so that it is not surprising that they can also survive in tanks which are swarming with fish. Further, I failed to find any cases of fever near the infected tanks in the hot weather. As
J. I. 62
there must be several hundred tanks in the five square miles of Maniktolla alone, the chances of being able to destroy these larvæ appears to be very remote. Further observations are being made on the seasonal distribution of these larvæ and the amount of fever, but it may be mentioned that they nearly disappeared from the tanks after the first burst of the rains, and remained absent during a break which followed, altbough fever now began to be prevalent, so that up to the present the number of the Anopheles has been in inverse proportion to the amount of fever. Possibly the tank forms are different from those of the rainy season in the small pools, but I have not yet been able to settle this point. The differences will be only microscopical, so that this would not lessen the practical difficulties in lessening malaria in Bengal by destroying the mosquitos, the only possible way of partinlly affecting which would appear to lie in the time-honoured method of extensive drainage in order to lessen the number of suitable breeding-grounds for the mosquitos.

The great difficulty of destroying the Anopheles larva in Bengal enhances the importance of the influence of a filtered water-supply in reducing so materially the amount of fever, which has been shown to be the case in portions of this tract of country, while the much greater liability of the drinkers of tank water to malaria suggests that the disease may commonly be obtained by drinking infected water, as has for centuries been considered to be the case. Such a mode of infection may be easily reconciled with the mosquito theory if we allow that these insects, in addition to directly inoculating the disease, may also take the parasite lack to water, perhaps by means of the black spores described by Ross, in which they may survive for a limited time only, so that the infection has frequently to be renewed by the mosquitos. This is a point which can only be settled by investigation, which I hope shortly to be able to undertake.

Lastly, an examination of charts showing the monthly rainfall and fever-rate in this tract of country revealed the fact there is no constant relationship between either the amount or monthly distribution of the rainfall of different years and the amount of malarial fever. A more detailed examination, however, showed that there is a relationship between the-daily distribution of the rain and the fever; those years in which the rainfall is very irregularly distributed with frequent and prolonged breaks, being those in which malarial fevers are most prevalent. This point is also being more closely studied, in conjunction with the observations on the variations in the distribution of the Anopheles.

Conclosions.
The general result of the inquiry hns been to show that there is a marked difference between the health of the riverine and more inland portions of the area examined, the former being mucli more healthy than the latter. The comparatively healthy area extends from the river to the Grand Trunk Road, and in some parts to the Railway, a distance varying from one to two miles. No marked or constant differences in the ground water-level of the healthy and unhealthy parts has been found, which could possibly account for the differences in the spleen-rate noted, so that no theory of water-logging will explain them.

The most striking exception to the rule that the areas at a distance from the river bank have a high spleen-rate is that of Maniktolla, and the easteru portions of Chitpore-Cossipore between the Grand Trank Road and the railway, both of which, together with the rest of the latter Municipality, have the lowest spleen-rates of all. Moreover they are also the most water-logged portions of the whole area, their ground water-levels both in the dry and in the rainy seasons being the highest met with, so that there mast be some other factor to account for their marked immunity from malaria. This is certainly not the absence of the malaria-bearing mosquito, for it was in the first-named place that they were found to be more wide-spread during the minimum fever season than has hitherto beeu reported from any part of India. The only possible factor remaining is the water-supply, and it is noteworthy that these two water-logged Manicipalities are the only ones which have a full filtered water-supply from the same source as Calcatta itself. That this good water-supply is the true explanation of their relative immunity from malaria is borne out by the very low spleen-rate of certain Wards of other Municipalities which have a partial filtered water-supply from varions Mills, together with the low rates of the Wards of Baranagar and Soath Dum Dum, which border on Chitpore-Cossipore, from whose stand-pipes some of their inhabitants were obtaining filtered water, the details of which have already been given. Finally, the figures given in T'able X. shows the spleen-rates among river water drinkers to be nearly double, and that of tank water drinkers to be nearly treble that of filtered water drinkers, strongly corroborate the evidence as to the benefit to be derived from filtered water, and affords a key to the whole distribution of the varrying spleen-rates, as can be seen from a study of the accompanying map. Thas, Chitpore-Cossipore West, which has the double advantage of a filtered water-supply and close proximity to the river, so that those who do not drink filtered water will for the most part take river water, has the lowest rate of all, namely, 7.4. The eastern part of the same Municipality, which
has tank instead of river water as an alternative to the filtered supply, on the other hand, has a spleen-rate of 14.8 , which is almost the same figure as that of Maniktolla, with a similar water-supply. Further, those Wards which are situated immediately on the river bank, but do not possess a filtered water-supply, and consequently get their supply mainly from the river, and to a less extent from tanks, have a rate intermediate between those with filtered water aud the inland ones which are dependant entirely on tank water. In short, all the Ward variations in the spleen-rate of the whole area can be explained on the ground of their varying water-supplies in a manner which no other explanation will approach in completeness, so that it is impossible to come to any other conclusion than that the above is the true explanation of the facts recorded. Whether the Anopheles mosquitos play a part by taking the malarial parasite back to the tanks from their haman hosts or not must be left to be determined by future experiments, but that a good watersupply is an important prophylactic measure in the lessening the prevalence of malaria mast I think be admitted, and can be safely acted on.
XVIII. -I. Furlher hesearches on Mercurous Nitrite and its Derivalives. II. On Mercurous Iodide and a new Method of its Preparation.-By P. C. Ray, D.Sc.
[Received 16th July ; Read 1st August, 1900.]
CONTENTS.
I. Further Researches on Mercurous Nitrite and its Derivatives.
(1) Preparation of Mercurous Nitrite on a large scale.
(2) Preparation of chemically pure Mercurous Nitrite.
(3) Interaction of Mercurous Nitrite and Ethyl Iodide.
(4) Interaction of Mercurous and Mercuric Nitrites with the Nitrites of Silver and Sodium respectively.
1I. Mercurous Iodide : a new Method of its Preparation.
(1)

Preparation of Mercurods Nitrite on 1 large scale.
As the investigations I am about to describe involve the use of comparatively large quantities of mercurous nitrite at a time I shall
begin with describing a method of preparing the salt, which has been found to be more economical and far less troublesome than the usual method.

A tall beaker is taken containing nitric acid (sp. gr. 1041) diluted in the proportion of $1: 4$ with water; mercury is now poured in, care being taken not to fully cover the bottom but to leave an annular or horse-shoe-shaped space. The crystals which are formed on the convex surface of the mercury are continually pushed aside into the empty space by the evolution of gases during the initial stages of the reaction. On standing overnight, however, a crust of the nitrite is formed on the surface of the metal, which acts as a protective layer, thereby hindering further action.

All that is now necessary to do is to incline the beaker gently, when the deposit of the salt slips off into the empty space as explained before, leaving a fresh surface of mercury exposed. I'his may be repeated 4 or 5 times in the course of the day. Instead of inclining the beaker, the layer of crystals may be carefully scraped off the surface with a glass rod. The process may be allowed to go on for a week, resulting in the continuons growth and accumulation of the salt; the reaction may be started simultaneously in about half a dozen beakers arranged in a row, so as to secure a copious supply.

In the previous papers* it was recommended that each time a layer of crystals is formed, the mother liquor together with the mercury should be decanted off into another beaker. I'his is a wasteful method, for as soon as the super-incumbent liquid is removed, torrents of red fumes appear on the surface of the mercury. These red fumes are cansed by the combination of nitric oxide with the oxygen of the air. It is the nitric oxide that evidently gives rise to the formation of th nitrite, and its loss has to be guarded against.

Preparation of chemically pure Mercurous Nitrite.
The mercurous nitrite prepared as above will answer well enough for ordinary parposes. It generally contains, however, impurities, chiefly in two shapes. First, the crystalline mass encloses minute globules of mercury which cannot be entirely detached. Secondly, as the salt has to be dried on the porons tile, a portion of the heavy mother liquor consisting of mercurous nitrate dries up along with it. When it is desirable to obtain the salt in a state of absolute purity, it is mixed with a sufficiently large quantity of water and heated to boiling point for some

[^58]time. Treated in this way about 18 p.c. of the uitrite undergoes dissociation as already pointed out; thus:
$$
\mathrm{Hg}_{2}\left(\mathrm{NO}_{8}\right)_{2}=\mathrm{Hg}+\mathrm{Hg}\left(\mathrm{NO}_{2}\right)_{2}
$$

While by far the larger proportion of it dissolves as such; the saturated solution while still hot is rapidly passed through a " ribbed" filter paper, and the filtrate briskly stirred with a rod. In this way a fine, mealy, crystalline deposit is obtained, which is dried on a porous tile and preserved inside a dessicator. The presence of even a trace of atmospheric moisture brings about slow decomposition evolving nitrous fumes. As a test case it may be mentioned that 0.54 g . of the pure salt was placed on the scale pan for three hours, and it lost 5 mgs . during that time.

Intrraction of Mercurous Nitrite and Ethyl Iodide.

Preliminary.

About four years ago while describing mercurous nitrite and its general properties, which were found to bear a remarkable analogy to those of silver nitrite, the author expressed a hope that this new compound would yield nitro ethane by interaction with ethyl iodide.

Since then it has been qualitatively shown that the reaction gives simultaneously both nitro ethane and its isomer, ethyl nitrite.* The present investigation embodies a fuller and more systematic stady of this reaction.

Experimental.

The general method first described by V. Meyer and O. Stüber has been in the main followed. \dagger I shall therefore confine myself to such details only as have a direct bearing on the subject in hand.

Exp. I. 120 g . of mercurous nitrite and 69 g . of ethyl iodide were digested together over a water bath in a round-bottomed flask to which was attached a tubulated funnel and a reflex condenser. The digestion was continued so long as ethyl nitrite was evolved. It is necessary to note here that as soon as ethyl iodide is poured on silver nitrite, an energetic action at once sets in, but when mercurous nitrite is added to the alkyl iodide there is scarcely any perceptible evolution of heat, and the reaction only begins after digestion has proceeded for some time. The open

[^59]end of the condenser was connected with two tall cylinders (See Fig.)

Fig. shewing the formation of Ethyl Nitrite and its absorption by Alcohol.
containing a measured volume of alcohol for the absorption of ethyl nitrite. These cylinders were again kept immersed in ice-cooled water of an average temperature of $10^{\circ} \mathrm{C}$., that of the Laboratory varying from 23° to $25^{\circ} \mathrm{C}$. In this manner a concentrated solution of what is called in the Pharmacopœia Spiritus Atheris Nitrosi, was obtained, the strength of which was determined by Allen's method.* The yield of ethyl nitrite was found to be $5 \cdot 1 \mathrm{~g}$.

Exp. II. 94 g . of mercurons nitrite and 35 gms. of ethyl iodide were digested as above. The yield of ethyl nitrite was 3.1 g .

Exp. III. In this case 138 g . of mercurous nitrite were digested with 54 g . of ethyl iodide, yielding 5.2 g . of ethyl nitrite.

It will thus be seen that the yield of ethyl nitrite is only a fraction of what is demanded by theory. This is partly due to the reaction being completed only during subsequent digestion on the oil bath, but chiefly to the fact that when once a certain amount of mercurous iodide has been superficially formed, a large proportion of the nitrite aggregates into hard lumps into which the ethyl iodide can only slowly and with difficulty penetrate.

[^60]This is also the case with silver nitrite, though not in so marked a degree.*

Exp. IV. This was a control experiment in which silver nitrite was digested with ethyl iodide : 90 g . of the silver salt were treated with 88 g . of the alkyl haloid. The yield of ethyl nitrite was 4.2 g .

Nitro Ethane.

After the evolution of ethyl nitrite had ceased, the coutents of the flask were subjected to distillation, first over a water bath, and afterwards over an oil bath. The distillates were caught separately.

It was invariably found that during distillation over an oil bath, the receiver was filled with nitrous fumes, a part of which was absorbed by the distillate, imparting to it a bluish tinge. As there was not the slightest trace of yellow colour either in the flask or in the condenser itself, it was suspected that nitric oxide was evolved by the slow and gradual decomposition of a portion of mercurous nitrite, which combined with the oxygen of the air in the receiver. The suspicion was confirmed. The presence of the nitrous fumes is highly objectionable, as the crude nitro ethane so obstinately holds them in solution that they cannot be got rid of during fractionation. Distillation in a slow current of carbon dioxide was therefore resorted to for excluding air. In the control experiment with silver nitrite (See ante, Exp. IV.) nitrous fumes, though in a far lesser degree, were also noticed in the receiver. \dagger,

After the distillation was over, the compact mass of mercarous iodide and nitrite were removed from the flask, well powdered in a mortar, and once more treated with the fraction below 100°, when a further quantity of crude nitro ethane was obtained.

A fair idea of the yield of nitro ethane may bo had from the details of one among several experiments. 190 g . of mercurous nitrite and 95 g . of ethyl iodide yielded a distillate of 7 g . between $100^{\circ}-108^{\prime}$, of $3 \frac{1}{4} \mathrm{~g}$. between $108^{\circ}-110^{\circ}$, and of 4 g . between $111^{\circ}-114^{\circ}$.

The fraction which came off between $113^{\circ} \cdot 5 \cdot-114^{\circ}$ (uncorrected) was practically pure nitro ethane. It was treated with an alcoholic solution of caustic soda as recommended by Nef. (Annalen : 280, p. 267). The

[^61]precipitate of sodium nitro-ethane was washed with absolute alcohol. In this manner 2.5 g . of nitro-ethane gielded 2.1 g . of the sodinm compound.

It responded to all the characteristic reactions: its aqueons solution turned blood-red with ferric chloride and green with copper sulphate. A concentrated solution of it gave with corrosive sublimate solution a white, mealy, crystalline precipitate. The sodium salt which is extremely hygroscopic exploded with a loud detonation when heated in a narrow test tube. An estimation of sodinm is given below.

0.2416 g . gave $0 \cdot 1795 \mathrm{~g}$. of $\mathrm{Na}_{\mathbf{2}} \mathrm{So}_{4}$		
	Calc. for	Found.
Na	$\mathrm{Na} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{2}$	24:06.

From the above investigations it would appear that by the action of mercurous nitrite on ethyl iodide about equal quantities of nitro ethane and its isomer ethyl nitrite are formed. The yield is, however, somewhat poorer than with silver nitrite, owing to the formation of very compact, hard lumps of mercurous iodide, which interferes with the reaction being completed.

Interaction of Mercurods and Mercuric Nitrites wite the Nitrites of Silver and Sodium.
1.

Mercuric Nitrite and Sodium Nitrite.

To the neatral solution of mercaroas and mercuric nitrites (the products of dissociation of mercurous nitrite: Journ. Chem. Soc. Trans. 1897, p. 340) is added sodiam chloride to remove mercarons mercary. The filtrate which now contains mercuric nitrite and a small quantity of sodium chloride if it was added in excess, as well as sodium nitrite, is allowed to evaporate spontaneously. In course of time an orange, crystalline deposit is formed, and this is followed by the appearance of shining iodine-like dark scales; and last of all we obtain a yield of rhombohedral crystals of sodium nitrate. Sometimes the orange-red and black compounds are not obtained, but instead we get only sodium nitrate, sometimes again the three compounds are obtained in regular anccession, though one kind may predominate over the others.

During the last three years I have repeated the experiments several times, but I have not been able so to control them as to ensure the formation of one variety only to the exclusion of the others.

If there be no sodium chloride present in the mercuric solution, the red and black deposits are not formed, for, as will be seen below, J. II. 63
they are oxychlorides of mercury and the presence of sodium chloride is a sine qua non for their formation, and the only yield is one of sodinm nitrate. But this last compound has sometimes been observed as the sole product without the formation of the former, even in presence of an excess of sodinm chloride. The reaction goes on very slowly, and it takes a month and upwards to complete it.

Analysis and general properties of the red and iodine-like lustrous scales:-
(1) 0.3505 g . gave 0.3485 HgS .
(2) $0.465, \quad$, 0.455 "
(3) $0.5086, \quad$, 0.2034 AgCl .
(4) $.0 \cdot 6166, \quad$, $21 \cdot 1 \mathrm{c} . \mathrm{c}$. moist 0 at $31^{\circ} \mathrm{C}$. and 752 mm . pressure.

	Theory for	Theory for	Found	
	Hg Cl 2.2 HgO	$\mathrm{Hg} \mathrm{Cl}_{2 .} 2 \mathrm{HgO} . \frac{1}{2} \mathrm{H}_{8} \mathrm{O}$	i	ii
Hg	85.35	84.27	84:45	84:34
Cl	$10 \cdot 10$	9.97	$9 \cdot 90$	
0	4.55	4.50	$4 \cdot 17$	
$\mathrm{H}_{2} \mathrm{O}$		$1 \cdot 26$		
	$100 \cdot 00$	$100 \cdot 00$		

The analyses recorded above are of distinct preparations, and they conform to the formala $\mathrm{HgCl}_{9 .} 2 \mathrm{HgO} . \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$.

These salts do not lose in weight when kept in a dessicator over strong sulphuric acid or placed in a steam chamber at $100^{\circ} \mathrm{C}$. When heated in a bulb-tabe a deposit of moisture is invariably noticed, and a sublimate of mercurous and mercuric chloride obtained, with a residue of orange-yellow oxide. Treated with canstic soda solution, the dark variety changes to orange-yellow.

Millon, and more recently Thammel (Archiv. Pharm.§ [3], 27, 589-605) have exhaustively studied the oxychlorides of mercury, and have described several of them. These were obtained, however, by adding together solntions of mercuric chloride and hydrogen potassinm carbonate nuder varying conditions. Volhard got shining dark crystals by the action of sodinm acetate upon corrosive sublimate solution (Annalen : 255, p. 252) ; whilst Haack obtained a reddish-brown crystalline deposit by treating mercuric chloride with phosphate of sodinm (ibid. 262, 189), all of the formula $\mathrm{HgCl}_{2} .2 \mathrm{HgO}$. The red and black shining compounds, the subject of the present paper, agree in general

[^62]properties with those obtained by the above chemists; but the hydrated modifications I do not find mentioned anywhere.

I.

Mercurous Nitrite and Siloer Nitrite.

A. Concentrated solntions of mercarous nitrite and silver nitrite.

As both mercurous nitrite and silver nitrite are very sparingly soluble in cold water, the solutions used were always kept at about $100^{\circ} \mathrm{C}$.

Method of experiment :-To the hot or boiling solation of mercurous nitrite containing necessarily mercuric nitrite was added the solution of silver nitrite. No effervescence due to the evolution of gases was noticed, and the liquid which at once became cloudy on account of the separation of metallic mercury, was allowed to stand over night. Next day a perfectly clear solution was obtained, with a deposit of mercury and silver in successive layers at the bottom of the vessel,- the lower one of dirty grey mercury, and the upper one of an arborescent and filamentous growth of shining minute crystals of silver. These metals were estimated in the usual way. The strength of the filtrate was determined by finding out the weights of the ous and ic mercury as well as that of silverin solution. Control analyses were also simultaneously made to ascertain the original strengths of the mercary and silver nitrite solutions under exactly similar conditions of temperature. For details see I'able of Analyses.

In order to estimate the total amount of nitrogen and the transformation, if any, of the nitrite into nitrate, or any other compound of nitrogen, the following method of analysis as exemplified in Exp. I was adopted.

50 c.c. of mercurous and mercuric nitrite solation were boiled for a few minutes with an excess of caustic soda; 25 c.c. of silver nitrite solution were also similarly treated. The filtrates from the mercury and silver precipitates, containing nitrogen in the shape of nitrite of sodinm, were now added together and made up to a given vclume. After the interaction of mercurous and silver nitrite solution, an aliquot portion of it was boiled with the alkali, and the filtrate set aside as above. The nitrogen in both the cases was estimated by the Crom-Frankland process, as also by the Urea method as worked out by Percy Frankland. As a further check a few c.c.'s were in certain instances evaporated to dryness in a porcelain boat and the nitrogen determined by Dumas' method. It is remarkable that the sum total of nitrogen as found by all these different methods was exactly the same, proving that not only was there no loss of nitrogen during the reaction but that it remained all
along in the shape of the nitrites of the respective metals, in other words, there was no change in the radical NO_{2}.
B. Dilute solutions of silver and mercurous nitrite, (vide Exp. 5 and 6 in the Table of Results of Analyses).

It is worthy of note that under such conditions of dilation no silver was precipitated.
C. Mercurous Nitrite and Sodium Nitrite.

In this case also the total amount of nitrogen remained constant, and in the shape of nitrites, the only difference being that the mercurous nitrite was completely transformed into mercuric nitrite with precipitation of mercury. In Exp. 7 a 6\% solntion of sodium nitrite was used. Sodinm nitrite was, however, found to have scarcely any action on very dilate solutions of mercurous nitrite.

Discussion of Resolits.

It is not easy to enter into the mechanism of the reaction of mercarous and silver nitrites, when it is remembered that there is no change in the radical NO_{2}. Mercurous nitrite, it is true, has already been shown to undergo partial dissociation according to the equation,

$$
\mathrm{Hg}_{8}\left(\mathrm{NO}_{2}\right)_{2}=\mathrm{Hg}\left(\mathrm{NO}_{2}\right)_{8}+\mathrm{Hg} .
$$

when in solution; but the reaction, we are at present studying, can scarcely be brought under the same category. At the same time, it must be admitted that, if we were to regard for a moment a molecule of silver nitrite playing the role of a molecule of mercurous nitrite, all the equations under A. could be established on a common basis.

For instance in Exp. 1, $3 \mathrm{Hg} \mathrm{NO}_{8}+\mathrm{Ag} \mathrm{NO}_{2}$ may be regarded as equivalent to $4 \mathrm{Hg} \mathrm{NO}_{8}$, i.e., $2 \mathrm{Hg}_{8}\left(\mathrm{NO}_{8}\right)_{8}$ which may be expected to dissociate as follows :-
$2 \mathrm{Hg}_{2}\left(\mathrm{NO}_{8}\right)_{2}=2 \mathrm{Hg}\left(\mathrm{NO}_{8}\right)_{2}+2 \mathrm{Hg}$ [or $\mathrm{Hg}+\mathrm{Ag}$]. In Exp. 3, 7 Hg $\mathrm{NO}_{2}+3 \mathrm{Ag} \mathrm{NO} 2$ would similarly be equivalent to $10 \mathrm{Hg} \mathrm{NO}_{8}$ i.e., $5 \mathrm{Hg}_{2}$ $\left(\mathrm{NO}_{2}\right)_{2}$ which would dissociate thus : $5 \mathrm{Hg}_{8}\left(\mathrm{NO}_{2}\right)_{8}=5 \mathrm{Hg}\left(\mathrm{NO}_{8}\right)_{2}+5 \mathrm{Hg}$ [or $2 \mathrm{Hg}+3 \mathrm{Ag}$], with this difference, that in place of 2 Hg we get $\mathrm{Hg}+\mathrm{Ag}$, and in that of 5 Hg we get $2 \mathrm{Hg}+3 \mathrm{Ag}$. In Exp. 5 and 6 bracketted together under B., where dilate solutions of both the nitrites were used, and where there was no precipitate of metallic silver, the nitrite of silver apparently seems to take no part. The same remarks would also apply to Exp. 7 and 8 (vide Table of Analyses), where sodinm nitrite also appear to act catalytically, an expression conveniently used to cover ignorance. The true explanation of the reaction has yet to be found ont, and with this view, it is intended to take up another series of experiments noder varions degrees of dilation of the nitrites.
Table of Results of Analyses.

					Wt. of Ag in Sol.					Reaction as Expressed in Formula.
[(1)	50	1.074	0.863	25	0.304	0.564	1.205	$0 \cdot 168$	0•104	
P ${ }^{(2)}$	50	0.685	$0 \cdot 676$	25	0.233	0.257	0.973	$0 \cdot 130$	$0 \cdot 117$	
P $\{$ (8)	25	0.173	$0 \cdot 188$	20	0.063	0.053	0.274	$0 \cdot 034$	0.027	
(4)	100	0.564	0.569	50	0.0523	0.488	0.614	0.031	0.0105	
$\left\{_{0}^{(5)}\right.$	100	0.3454	0.382	50	0.076	$0 \cdot 2284$	0.4464	0.057	...	
$l_{(6)}$	100	0.392	$0 \cdot 486$	50	0.042	$0 \cdot 345$	0.507	$0 \cdot 026$	\cdots	
$Q\left\{\begin{array}{l} (7) \\ \hline \end{array}\right.$	25	0.172	0.242	$\left\|\begin{array}{c} \mathrm{Na} \\ \mathrm{No} \\ \mathrm{No} \\ \mathrm{O} \\ \mathrm{O} .220 \end{array}\right\|$	Wt. of NaNo_{2} in Sol.	fremer	$0 \cdot 333$	0.081	\cdots	
	25	0700	$0 \cdot 620$	20	$\begin{array}{\|c\|} \hline 1 \cdot 20 \\ \ldots \end{array}$...	0.980	$0 \cdot 34$...	

On Mercurous Iodide-A new Method of its Preparation.

The yellow residue in the flask (see previons paper) consisting presumably of a mixture of mercurous iodide and the unacted-apon mercurous nitrite was well powdered and introduced into a combastion tabe, plagged with asbestos and heated in a tube-heater (RölrenOefen.). The powder occapied nearly one-third the length of the tabe. When the temperature rose to about $135^{\circ} \mathrm{C}$, nitrous fumes began to be disengaged, and an oily liquid collected at the moath of the tabe. This liquid is nitro-ethane, a portion of which obstinately remains absorbed in the hard mass of the mixture referred to above.

On heating more than two hours from 155° to 163°, for the most part stationary at the latter temperature, a thin deposit of lustrous lemon-yellow scales was obtained. The yield however was very poor. Next day the heat was raised to 192°, and the temperature maintained nearly constant for three hours: a sublimate of a compact mass of yellow and orange-yellow crystals was the result.

In another experiment the sublimation was carried on between $190^{\circ}-210^{\circ} \mathrm{C}$. stationary for the most part at 210°, in this case orangeyellow crystals were obtained. In several experiments, however, conducted within the above range of temperatures, the sablimate which was deposited nearest the source of heat was of a dark brown tint; next to it was a deposit of orange-yellow and yellow tablets respectively; and, last of all, near the moath of the tube was a ring of scarlet crystals of mercuric iodide. Sometimes it so happened that by far the larger proportion of the sublimate was of scarlet mercaric iodide; but whether this was due to the decomposition or dissociation of mercurons iodide formed at first ($\mathrm{Hg}_{8} \mathrm{I}_{2}=\mathrm{HgI}_{2}+\mathrm{Hg}$) or not is not clear. More than a dozen experiments were carried on, and the experiences accruing therefrom are recorded above.

General properties:-In Yvon's* experiment in which Mercarons Iodide was prepared by the direct anion of the elements, only the yellow and orange-yellow crystals are described. According to this chemist sublimation begins at $190^{\circ} \mathrm{C}$. My own experience confirms his in the main, though I have noticed that a small quantity of mercurons iodide almost always sublimes between 163° and $170^{\circ} \mathrm{C}$.

The dark brown variety when powdered and kept in contact with dilate nitric acid tarns dirty yellow, and the orange-yellow ander similar conditions orange-red, without undergoing change in the composition; but boiled for some time with the dilute acid, both these varieties are gradually transformed into mercuric iodide, and from the

[^63]hot mother liquor also bright scarlet spangles of mercuric iodide crystallize out on cooling.

Result of Analysis:-Estimation of iodine. The methods described in the standard works of Fresenins, Crookes, \&c., for the estimation of iodine in mercurous iodide appeared to be tedions and troublesome in view of the numerons determinations involved. Reduction was effected with zinc and sulphuric acid under certain modifications. The compound is finels powdered and transferred to a flask. Pure granulated zinc and dilate sulphario acid are then added together with a few pieces of scrap platinum, when evolution of hydrugen at once sets up; the flask is kept actively rotated. After a few minutes the zinc becomes amalgamated and further action ceases. A drop of platinic chloride is now added, reduction proceeds, and a pink colour pervades the liquid, and the flask is shaken as before. When the reduction is complete the solution should be perfectly clear and colourless, and there should not be any trace of a powdery black residue at the bottom of the flask. The iodine is estimated in the usual way, and the additional halogen introduced with the standard $\mathrm{Pt}_{\mathrm{Cl}}^{4}$ drop, corresponding in the present instances to 0.005 AgCl , allowed for. Sometimes the zinc is treated beforehand with the dilute acid and a few drops of PtCl_{4}, and the platinized zinc, washed free from chlorine, is added in successive instalments to bring about reduction, which is finished in 20 min . to half an hour.

As control experiments, iodine in resublimed mercuric iodide was estimated according to the above method. Thus:

	(1) 0.2232 g	gave	0.2324	AgI
	(2) 0.0604	"	00625	"
	Calc. for HgI_{2}		Found	
I :	55.95		I	II
			56.27	56.00

Result of analyses of the dark brown, orange-yellow and yellow modifications of mercurous iodide.

(1)	0.4282 g.	gave	0.3043	AgI whence	$I=38.40$	
(2)	0.2204		$"$	0.1577		$"$
(3)	0.25 .58	$"$	$"$	0.1834	$"$	$"$
(4)	0.2038	$"$	$"$	0.1446	$"$	$"$
(5)	0.0824	$"$	$"$	0.0587	$"$	$"$

Theory for HgI requires $\mathrm{I}=38.84 \%$, the Mercary amounted to 61.24%, that demanded by theory being 61.16%.

It will much facilitate operation if between 0.2 to 0.15 g . be taken for parposes of analyses. In the case of the dark brown variety of the haloid it is advisable to examine it carefully with a magnifying glass as inside its thick crust minute globules of mercury are often found enclosed.

From the foregoing inquiry it is evident that when the residue in the flask after the interaction of mercurous nitrite and ethyl iodide is heated in a tube between $190^{\circ}-210^{\circ}$, mercurous iodide sublimes off. The compact mass of crystalline tablets thus obtained varies in all gradations of tint from lemon-yellow and orange-yellow to orangebrown and even dark brown.

Chemical Laboratory, Presidency Oollege.

XIX.-Description of a new Himalayan genus of Orobanchaceæ.By J. S. Gamble, M.A., F.R.S., and D. Prain.
[Received 7th August; Read 5th October, 1900.]
GLEADOVIA Gamble \& Prain.
Calyx tubulosus, parum inflatus limbo æqualiter 5-lobo. Corolls tubus parum incurvas, labinm posticum incarvo-erectum concavam minopere emarginatum, anticum brevius suberectum lobis 3 subæqualibus orectis. Stamina inclusa filamentis apice in connectivam conicum dilatatis, antherarum loculi æquales adnati basi divergentes et mucronatoaristati. Ovarii placentæ 1, per paria approximatæ, medioque confluentes; stigma dilatatum late æqualiter 2-lobum.-Herba parasitica carnosa rhizomate incrassato, squamis ovatis suffulta. Flores densins paniculati, pedicellati, 2-bracteolati. Color pallide purpurea.-Species singula, Himalaica.

The interesting plant for which we propose the above generic description was discovered in Jaunsar in 1898 by the officers of the Imperial Forest School, Dehra Dun; we dedicate it to Mr. F. Gleadow, who was the first actually to find it.

Our plant has all the facies of a Ohristisonia, bat cannot be referred to that genus because both anther-cells are perfect, because the corolla is very markedly 2-labiate in place of being sub-equally 5 -lobed, and because the two stigmatic lobes are equally large.

The nearest ally of our plant seems to be the American genus Conopholis Wallr., with which it agrees as regards corolla and, except that they are not exserted, as regards stamens, but from which it differs in having an equally 5 -lobed calyx and a 2 -lobed stigma. From

Boschniackia C. A. Mey., it differs somewhat as regards corolla and very greatly as regards stamens. From Xylanche Beck, (Boschniackia himalaica H.f. \& T.) it further differs in having 2 carpels, not 3. From all the genera mentioned it differs markedly as regards inflorescence, which in those is spicate, in our plant paniculate.

Gleadovia ruborom Gamble \& Prain.-A. fleshy herb about 6 in. high of which only about one half epigaeal; root-stocle very thick especially where attached to the host; scales ovate, the lower rounded, the upper acute sometimes 2 -fid. Flowers paniculate; bract solitary, $\cdot 7 \mathrm{in}$. long, sheathing, rounded, pedicel stout $\cdot 35 \mathrm{in}$. long, bracteoles $2,7-1$ in long, spathulate, acute, concave. Calyx light-red, tubular, somewhat inflated, regularly 5 -lobed, $1-1.2 \mathrm{in}$. long, lobes pale. Corolla red with darker veins, tabe as long as calyx, slightly carved, distinctly two-lipped; upper lip of 2 connate lobes, rounded, slightly dentate, lower of 3 narrow, spathulate, subequal, acutely dentate lobes. Stamens 4, geniculate at point of insertion, anthers elongate, spurred, connective produced in a 2 -fid cone, hairy above. Ova茂 1-celled, ovatecylindric; style long, incurved at apex; stigma of 2 broad semi-orbicular lobes depressed in the centre; placentm 2 pairs, free below and above, confluent in the middle, diffuse; ovules very many. Seeds very many, minute.
N. W. Himalafa :-Bodyar Jaunsar, 8-9,000 ft. ; on the northern slopes in very shady woods of Fir and Deodar on roots of wild Rasp: berry (Rubus niveus); very scarce, Aleadow! Gamble! Duthie! Duthie's Collectors !
J. ก1. 64

INDEX.

Namas of Dew Genera and Species have an asterisk (*) prefixed.

Abisara fraterna, 205, 234
Abrus precatorits, 199, 239, 244
Acacia Intsia, 201, 247, 239, 241, 247
" ". var. cresia, 201, 239, 248
" pennata, 202, 227, 232, 239, 241. 248
ACANTHACESE, 171, 206, 224, 225, 231, 236, 265, 266
Acanthoplaw, 294
Acanthopneuste occipitalis, 159
, plumbeitarsus, 114
" viridanus, 159
" viridiamus, 114
4canthopus, 297, 439
" clavimanus, 439
" Gibbesi, 439
, planissimus, 439
Accipiter nisus, 134
" virgatus, 166
Aceros nepalensis, 129
Achyranthes aspera, 208, 265
" bidentata, 208, 265
Acmæopleura, 296
Acrimins, 189, 221
Acridotheres tristis, 117, 160
Acronychia laurifalia, 196, 258
Actinodura ramsayi, 108
Adina cordifolia, 204, 230
Atialitis sp., 139
Eyithaliscus erythrocephalus, 157
कgithine tinhea, 109
Wgle SLarmelos, 197, 258
Ä̈romachus indistinatus, 213, 273
Athiopsar albicinctus, 117
" fuscus, 117
" grandis, 117
xethopyga dabryi, 124, 125
" gouldix, 124, 164
". saturata, 125, 164
", seherie, 124
Aganosma cymosa, 206, 215
Aglaia Roxburghiana, 197, 232
Aix galericulata, 148, 149
Alauda gulgula, 124
ALAUDIDE, 124
Albizzia, 227
" Lebbek, 202, 227, 232

Alcedinides, 128
Alcedo ispida, 1\&8, 16n
Alcippe nepalensis, 107
Alcurus striatus, 111
Allomorphia, 2, 8, 10, 45

* \quad alata, 8, 10, 12
", exigua, 10, 12
,, ", var. minor, 11
" Griffithii, 45
* " Wrayi, 10,11

Allophylus Cobbe, 197, 265
Alseodaphne semecurpifolia, 208, 257, 259
Alsodeia zeylanica, 194, 224
Amacrotropis, 175, 177, 183
Amarantaces, 208, 265
Amathosinne, 189, 220
Amblypodia, 189
" anita, 197, 241
Ainomum, 277
" microstephanum, 211, 239, 277
Amorphqpus, 293
Amphitrite, 305
Ampittia dioscorides, 213. 273
" maro, 273
Anacardiacefe, 198, 230, 231, 237
Anacardium nccidentale, 198, 231
Anagyris, 175
Anas boschas, 149
" poecilorhyncha, 141
" zonorhyncha, 142
Anatides, 141, 147, 149
Anerincleistus, 2, 15
", anisophyllus, 18
", Beccarianus, 18
", Curtisii, 15, 16, 17

* ", floribundus, 15, 17
* ", glomeratus, 18
" hirsutus, 16
* ", macranthus, 15
* " Scortechinii, 15, 16, 17
* " sublepidotux, 15, 17

Anona reticulata, 193, 257
" squamoぇa, 193, 250, 257
Anonacex, 193, 232, 250, 257, 258
Anopheles, 457
Anplectrum, 3, 55, 56, 59
" anomal μ тв, 56, 58

Anplectrum cyanocarpum, 57
divaricatum, 56, 58
glaucum, 56, 57
lopidoto-setosum, 56
pallens, 55, 56, 57
Anthocoma flavescens, 173
Anthracoceros albirostris, 129
Anthus maculatus, 124, 164
pratensis, 164
richardi, 124
rosaceus, 164
rufulus, 124, 164
similis, 164
striolatus, 124
trivialis, 164
Apatura, 152, 224, 229
" camiba, 210, 223, 224
" (Rohana) camiba, 210, 223, 2.4
Apaturides, 152
APHID $\mathrm{B}, 189$
Aphneeus, 190, 247
abnormis, 246
concanus, 187, 246
ictis, 246
lohita, 187, 190, 192. 197, 200, 201, 202, 203, 206, 212, 245, 246
vulcanus, 192, 197, 245
APOCYNACKE, 205, 215, 216, 217
Aporia, 153
Appias, 189
«lbina, 209, 254
" hippo, 254
", hippoides, 254
" libythea, 189, 193, 194, 254
", neombo, 254
") taprobana, 189, 193, 254, 255, 256
", wardii, 194, 254, 256
" zelmira, 254
Apteuxis trinervis, 68
Aquila bifasciatn, 132
maculata, 133
Arachnechthra asiatica, 125
Arachnida, 130
Arachnothera, 110
magna, 125
Araliacere, 204, 259
Aratus, 296
Arboricola rufigularis, 137
tickelli, 137
Archroplax, 455, 456 notopus, 456
Ardeides, 141
Ardeola bacchus, 141 grayi, 141
Ardisia humilis, 205, 234, 239
Areca Catechu, 212,(220, 267, 268
Argya gularis, 106
Argyreia sericea, $\{206,245$
speciosa, 206, 245
Arillaria, 175, 176, 177, 179, 180

Arillaria robusta, 179, 180 Aristolochia, 257
" bracteata, 208, 257
" indica, 208, 256, 257
Abietolochiaces, 208, 266, 257
Aboidese, 174
Arrhopala, 189, 241, 248
abseus, 244
amantes, 191, 195, 201, 202, 203, 244
bazalus, 191, 195, 202, 244
canaraioa, 191, 195, 244
centaurus, 191, 195, 201, 202, 208, 244
Artamus fuscus, 115
Asclepiadacese, 170
Ascleplane.f, 206, 216
Asclepias Curassavica, 206, 216
Abionides, 131
Asteracantha, 225
" longifolia, 225
Asthenognathides, 288
Asthenognatiline, 281, 288, 294, 334
Asthenognathus, 294
Astheracantha, 225
Astronia, 3, 66
" smilacifolia, 67
" $"$ var. lepidophylla, 67
Astroniek, 3
Astur badius, 183, 134 poliopsis, 134
Atalantia monophylla, 196, 258
Atella alcippe, 194, 224
phalantha, 194, 224
Athene brama, 132
Atherura macrura, 90
Athyma, 162 inara, 204, 209, 230
mahesa, 230
ретius, 209, 230
ranga, 205, 230
selenophora, 204, 230
Badamia exclamationis, 202, 203, 264
Bambusa sp., 214
" arundinacea, 213, 218, 219, 220, 267, 269, 871, 278, 274
Bambusicola fytchii, 187
Baoris, 270 bada, 267
bevani, 218, 267, 276
canaraica, 276
colaca, 213, 276
conjuncta, 213, 273, 275, 276
guttatus, 187, 213, 267, 276
kumara, 214, 274
mathias, 213, 276, 277
oceia, 214, 272, 278
philippina, 214, 274
philotas, 187, 267
plebeia, 275, 276
sinensis, 878, 276

Baoris subochracea, 213, 276
" (Chapra) mathias, 213, 277
" sinensis, 273, 276
" subochracea, 213, 276
(Parnara) bevani, 213, 267, 276
" canaraica, 276
" colaca, 218, 276
" conjuncta, 213, 273, 276
" guttatus, 218, 267
", ", kumara, 214, 274
" $\quad " \quad$ philippina, 214, 274
" \quad " philotas, 267
$"$ " plebeia, 275
Baracus hampsoni, 218, 271
septentrionum, 271
Barleria Prionitis, 207, 285

$$
\text { sp., 207, } 225
$$

Bathyplam, 292
Belenois mesentina, 194, 256
Bhringa remifer, 113
Bibasis sena, 203, 259
Bindahara sugriva, 197, 250
Bixinese, 194, 224, 229
Blastus, 2,12
" cochinchinensis, 18
" Cogniauzii, 13
Blopharis asperrima, 207, 265
Blumea sp., 205, 231
Bombus malabaricum, 195, 289
Borlainkes, 206, 234
Boschniackia, 489
" himalaica, 489
Brachygrapsus, 292, 818
Brachynotus, 296
Bryophyllum calycinum, 202, 239
Bucerotides, 129
Buchanania latifolia, 198, 237
Butastur liventer, 138
Butea frondosa, 110, 199, 239, 241
Byblia, 221
" goetzius, 282
" ilithyia, 210, 221
Cacomantis merulinus, 130
Cadaba indica, 193, 252
Ciesalpinia mimosoides, 200, 227, 231
Cairina moschata, 148, 149
\times Anas boschas, 148
Cajanus indicus, 199, 241
Calamus pseudo-tomuis, 212, 220, 267, 268, 272
rotang, 267
Calinaga, 150, $151,152,153,154,155$
brahma, 154
buddha, 153, 154
cercyon, 158, 154
davidis, 151, 158, 154
lhateo, 154
sudassana, 154
Calinagines, 150
Callinagines, 151
Calliope pectoralis, 161

Calophasis burmannicus, 144
Calotropis gigantea, 206, 216
Calysisme perseus, 213, 218
" subdita, 218
" visala, 213, 218
Camæna, 245
Camatopsis, 293, 318, 328, 334 rubida, 329
Camena, 245, 247
" argentea, 245
" cippus, 245
" deva, 209, 245
Campophaga melanoschista, 115, 160
Camptandrium, 292
Camptoplas, 282
Oancer, 357
carnifew, 445
ceratophthalmu8, 345
crenatus, 300
cursor, 345
depressus, 437
fascicularis, 420
grapsus, 392
hydromus, 445
litteratus, 401
longimanus, 303
marinus, 357
messor, 397
minor, 357
planipes, 439
planissimus, 489
quadratus, 413
squamosus, 437
strigosus, 393
tetragonon, 357
tetragonus, 420
vocans minor, 353
vociferans, 357
(Curtonotus) longimunus, 303
(Eucrate) crenatus, 800
APITONIDES, 127
Capparides. 193, 250, 252, 253, 254, 256
Capparis, 250
divaricata, 194, 256
Heyneana, 194, 250, 253, 256
horrida, 194, 250, 253, 254, 256
Moonii, 194, 253
sepiaria, 194, 250, 252, 258, 256
tenera, 194, 250
Oaprimuleider, 130
Caprimulgus asiaticus, 130
indicus, 130, 165
Capiona ransonnetii, 195, 265
Cabcinoplacider, 279, 280, 286
Carcinoplacinee, 279, 286
Oarcinoplacini, 286
Carcinoplaw, 282, 292, 298, 301, 302, 304, 305, 308, 811
integra, 302, 314
" $\quad \begin{aligned} & \text { integra, 302, 314 } \\ & \text { " longimanus, 302, 303, } 304\end{aligned}$
" longipes, 302, 303

Carcinoplax setosa, 802, 315
Cardiosoma, 297, 441, 442, 444, 445, 449
carnifex, 445, 447
", hirtipes, 445, 447
Cardisoma, 444
" armatum, 447
", rarnifex', 445
" Guanhumi, 447
", ,. var. carmifez, 446
" hirtipes, 447
" obesum, 446
", Urvillei, 446
Carduelis caniceps, 163
Carduиs sp., 215, 277
Careya arborea, 203, 230, 247
Carpodacus erythrinus, 122, 162
Caryota urens, 212, 220, 267, 268
Casarca rutila, 148, 149
Cassia Fistula, 200, 251
glauca, 201, 252
occidentalis, 200, 250, 252
", pumila, 201, 252
" siamea, 201, 251
" sumatrana, 251
", Tora, 200, 252
Castalius ananda, 190, 191, 197, 202, 209, 240
,, decidia, 197, 941
" ethion, 197, 240
", rosimon, 197, 240
Cataposcilma, 190, 247
" elegans, $19(1,192,202.203$, 247
major, 247
Catochrysops, 240
stralo, 198. 199, 240
Catombtupa, 279, 280, 281, 282
Catometopes, 281
Catophaga, 254
" albina, 254
Cutopsilia, 232, 234
catilla, 251, 252
"" crocale, 200, 201, 251, 252
", pyranthe, 2uC, 250
Catoptrus, 292, 298, 304, 305, 306, 307
nitidus, 305, 307
Catreus, Wallichi, 167
Celienorrhinus ambareesa, 207, 266
" fusca, 207. 266
", leucocera, 207, 266
", spilothyrus, 266
Celastrinke., 197, 250
Celtis tetrundra, 210, ここ!, -32
Cemas goral, 90
Centropus sinensis, 131
Cerasophila, 103, 110
", thompsoni, 103, 1 10
Ceratoplax, 281, 293, 317; 319, 320, 321
" ciliata, 320
", riliatus, 320

- ", hispida, 820, 821
* Ceropegia kachinensis, 170
$\begin{array}{lc}" & \text { pubescens, } 171 \\ " & \text { Thwaitesii, } 171\end{array}$
Certhia", 107
" discolor, 114
", himalayana, 159
", nepalensis, 159
Certhitide, 114
Ceryle lugubris, 128, 165
" varia, 128
Cethosia mahratta, 204, 224
Chænolobium, 175, 176, 177, 184
" decemjugum, 184
" septemjugum, 184
Chænostoma, 294
Chalcophaps indica, 136
Chapra mathias, 213, 277
" prominens, 273, 276
" promnens, 273, 276
", sinensis, 273, 276
" subochracea, 213, 276
Chaptia aenea, 113
Charadrides, 139
Charadrius fulvus, 139
Charaxes at hamas, 195, 200, 202, 231
fabius, 200, 201, 232
", imna, 193, 197, 232
" schreiber, 231
" schreiberi, 231
" wardii, 198, 200, 231
Chasmagnathus, 296
* Chasmocarcinops, 281, 294, 332, 334
gelasimoides, 834
Chasmocarcinus, 293
Chaulelasmus strepeius, 142
Chelidorhynx hypoxanthum, 119, 160
Chenalopess ægyptiacus, 149
Cheritra, 247
jaffra, 201, 208, 246
Chibia hottentotta, 113
Chilades, 234

$$
\text { laius, 196, } 235
$$

Chimarrhornis leucocephalus, 120, 161
Chliaria othona, 211, 246
Chloranthacee, 173

* Chloranthus kachinensis, 173
" nervosus, 173
" officinalis, 173
Chloropsis atrifrons, 109
$"$ hardwickii, 109, 110, 125, 158
Christisonia, 488
Chryscolaptes gutticristatus, 165
Ciconilde, 141
Cinclus asiaticus, 162
" pallasi, 121
[259
Cinnamomum zeylanicum, 208, 247, 257,
Circus æruginosus, 134
" melanoleucus, 134
", spilonotus, 134
Cirrhochroa thais, 194, 229
Cissa chinensis, 104

Citrus decumana, 198, 258
" medica, 196, 235, 258
Cittocincla macrura, 120
Cleistostoma, 372
" dilata, 372
" pusilla, 372
Clerodendron infortunatum, 208, 245
Clistocœloma, 290, 390, 428
balansæ, 4:29, 430
", malanst, 428, 439
", merguiensis, 429
Clistostoma, 281, 294, 343, 372, 374
dotilliforme, 379
Coccidse, 188, 284
Coccystes jacobinus, '166
Cocos nucifera, 212, 220, 267, 268
Colochirus, 296, 402
Coladenia dan, 208, 265
" indrani, 195, 201, 210, 205
" tissa, 263
Columba intermedia, 166
leuconota, 156, 166, 167
" rupestris, 166
Columbidex, 185
Combretacese, 169, 202, 237, 240, 244, 245, 247, 248, 250, 259, 264, 266, 267
Combretum, 169
" dasystachyum, 169
", extensum, 203, 237, 259, 264
", ferrugineum, 169

* ", kachinense, 169
,, ovalifolium, 208. 267
Compusite, 205, 215, 231, 277
Concolores, 176
Connaraceex, 198, 231, 247
Connarus Ritchiei, 198, 247
Conopholis, 488
Convolvtiaces, 206, 245
Copsychus saularis, 120, 161
Coraciades, 127
Coracias affinis, $12{ }^{2} 7$
Corvides, 104
Corvus corax, 157
" insolens, 104
" macrorhynchus, 104, 157
", splendens, 157
Corythocichla brevicaudata, 107
Cotile sinensis, 123
Coturnix coromandelica, 137
Cbassulacese, 202, 239
Crastia core, 205, 206, 210, 211, 216, 217
Crativea religiosa, 193, 250, 253, 284
Crateropodide, 105
Cremastogaster, 190, 191, 192, 243
Creon, 247
, cleobis, 209, 245
Crocopus pheenicopterus, 135
Crossotonotus, 297
Croton sp., 210, 247
Cryptocoloma, 292
Cryptocoryne ciliata, I74;
* Cryptocoryne Cruddasiana, 174 spiralis, 174
Cryptolepis Buchanarii, 206, 216
Cryptolopha wanthoschista, 160
Cryptophragmium latifolium, 171
.
Listeri, 171
Cryptophrys, 293
Cuculides, 130
Cuculus canorus, 130, 166
" micropterus, 166
" poliocephalus, 166
", saturatus, 166
Cucurbitacest, 204, 230
Culicicapa ceylonensiz, 118, 160
Cuphis erymanthis maja, 224
" placida, 194. 2:4
Cupitha purreea, 202, 203, 266
Curcuma, 277
" \quad mada, 211, 277
aromatica, 277
Curetis bulis, 198, 244
" thetis, 191, 199, 200, 201, 241
Curtonotus, 292, 301
" longimanus, 303
Cutia nepalensis, 109
Cyaniris, 286
" limbatus, 255
" pu"pa, 191, 199. 201, 235
Cyanops asiatica, 127, 165
", ramsayi, 127
Cyuthula prostrata, 208, 265
Cyclograptsacka, 288, 289
Cyclograpsus, 297
Cyclometopa, 282
Cylista scariosa, 199, 235, 239, 240
Cymaria acuminata, 173
Cymopolia, 280, 281, 297, 450
" Jukesii, 451
"" serripes, 454
" Whitei, 453
Cymopolides, 290
Cynitin lepidea, 208, 230
Cynthia saloma, 204, 224
Cyornis, 103
" astigma, 117
" brevirostris. 118
" magnirostris, 118
", melanoleucus, 117
" outesi, 118
" rubeculoides, 118
" s"pphıra, 117
" superciliaris, 160
Cypselides, 129
Cypselus affinis, 160, 165
" leuconyw, 165
". melba, 186, 160, 165
Cyrestis thyodamas, 210, 211, 231
Cyrtograpsus, 296
Dædalacanthus roseus, 207, 266
Dafila acuta, 142, 149
Dalbergia confertiflora, 199, 298

Index.

Dalbergia latifolia, 199, 227, 229, 265
, rасетова, 199, 227
" rubiginosa, 199, 266
" tamarindifolia, 199, 266
", volubilis, 199, 227, 266
Danainal, 151, 153, 155, 189, 215
Danais, 151, 153

$$
\text { aglea, 206, } 216
$$

chıysippus, 206, 216
genutia, 216
limniace, 154, 206, 216
limnitrionis, 216
pleasippus, 206, 216
septentrionis, 206, 216
sita, 154
tytia, 154
(Limnas) chrysippus, 206, 216
(Parantica) aglea, 206, 216
(Salatura) plexippus, 206, 216
(Tirumala) limniace, 206, 216
septentrionis, 206, 216
Delchina thermodusa, 257
Delins eucharis, 209, 250
Dendrocalamus strictus, 214, 220, 267, 270, 274
Dendrocitta himalayensis, 104, 157
Dendrocopus atratus, 126
" auriceps, 164
", himalayensis, 164
Dendrocycna jaranica, 141
Dendrotreron hodgsoni, 136, 167
Derris Heyneana, 200, 244, 261 scandens 200, 260, 266 uliginosa, $2 \mathrm{CO}, 263$
Deйdorix epijarbas, 192, 198, 247
Diadema, 150
Dicaidse, 125, 126
Dicieum chrysorrhoum, 125
" cruentatum, 12:
" ıgnipectus, 125
" olivaceum, 125
Dichnceros bicornis, 129
Dicrubidet, 113
Dicrurus ater, 113 cineraceus, 113
" longicaudatus, 159
Dioscorea pentaphylla, 212, 245, 247, 266
Dioscoreacest, 212, 245, 247, 266
Diospyros Candolleana, 205, 230
" melanozylon, 205, 230
Diomippe, 295, 371
" orientalis, 371
Diptera, 262
Dipterocarpene, 195, 244, 247
Discolores, 176
Discophora indica, 214, 220
lepida, 214, 220, 221
Discoplax, 297, 444
" longipes, 447
Dissemurus peradiseus, 113
Dissochreta, 2, 49, 55

Dissochæta anceps, 58

- " annulata, 50
anomala, 50, 55
astrotricha, 53
bancana, 54
bracteata, 50, 52
bracteosa, 52
celebica, 50, 54

```
        var. contracta, 54
```

diväricata, 58
glauca, 57
gracilıs, 50, 53
hirsuta, 50, 51
intermedia, 50, 54, 56
microcarpa, 54
ovalifolia, 53
palembanica, 58
pallida, 50, 52
pepericarpa, 58
punctulata, 50, 51
Scortechinii, 50, 55
spoliata, 57
superba, 53
Dissodactylus, 293
Dissura episcopus, 141
Doleschallia, 231
indica, 231
polibete, 207, 231
Dophlä laudabilis, 205, 280
Dorippe, 285, 451
Dorippids, 280
Dotilla. 280, 281, 295, 342, 363, 864, 369, 371
" affinis, 364, 365, 366

* " Blanfordi, 364, 366, 367
" brevitarsis, 364, 367
." clepsydrodactylus, 364, 367
", intermedia. 364, 365, 367
", myctiroides, 364, 368
", sulcata, 365
" Wichmanni, 367
Dotilese, 373, 384
DOTINE, 280, 290
Doto, 295, 363
" myctiroides, 368
Dregea volubilis, 206, 216
Dryonastes chinensis, 105
sannio, 105
Ducula griseicapilla, 136
Durckheimia, 298
Ebrnacie, 205, 230
Elamena, 281, 385, 386, 387
* " sindensis, 386
" truncata, 386
" unguiformis, 387
" (Trigonoplan) unguijormis, 387
Elamene, 295
" unguiformis, 387
Elamenopsis, 295
Elanus cxruleus, 184
Elatostema cuncatum, 211, 229

Elettaria Cardamomum, 212, 289
Elymnias caudata, 212, 220, 883
Elyminins, 189, 220
Embelia robusta, 205, 234, 239
Emberiza aursola, 122
" fucata, 163
" pusilla, 122
" rutila, 123
" stracheyi, 163
Epigrapsus, 289, 295, 297, 440, 442, 443 politus, 443
Eranthemum malabaricum, 207, 231
8p., 207, 266
Ergolis, 222, 233
ariadne, 210, 221
", tuprobana, 210, 221
Eriochir, 296
Erismatura, 147

$$
\begin{array}{ll}
", & \text { leucocephala, } 147 \\
" & \text { rubida, } 147
\end{array}
$$

Erythropus amurensis, 135
Euchirogrupsus, 296
Euchrysops, 240
" cnejux, 198, 199, 240
" pandava, 191, 200, 201, 240
Eucrate, 292, 298, 299, 301, 302, 307, 308, 309, 311, 313
" affinis, 300
" crenata, 299, 300, 301
" " var. affinis, 299, 300
" ", "dentata, 299, 801
", crenatus, 800
" sexdentata, 299, 301
Eucratoplax, 292
Eucratopsis, 292
Eudynamis honorata, 131
Eugenia zeylanica, 203, 247
Eugomphostemma, 173
Eugrewia nagensium, 168
Eulabes intermedia, 116
Edlabetida, 116
Eulepis athamas, 232
agrarius madeus, 232
",
.,
war'dii, 231

* Eumursdenia leiocarpa, 170

Eunetta falcata, 149
Eunrmosia, 179
Euphorbiactes, 209, 221, 230, 241, 247,
Euplan, 294
[254, 265
Euplæa core, 205, 206, 210, 211, 216, 217
" coreta, 206,217
" kollari, 810, 216
" (Crastia) core, 205, 206, 210, 211, 216, 217
" (Narmada) coreta, 206, 217
" (" (ademma) kollari, 210, 216
Euripus consimilis, 210, 222
Euryplax, z92
Eurystomus orientalis, 128, 165

- Eusmilas Pottingeri, 174

Eusonerila, 19, 21

Euthalin garuda, 198, 209, 230
laudabilis, 205, 230
iepidea, 203, 230
lubentina, 209, 231
(Oynitia) lepidea, 203, 230
(Dophla) laudabilis, 205, 230
:"
Everes argiades, 199, 239
Evodia Roeburghiuna, 196, 258
Ercyckia capitellata, 69 cyanea, 68 var. latifolia, 69
Jackiana, 68
latifolia, 69
medinilliformis, 69
paniculata, 69
Fabia, 293
Falco jugger, 134
" peregrinator, 184
", severus, 135, 166
" subbuteo, 135, 166
Falconides, 132
Ficus, 129, 135
" bengalensis, 210, 216, 231, 241
", glomerata, 211, 216, 231, 241
", indica, 210, 231, 241
", religiosa, 211, 216
Flacourtia montana, 194, 224
Fleurya interrupta, 211, 229
Francolinus chinensis, 137
vulgaris, 168
Pranklinia gracilis, 159
Freyvillea, 292
Fringillider, 122
Fulica atra, 138
Gallinas, 149
Gullinago caelestis, 140 gallinula, 140
nemoricala, 139
stenura, 140
Gallinula chloropus, 138
Gallus ferrugineus, 187
Gangara thyrsis, 212, 213, 267
Garciuin wanthochymus, $2 \overline{5} 8$
Garrulıax albigularis, 158
" belangeri, 105
", leucolophus, 158
" mouiliger, 106
" pectoralis, 105
Garrulus bispecularis, 157
" lanceolatus, 157
" leucotis, 104, 126
Gecarcinacra, 289
Gecarcinidse, 289
Gecarciniens, 289
Gecarcinucus, 279, 280, 289
Gecarcinus, 297
Gecarcoidea, 297
Gecinus chlorolophus, 164
" nigrigenis, 126
" occipitalis, 126, 164
" squamatus, 164

Gecinus striolatus, 126
Gelasimos, 357
Gelasimus, 294, 335, 342, 350, 351, 352, $364,269,372,375,441,445$
" ©utus, 353, 360, 362
" ${ }^{*}$ anpulipes, $351,352,353,355$, 356, 357
chlorophthalmus, 356
cultrimanus, 359, 360
" var. Marionis, 359
Duperreyi, 358
Dussunieri, 353, 361, 362, 363
inversus, 352. 355, 356
yヶx. sindensis, 356
lactea, 30.5
lacteus, 352, 355
longidigitum, 362
Marionis, 353, 351, 359, 360
var. nitidus, 353, 360
minor, 357
nitidus, 360
perplewus, 354, 357
-poroellanus, 354
pulchellus, 354
Smithii, 356
splendidus, 3ธ̄5, 359
tetragonum, 353, 357
triangularis, 352, 356
Urvillei, 3̄3, 362
vocans. 360
Gennæия, 146
albicristatus, 167
andersoni, 145, 146
davisoni, 145
horsfieldi, 145, 146
" lineatus, 137, 145, 146
" nycthemerus, 146
" turneri, 146
", williamsi, 145, 146
Geocarcinide, 279, 280, 282, 283, 289. 297, 440
Geocichla voardi, 162
Geograpsus, $295,389,39$ t
" crinipes, 396
" Grayi, 395, 396
yon, 282
Glareola lacten, 138
" orientalia, 138
Glareolides, 138
Glaucidium cuculoides, 132

* Gl̈eadovin, 488
* " ruborum, 489

Glochid̈ion lanceobarium, 209, 230'.
" velutinum, 209, 280
" zeylanicum, 209, 230
Gly cosmis pentaphulle, 196, 234, 258, 259
Glyptograpsus, 296
Glyptoplas, 282
Gnathochasmus, 297

Gnathograqeses, 296, 402
" barbatus, 406
Gomphandra, 169

* ", लerrqta, 169

Gomphostemma, 173
$\begin{array}{ll}" & \text { chinense, } 173 \\ " & \text { Curtisi, } 173\end{array}$
", flavescens, 173
", furfuracea, 173
" HBmsleyanun, 173

- " inopinatum, 172
-. Mastersii, 173
" melisaifolium, 173
" ovatum, 173
" pedunculatum, 173
", velutiousm, 173
* " (Pogosiphon) inopinatum

172
Gonincaphyra, 29\%, 307
" sp., 807
". truncatifrons, 307
Goniopsis, 295, 391 " flavipes, 394
" pieta, 392
" strigasa, 394
Gonoplacza, 279
Gonoplaces Canoeruides, 256
Vigils, 290
Gonoplacid $\oiint_{1} 280,282,283,286,292$, 297
Gonoplaciens, 286
Gonoplacin π, 286, 293, 316
Gonoplax, 279, 280, 282, 293, 316, 317 angulata, 317
Graculipica nigricollis, 116
Graculus evemita, 157
Gramines, 213. 218, 219. 220, 267, 269, 270, 271, 273, 274, 276, 277
Grapsacea, 288
Grapsi, 281, 437
Grapsides, 279, 280, 282, 283, 285, 289, 290, 295, 389
Grapsines, 288, 295, 389, 390
Grapsodes, 289, 440, 441, 443
" natatus, 442
Grapgoidra, 280, 281
Grapsoidiens, 288
Grapsus, 280, 295, 389, 390, 391. 394, 395

* affinis, 413
" albo-lincatus, 394
" altifrons, 392
" bidemp, 415
" crinipes, 396
" Gaimardi, 398
" granulosus, 39 4
". grapsus, 392, 394
., Grayi, 39 D
intermedius, 416
littenatus, 401
maculabus, 322
" var. pharconis,. 992

Grapsus messor, 397
ornatus, 392
pelagicus, 394
Peroni, 394
pharaonis, 392
pictus, 392, 414
,, var. ocellatus, 392
". "Webbi, 392
rubidus, 396
strigosus, 393
Webbi, 392
(Pachysoma) affinis, 413
bidens, 415
pictus, 414
intermedius, 416
Graucalus macii, 115
Grewia capitata, 169
Microcos, 195, 229, 265
", microstemma, 168

* ,, nagensium, 168
" oppositifolia, 168
", sp., 195, 231
,. umbellifera, 169
") (Eugrewia) nagensium, 168
Gruides, 138
Grus antigone, 138 sharpii, 138
Gualteria longifolia, 193, 257
Guatteria , 193, 257
Guttiferes, 258
Gymnostachyum, 171
latijolium, 171
Listeri, 171
(Cryptophragmium)
Listeri, 171
Gypaëtus barbatus, 166
Gyps himalayensis, 166
Halcyon pileata, 129
smyrnensis, 128
Hi:liastur indus, 133, 347
Halicarcinus, 291, 295
Halpe astigmata, 269
ceylonica, 187, 214, 269, 270
honorei, 214, 270
hyrtacus, 214, 270
moorei, 187, 270
Harpactes, 130, 278
, erythrocephalus, 130
Hasora, 263
alesis, 199, 259, 261, 262, 263, 264
badra, 200, 263
butleri, 200, 260, 261
chabrona, 198, 262, 263
chromus, 261
(Parata) alewis, 199, 259, 261, 262, 264
" $"$ butleri, 200, 260
Hebomoia australiz, 193, 194, 251, 253 glaucippe, 253
Hedychium coronarium, 211, 239, 277

Helice, 297
" dentipes, 433
Helicteres Isora, 195, 229, 265
Heliotropium strigosum, 206, 234
Heloecius, 294
Hemichelidon sibirica, 160
Hemicyclia venusta, 209, 254
Hemigrapsus, 296
Hemilophus pulverulentus, 127
Hemiplax, 295
Hemipus picatus, 115
Hemixus flavala, 110
, macclellandi, 111
Henicurus immaculatus, 119
,, maculatus, 160
Hephthopelta, 293, 318, 327

$$
\text { " lugubris, } 327
$$

Heptapleurum venulosum, 204, 258
Herbivocula schwarzi, 114
Hesperia alesis, 254
" cippus, 245
" galba, 195, 265
" longinus, 245
" (Tajuria) longinus, 245
Hesperidds, 152, 189, 259
Hestia, 155
" kanarensis, 215
", lynceus, 215
". malabarica, 206, 215
Hestina, 150
Heterograpsus, 296
Heteroplax, 292, 298
" dentatus, 301
Heteropoda, 152
Hexapodinas, 280, 281, 286, 287, 293, 317, 318, 329
Hexapus, 280, 282, 293, 329
" sexpes, 330
Hexodon, 21
Hieraëtus pennatus, 133
Hierococcys sparcerioides, 130
Hirundinidse, 123
Hirundo erythropygia, 123
nepalensis. 163
smithii, 123, 163
striolata, 123
Holarrhena antidysenterica, 205, 216
Holometopus, 297, 409
Holothuriophilus, 293
Hopea Wightiana, 195, 244, 247
Hoplopterus ventralis, 139
Horaga ony未, 247
Hoya viridiflora, 216
Huhua nepalensis, 132
Huphina nerissa, 194, 256
" phryne, 256
" remba, 194, 256
Hyarotis adrastus, 212, 272
Hydnссагрия, 224
Wightiana, 194, 229
Hydrochelidon hybrida, 140

Index.

Hydrophasianus chirurgus, 139
Hygrophila spinosa, 207. $\because ? 5$
Hylæocarcinus, 247, 448
Humei, 419
Hymanis, 221
Hymenicus, 281, 291, 295, 385, 387

- " inachoides, 387, 388
- Wood-Masoni, 387, 398

Hymenoptira, 262
Hymenosoma, 280, 291, 295
Hymenosomidx, 280, 282, 285, 291, 295, 385
Himenosomines, 291
Hypacanthis spinoides, 163
Hypoestes, 172
salicifolia, 172
Hypoleucus, 143
" melunogenis, 143
", varius, 143
Hypolimnas, 150, 224, 229
" bolina, 195, 211, 229
" misippus, 195, 280
Hypophthalmus, 293, 325
Hypopicus hyperythrus, 126,16 t
Hypothymis azurea, 119
Hypsilograpsus, 407
Hypsipetes, 108, 110

$"$	concolor, 110
leucocephalus, 110	
$"$	psaroides, 159

Hysudra selira, 189, 214, 278
Iambrix sulsala, 213, 214, 267
Ianthia rufilata, 161
JBIDIDE, 141
Ichnocarpus frutescens, 206. 216, 217
Ideopsis, 155
Ilyoplax, 295
JLT81I)N, 449
Indigofera atropurpurea, 189, 214, 278
Iole virescens, 112
Iraota timoleon, 210, 211, 241
Isma submaculata, 268
Ismene fergusonii, 203, 259
" gomatn, 204, 259
I»ias, 234, 253
cingalensis, 258
" dharmsalx, 253
", frequens, 253
" marianne, 194, 253
", pirenassa, 253
" pyrene, 194, 253
Imora coccineu, 204, 247
Isulus flavicollis, 158
Iyngipicus canicapillus, 126
" pygmieus, 165
Iynw torquilla, 127
Jamides, 236
bochus, 191, 199, 201, 239
Jasminum dispermum, 170

- " excellens, 169
" officinale, 170

Junonia, 152, 224
Krmferia pandurata, 211, 239, 277
Kullima horsfieldii, 207, 231
Ketupa javanensis, 131
Kibessia acuminata, 70
" cupularis, 70
" echinata, 70
", pubescens, 70
" simplex, 70
Kydia calycina, 105, 229
Labiate, 172
Lagerstrœmia lanceolata, 203, 244, 245, 247
microcarpa, 244
*Lamb̌'dophallus, 281, 282, 293, 318, 329

* ", sexpes, 330

Lampides celeno, 191, 199, 201, 239
,. elpis, 211, 212, 239
LaNildes, 115
Lanius colluiroides, 115
, erythronotus, 160
", nigriceps, 115, 160
Lakines, 140
Larus brunneicephalus, 140
Laurineas, 208, 247, 257, 259
Laỵia, 175, 177, 180, 182, 183, 184
Leguminoses, 175, 189, 198, 214, 227. 228, 2:9, 231, 232, 334, 235. 236, 237, 239, 240, 241, 244, 245. 246, 247, 248, 250, 251, 252, 259, 260, 261, 262, 263, 265, 266, 278
Leiolophus, 439
," planissimus, 439
Lemonidde, 158, 282
Leptograpsus, 295
Leptoptilus dubius, 141
Leptosia ๙iphia, 189, 198, 194, 250
Lethe drypetis, 214, 218
, europa, 213, 218
., neelgherriensis, 218
" todara, 218
Libystes, 281, 292, 298, $304,305,307$

- ,, Alphonsi, 305, 306
* "" Edwardsi, 305, 306
" nitidus, 307
Libytheinfe, 189, 232
Libythea rama, 210, 232
Liliacese, 174, 212, 247, 266
Lima indicu, 340
Limenitis procris, 204, 230
" (Moduza) procris, 204, 230
Limnas chrysippus, 206, 216
Limnocurcinus, $\because 97,448$
Limonidromus indicus, 124
Linociera malabarica, 205, 230
Liolophus, 297, 390, 439
planissimus, 439
Lioptila, 108
" annectens, 108
" capistrata, 158

Lioptila castanoptera, 108
melanoleuca, 108, 110
Lippia nodiflora, 207, 225
Liriopea, 295
Litochira, 281, 292, 298, 302, 313, 314

- " angustifrons, 314, 315
" Beaumontii, 314, 315, 316
" integra, 314
" quadrispinosa, 314, 316
" setosa, 314, 315
Litsæa sebifera, 208, 257, 259
tomentosa, 208, 259
Lophophanes melanolophus, 158
Lophophorus refulgens, 167
Lophospizias trivirgatus, 134
Loranthacese 209, 231, 240, 245, 246, 247, 250
Loranthus, 231
" elasticus, 209, 245, 246
" longiflorus, 209, 240, 246, 247, 250
scurrula, 209, 231, 245, 2 ± 6
tomentosus, 209, 245, 246
Wallichianus, 209, 246
Loriculus vernalis, 131
Loxura, 247
" atyinnus, 212, 247
Luehdorfia, 153
Lycana putli, „34
, trochilus. 234
Lycænesthes emolus, 191, 200, 201, 202, 203, 237, 238
lycrenina, 198, 200, 237
Lrcenids, 152, 189, 190, 234, 247
Lyncornis cerviniceps, 130
Lytrracres, 203, 244, 245, 247, 250
Machlophus spilonotus, 105
aanthogenys, 157
Macrödisca, 177, 179
Macrophthalmide, 290
Macrophtaalmine, 284, 290, 294, 343, 372
Maerophthalmus, 282, 295, 343, 373, 374, 375, 376, 390, 431
affinis, 381
bicarinatus, 376
carinimanus, 376
conveゅия, 376, 378
depressu*, 374, 876, 380
erato, 376,381
inermis, 379
pacificus, 376
pectinipen, 376, 377, 379, 380, 381, 383
simplicipes, 376
sulcatus, 376, 379
tomentosus, 376, 382
Verreaumi, 376, 377
Macropteryw coromata, 129
Macropygia tusalia, 187
Macrotropis, 175

Macrotropis bancana, 184
" sumitrana, 183
Mactra vinlacea, 340
Majoidea Hymenosomides, 281, 291
Mulacosoma, 294
Mollotus rhilippinensis, 210, 265
Malfacese, 195, 228, 229
Mangifera indico, 198, 230
Maranta, 277
Marsdenia erincarpa, 170
:, leiocarpa, 170
" tinctoria, 170
", (Eumarsdenia) leiocarpa, 170
Marumia, 2, 47
" uffinis, 48
", echinata, 48
", nemorosa, 47
", oligantha, 49
", reticulata, 47, 49
" rhodocarpa, 47, 48
" $" \quad$ var. subglabrata, 49
:, zeylanica, var. subglabrata, 49
Matupa aria, 214, 267
Medinilla, 3, 59

* " alternıfolia, 60
* " Clarkei, 60,63
crassifolia, 62
crassinerria, 60, 64
Hasseltii, 60, 62
., var. Griffithii, 62
heteranthera, 59, 61
var. latifolia, 61
Horsfieldii, 61
javanensis, 63
macrocarpa, 6t
Maingayi, 60, 63
montana, 65
perakensis, 60, 64
rosea, 63, 64
scandens, 59, 60
Scortechinii, 60, 62
speciosa, 59, 60
venusta, 59, 61
Medinillefe, 2
Megalæma marshallorum, 165
" virens, 127
Megalurus palustris, 114
Megisbr mulaya, 234
Melanitis ampa, 219
gokala, 214, 219
" \quad ismene. 213, 219
" leda, 217
". varaha, 213, 219
Melannchlora sultanea, 110
Melartoma, 2, 4
" adpressum, 7
., affine, 6
" anopharitum, 7
., articulatum, 6
" Banksii, 6
", brachyodon, 7

Memecylon lutescens, 80
Maingayi, 7․, 77
manillanum, 80
merguica, 83
microstomum, 72, 79
minutiforum, 72, 80, 81
Myrilli, 82
myrsinoides, 72, 81
var. lilacina, 81
oleæfolium, 73, 80, 82, 83, 87
oligoneuron, 71, 78
ovatum, 87
pachyderma, 82
pauciforum, 73, 83
prasinum, 87
pubescens, 71, 74, 83
pyrifolium, 86, 87
subdichotomum, 74
subtrinervium, 77
" var. grandiflora, 77
tinctorium, 86, 87
trinerve, 74
umbellatum, 84, 86, 87
Vosmaerianum, 82
Merganser castor, 149
Meropide, 128
Merops viridis, 128
Merulu albicincta, 161
atrigularis, 120, 161
boulboul, 120, 161
protomomelæna, 120
unicolor, 161
Mesia argenta uris, 110
Metagrapsus, 297, 426
Metapaulias, 297
Metaplam, 297, 390, 430, 431
crassipes, 434
crenulata, 431, 435
crenulatus, 435
dentipes, 431, 433
distincta, 431, 432, 433, 484
distinctus, 432
elegans, 432, 434
indica, 431, 432, 433, 434, 435
indicus, 432
intermedia, 432, 435
intermedius, 435
Metasesarma, 297, 390, 427, 428
Rousseauxii, 427
Metopidius indicus, 138
Metopograpsus, 295, 389, 396, 399
$\begin{array}{ll}", & \text { Eydoumi, } 398 \\ \text { intermedius, } 898\end{array}$
" latifrons, 399
" maculatus, 898
". messor, 897
Metoponia pusilla, 163
Microcichla scouleri, 161
Microhieras eutolmus, 135
MictybidA, 282, 284, 291, 295, 383

Mictyris, 280, 281, 291, 295, 383, 384
," longicarpus, 384
Milletia racemosa, 198, 229, 262
Milvus yovinda, 133, 166
" melanotis, 133, 166
Mirafra microptera, 124
Miaornis rubricapillus, 107
Modecca palmata, 204, 221, 224
Moduxa procris, 204, 230
Molpastes burmanicus, 111

$"$	intermedius, 159
$"$	leucogenys, 159
$"$	nigrᄂpileus, 111

Morphinse, 153
Motacilla alba, 163
" hodgsoni, 163
" leucopsis, 123
" maderaspatensis, 163
" melanope, 163
Motacillidx, 123
Munia atricapilla, 121
Míurraya Kønigii, 196, 258
Muscicapide, 117
Mussænda frondosa, 130
Mustela flavigula, 158
Mycalesis junonia, 213, 218
mandata, 213, 218
mineus, 218
perseus, 213, 218
subdita, 213, 218
visala, 213, 218
(Calysisme) perseus, 213, 218 ,, subdita, 213, 218
,, visala, 213, 218
(Nissanga) junonia, 213, 218
(Orsotriæıa) mandata, 213, 218
Mictirinas, 290
Myctiroidea, 291
Myiophoneus eugenii, 107 " temminckii, 107, 158
Myrsinese, 205, 234, 239
Myrtaces, 1, 203, 230, 245, 247
Myrtus oligoneura, 74
Nacaduba atrata, 187, 200, 205, 239
" dana, 239
" hermus, 239
" macrophthalma, 239
" norsia, 201, 202, 239
" plumbeomicans, 187, 239
Narmada corsta, 2u6, 217
Nautilograpsus, 296
Nectarinildes, 124
Nectograpsus, 442, 443
" politus, 443
Nectopanope longipes, 303
Nelsonia campestris, 206, 225, 236
Nemeobinis, 189
Nemorhædus bubalina, 90
Neopithecops zalmora, 191, 196, 234
Nepheronia hippia, 194, 253
pingasa, 194, 253

Neptis columella, 227
hordonia, 200, 201, 202, 227
jumbah, 195, 197, 198, 199, 200, $210,228,229$
kallaura. 195, 199, 200, 210, 228
leucothoë, 227
matuta, 227
ophiana, 227
varmona, 202, 227
", viraja, 199, 202. 227
", (Rahinda) hordonia, 200, 201, 202, 227
Neptınия, 305
Nerium odorum, 205, 216
Nettopus auritus, 147
coromandelianus, $1+1,147,149$
Niltava grandis, 118
" macgrigoriae, 160
" sundara, 118
Nino』 scutulata, 132
Nissanga junonia, £13, 218
Notoerypta feisthameli, 187, 211, 277
" restricta, 188, 277
Notonyx, 281, 293, 317, 318, 319
nitidus, 287, 319
vitreus, 319
Nychitona, 250
Nycticorax griseus, 141
Nyctiornis athertoni, 128
NYMPHALIDE, 150, 151, 152, 154, 155, 215
Nymphalines, 150, 151, 152, 155, 189, 221
Nyroca "fricana, 149
" bæri, 149
", ferruginea, 142
Ochlandra, 267
"
stridula, 214, 219, 220, 267, 270, 274
Ochthocaris parvifora, 13
Ochthocharis, 2, 13
borneensis, 13, 14

- ", $\quad \begin{aligned} & \text { buruensis, 14 } \\ & \text { - }\end{aligned}$ javanica, 18, 14 ", paniculata, 13
Ocypoda, 294, 342, 343, 345, 351, 363, 364, 369, 383, 441, 442, 445 ceratophthulma, 345, 347, 348 cordimana, 345, 349 macrocera, 345, 347, 349 platytarsis, 345, 348, 349 plicata, 413 quadrata, 413 rotundata, 345, $\mathbf{8 4 8}$
Ocypode lactea, 355
(Gelasimus) lactea, 355
OcYPODES, 281
Ocypodiaces Globulaires, 290
Obdinaires, 290
OcYPODIDE, 279, 280, 281, 282, 283, 284, 290, 291, 294, 342

Ocypodider Mrctirines, 291
UCYPODIENS, 290
Ocypodin $x, 279,290,294,342,343$
Odontoptilum angulata, 197, 265
Geophylla sinaragdina, 190, 191, 192, 245, 249
Cdemia, 148
" nigra, 148, 149
Ediplaz, 292
Olacines, 169, 197, 241
Olax seandens, 197, 241
Olea dioica, 205, 230
Oleaces, 169, 205, 230
Ommatocarcinus, 280, 293
Opisthopus, 294
Ops, 247
" melastigma, 209, 246
Orchides, 211, 246
Oreicola ferrea, 119, 160
Oreocincla dauma, 121
" mollissima, 162
Oroocorys sylvanus, 164
Oriolidxe, 116
Oriolus kundoo, 160
" melanocephalus, 116
", tenuirostris, 116
,, trailii, 116
Ormosia, 175, 176, 177, 179, 182, 184, 185, 186
Balansex, 177, 178, 182, 186
bancana, 184, 185
calavensis, 178, 180, 186
coarctata, 183, 184
decemjuga, 177, 179, 184, 186
dubia, 182
emarginata, 177, 178, 180, 186
floribunda, 179
glauca, 177, 178, 180, 181, 186
gracilis, 177, 180, 186
Henryi, 177, 178, 180, 186
inopinata, 177, 178, 181, 182, 186
" var. dubia, 178, 181
" ${ }^{\prime \prime}$ typica, 181
laea,"177, 178, 182, 186
macrodisca. 177, 179, 186
microsperma, 177, 179, 183, 184, 186 var. Ridleyi, 179, 183
nitida, 177, 184
pachycarpa, 177, 179, 184, 185 186
parvifolia, 177, 178, 184, 185, 186
polita, 177, 178, 184, 186
robusta, 176, 177, 179, 180, 185, 186
scandens, 179, 182, 186
semicastrata, 178, 180, 186
septemjuga, 177, 179, 184, 186

Ormosia sumatrana, 177, 179, 183, 185 186
,, travancorica, 177, 178, 180, 186
", venosa, 177, 179, 185, 186
" yunnanensis, 177, 179, 183, 185, 186
(Arillaria) robusta, 180
Ornithopteru, 257
Orsotriænu mandata, 213, 218
Orthograpsus, 295, 394
Oryza sativa, 213, 218, 219, 267, 273, 274, 276, 277
Osbeckia tetrandra, 57
Osbrcieiere, 2
Ostracotheres, 293
Ostræa, 338, 339
Otunthera, 2, 3, celebica, 3
"" nicobarensis, 3, 4
Otocompsa emeria, 111
" flaviventris, 111
Otogyps calvus, 132
Ougeinia dulbergioides, 198, 240, 244, 250
Owyspora, 2, 8, 10

* ," acutangula, 8
" cernua, 8
" Curtisii, 8
" panıculata, 8
* " stellulata, 8, 9
" vagan8, 8
Oxysporese, 2
Owytenanthera monostigma, 814, 220, 267, 269, 270, 271
Pachycentria, 8, 66
tuberculata, 66
Pachyglossa melanoxantha, 126
Pachygrapsus, 296, 389, 399
æthiopicus, 898
", minutus, 399
Pachysoma, 409

$$
\begin{array}{ll}
" & \text { affinis, } 413 \\
" & \text { bidens, } 415 \\
" & \text { intermedius, } 416 \\
" & \text { pictus, } 414
\end{array}
$$

Pachystomum, 296
Pademma kollari, 210, 216
Padraona dara, 214, 267 gola, 213, 273
Palzornis finschi, 131 schisticeps, 166
Palicides, 280, 282, 285, 290, 297, 450
Palicus, 281, 297, 45̄0, 451

* " investigatoris, 451, 45j
" Jukesii, 451, 453, 451
" serripes, 451, 454, 455
* " Whitei, 451, 453
"Wood-Masoni, 451, 4シ3
Palmese, 212, 220, 267, 268, 272
Pandion haliaëtus, 132
Pandionide, 132
Panoplaw, 292

1'apilio, 154

1) abrisa, 196, 208, 259
"gamemnon, 193, 257
antipathes ulcibiades, 193, 258
aristolochix, 208, 257, 259
atalanta, 231
buddha, 196, 259
chromus, 260
clytia, 208, 259
demoleus, 196, 197, 258
demolion liomedon, 196, 268
dissimilis, 259
doson, 257
erithonius, 258
eurypylus jason, 193, 257
hector, 208, 257, 259
helenus daksha, 196, 258
jophon, 259
nomius, 193, 257
octavia, 224
pandiyana, 259
panope, 259
paris tamilana, 196, 258
polynnestor, 196, 258
polytes, 196, 258
sarpedon teredon, 208, 257
telephus, 257
Papilionidet, 150, $1.51,162,153,250$
Papilioninet, 150, 151, 153, 155, 189, 256
Paraclistostoma, 245, 374
Paradozornis guttaticollis, 105
Paragrapsus, 296
Paramignya monophylla, 196, 258
I'arantica aglea, 206, 216
Parapinniza, 293
Parassines, 153
Parata alexis, 199, 259, 261, 262, 264
butleri, 200, 260
Parnara bevani, 213, 267, 276 canaraicu, 276
colacu, 213, 276
conjuncta, 213, 273, 276
guttatus, 267
kumara, 214, 274
philippina, 214, 274
philotıe, 267
plebeia, 275
Parnassiline. 151
Parnassius, 150, 153
citrinarius, 153
" glacialis, 153
Parkiden, 138
Parthenos virens, 204, 230
Parus atriceps, 105, 157
minor, 105
" monticola, 157
Passer cinnamomeus, 163
" domesticus, 122, 163
" flaveolus, 122
" montanus, 122
Pabserrs, 149

Passiflorre, 204, 221, 224
Pedestex, 268
fuscicornis, 268
maculicornis, 268
", submaculata, 212, 268
Pedunculata, 173
Pelargopsis gurial, 128
Pellorneum subochraceum, 107
Pklocarcini, 449
Pelocarcinus, 297, 441, 442, 448, 449
Hитеі, 449
Penthema, 150
Penthoceryx sonnerati, 131
Pericrocotus brevirostris, 160
" peregrinus, 115
", speciosus, 115
Perigrapsus, 292
Peristrophe, 172

* " longifolia, 171

Petrophila cinclorhyncha, 162
" cyanus, 121, 162
" erythrogastra, 121, 162
Phalacrocoracides, 140
Phalacrocorax albiventer, 143
$" \quad$ carbo, 140
$" \quad$ hypoleucos, 143
" javanicus, 140
", melanogenys, 143
", varius. 143
" verrucosus, 143
Phasianidee, 137
Phasianus humix, 137, 144
Pheidole, 191
Philyra, 436
Phænim sylvestris, 212, 220, 267, 268, 272, 273
Phyllagathis, 2, 44, 45

	Griffithii, 44, 45, 46
"	hispida 44, 46
* "	rotundifolia, 44, 46
"	Scortechinii, 44, 45
- ",	tuberculata, 44
Phylloscopus	affinis, 114, 159
",	humii, 159
"	pulcher, 114
	superciliosus, 114, 159

Pica rustica, 104
Picidse, 126
Ріситnия, 449
Pierides, 150
Pierin Ex, 150, 151, 153, 155, 189, 232, 250
Pieris neombo, 254
Pilumnoplas, 292, 298, 311, 313
" abyssicola, 312
", americana, 311
" americanus, 311
" ciliatus, 315
" heterochir, 312
" Sinclairi, 311
", sulcatifrons, 300

Index.

Pinnazodes, 294
Pinniza, 294, 336
Fischeri, 336
" (Tetrias) Fischeri, 336
Pinnoteres, 280, 281, 294, 331, 337, 338, 340
abyssicola, 338, 340
cardit, 339
Edwardsi, 338
mactricola, 338, 339
palænsis, 339
parvulus, 338, 339
purpureus, 338, 339
PinNoterider, 280, 281, 282, 284, 287, 291, 293, 331
Hexapodinet, 297
Pinnotebinst, 287, 293, 337
Pinnotherelia, 294
Pinnothereline, 288, 294, 335
Pinnotheres, 337
" Edwardsi, 838
" Fischeri, 336
", parvulus, 339
Pinnotherides, 287, 334

$"$	Hymenicines, 291
$"$,	HyMRNOSOMINE, 291
$"$,	MyCtirinat, 291

Pinnotheridea, 281
Pinnothrriens, 287, 291
Pinnotherines, 287
Plagusia, 297, 390, 436. 437, 439
" clavimana, 439
", depressa, 438
" var. squamosa, 437
immaculata, 438
orientalis, 438
, serripes, 439
". squamosa, 437
", tuberculata, 437
Plagusiacka, 289
Plagubines, 289, 297, 390, 436
Planes, 296
Plastingia, 268
Platychirograpsus, 296
Platygrapsus, 296
Platynotus, 296
Platypilumnus, 292, 298, 312
gracilipes, 313
Plebeius, 234
trochilus, 198, 206, 234
Plegadis fulcinellus, 141
Plesionet a fusca, 266
Ploceella javanensis, 121
Ploceida, 121
Plotus melanogaster, 140
Podicipedide, 142
Podicipes albipennis, 142
" cristatus, 142
Pogonanthera, 3, 65
pulverulenta, 65, 65
$\begin{array}{ll}" & \text { pulverulenta, } \\ " & \text { refleqa, } 65,66\end{array}$

Pogonanthera squamulata, 65
Pogosiphon, 173

* " inopinatum, 172

Poinciana regia, 200, 232, 252
Polionetta, 142
Polyalthia longifolia, 193, 257
Polyommatus, 236
bœticus, 191, 199, 241
Pomatorhinus imberbis, 106 ruficollis, 158
", $\quad \begin{aligned} & \text { ruficollis, } 168 \\ & \text { schisticeps, } 106\end{aligned}$
Pongamia glabra, 199, 239, 240, 244, 259
Porphyrio poliocephalus, 138
Portulaca oleracea, 195, 229, 230
Portulacee, 195, 229, 230
Potanis, 152, 224
Pratupa, 245 argentea, 245
Pratincola caprata, 119, 160
" leucura, 119
", maura, 119, 160
Precis, 152, 224, 225, 226
almana, 207, 225, 226, 227
", atlites, 207, 225
", hierta, 207, 225
", iphitu, 207, 224
" lemonias, 206, 207, 225
", orithyia, 207, 225
Prinia blanjordi, 114
Prioneris sita, 194, 250
Prionoplacines, 286, 293
Prionoplax, 292
Propasser pulcherrimus, 162
", rhodochrous, 162
Psaroglossa spiloptera, 110, 159
Pseudkbgoline, 152
Pseudergolis. 152, 155

$$
" \quad \text { wedah, } 152
$$

Pseudograpsus, 296
Pseudogyps bengulensis, 132
Pseudopinnixa, 294
Pseudorhombila, 292, 298, 304, 308
" sulcatifrons, var. australiensis, 300
, vestita, var. sexdentata, 301
Pseudorhombiline, 286, 292, 297
Psidium Guyava, 203, 245
Psittacides, 131
Psopheticus, 281, 292, 238, 308, 309, 311

* ", insignis, 309, 310
", stridulans, 309
Ptenoplacides, 280, 282, 285, 291, 297, 455
Ptenoplus, 297, 455, 456
", notopus, 282, 456
Pternundra, 3, 67

Pternandia cœrulescens var. paniculata,
' ,, $\quad \begin{gathered}69 \\ \text { echinata, 68, 69, } 70\end{gathered}$
"",\quad vır. pubescens, 70

* ", Grifithii, 68, 70
", ", var. cordata, 71
", latifolia, 69 paniculata, 69
Pternthius zralatus, 109
" intermedius, 109
Ptychognathus, 281, 296, 390, 402, 407
* " affinis, 404
* ", andamanica, 403, 404
barbata, 403, 406
barbatus, 406
dentata, 402, 403, 404
dentatus, 403
* " " onyæ, 403, 404
" $\quad \begin{aligned} & \text { onym, 403, 40 } \\ & \text { " }\end{aligned}$
" pusilla, 403, 401, 405
" pusillus, 405
", zpinicarpus, 404
Pucrasia mucrolopha, 167
Punica Granatum, 203, 250
Pycnonotus blanjordi, 112 santhorrhous, 112
Puctorhis sinensis, 106
Pyrameis, 231
," curdui, 231
Pyrotrogon, 278
Pyrrhocoraw "lpinus, 157
Pyrrhula erythrocephala, 162
Pyxidognathus, 281, 296, 390, 407
" deianira, 407
* ", thuviatilis, 407, 408

Quadrilatera, 281
Querquedula circia. 142
Quisqualis indicu, 203, 248, 250
Radeua, 151, 153, 155
juventa, 153
méganira, 153
nicobarica, 151
"\#, vulgaris, 151
Rahinda hordonia, 200, 201, 202, 227
Rallides, 138
Randia dumetorum, 204, 250
"uliginosa, 204, 250
Rapala, 189, 248, 249
lankana, 192, 200, 201, 202, 248
"" melampus, 197, 198, 250
", schistacea, 192, 201, 202, 203, 248
"" varuna, 197, 201, 203, 249
Rathinula, 247
," amor, 195, 198, 203, 204, 209, 210, 247
Kectomitra tuberculata, 70
Rhaconotus, 297, 430
" crenulatus, 435
Rhannese, 190, 197, 229, 240, 241, 245, 249, 250
Rhipidura albicollis, 119

Rhizopa，293， 322
Rhizopinet，280，281，257，293，317，318， 334
Rhodonsssu caryophyllacea， 149
Rhombilia， 316
Rhopodytes tristis， 131
Rohana， 152 camiba，223， 224
Rostratula capensis， 140
Rourea santuloides，19ヶ， 231
Rhodospiza obsoleta， 101
Rhyacornis fuliginosus，120， 161
Rhynchoplax，295， 387
Rhyncostylis retusa，211， 246
Rhytidoceros undulatus， 129
Rubiaceex，204，230，247， 250
Rubus niveus， 489
Ruta graveolens， 258
＂＂，var．angustifolia， 196
RÖTACBE，’1，196，234，235，258，259
Ruticilla auroren， 120
＂rufiventris， 161
Saccolabium papillosum，211， 246
Saccopetalum tomentosum，193，232， 257
salacia oblonga，197， 250
Salatura plewippus，206， 216
Salicinene，215， 278
Salio tetraspermu，215， 278
Salvadora persica，205， 252
Salvadoracere，205，252
Sancus pulligo，211， 277
Sapindaceae，197，240，247， 265
Saraca indica，201，237，240． 246
Sarangesa dasahara，207，208， 265
，＂purendra，207， 265
Surcogrammus atrinuchalis， 139
Sarmotium，297，390， 426

> craskum, 426
> ,\quad indicumn, 427

Satarupa bhayata， 265
Satybinfe，150，155．189， 218
Scalopidia，293，318，325，326， 334
spinosipes， 325
Schleichera trijuga，198，240， 247
Scitaminef，211，239， 277
Bcleroplax， 294
Scoloplax rusticula， 139
Scopimera，280，281，295，342，369， 371
＊
crıbricauda，369， 370
glohosa， 369
investigatoris， 369
Scopimerinfe，280，295，342， 363
Besarma，こ81，297，390，409，411，426， 427． $1: 8431$

＂affinis， 413

＂Andersoni，411，418
＂，aspera， 413
＂Aubryi， 427
＂bidens，411， 415
＂Brockii，412， 421
＂，crassimana， 416

Sesarma Dussumieri， 415
＂Edwardsi，411，416，417
＂elongatum， 421
＂，Eydouxi， 425
Finni，412， 424
gracilipes， 426
Haswelli， 415
indica， 426
intermedia， 416
intermedium，411，416
Kraussi，413， 425
＂，lanatum，412， 418
－＂latifemur，412， 421
＂，lividum， 415
＂，longipes，418，424，425
，．maculata， 424
，Mederi， 419
＂，Meinerti，411， 417
＂melissa， 413
＂，oceanica， 423
＂，oceanicum，412， 423
＂，picta， 414
＂pictum，411． 414
．，polita， 422
．．politum，412， 422
＂quadrata， 413
＂quadratum，411，413，414，415， 416， 418
tæniolatum，412，419，420， 421
＂，tetragona，417．420
＂tetragonum，412，4き0
＂ungulata， 413
Sesarmacea， 289
Sreabmin．t，289，296，390，409， 431
Sesbania aculeata 198，240， 252
Sibia picaoides， 107
Siphia albicilla， 117
＂strophiata， 117
Sitfa cinnamomeiventris， 159
，frontalis，113， 159
，．himalayensis， 159
，＂magna， 113
，．nagaensis， 112
，neglecta， 112
Sittides， 112
8ittiparus castaneiceps． 107
Siva cyanuroptera， 158
sordida， 109
Smila» ferox， 174
＂macrophylla，174，213，247， 266
－＂Pottingeri， 174
－＂（Eusmilax）Pottingeri， 174
Sonerila，1， 18
＊＂albiflora．20， 28
＊＂
＂Beccariana， 39
begonizfolia，22， 41
var．pilosiuscula， 42
－＂bicolor，22，43
＊＂．brachyantha，21， 37
－＂＂bracteata，21，35
*Sonerila cesia, 21, 36

* " calaminthifolia, 19, 2
* ", Calyculla, 22, 43
- " capitata, 21, 85
- " congesta, 20, 32
* " costulata, 22, 39
* ", Cyclaminella, 20, 38
" \quad. var. canescens, 33
", elatostemoides, 22, 42
" elliptica, 20, 30
" epilobioides, 19, 22
" erecta, 19, 23
" var. discolor, 24
". "flexuosa, 24
flaccida, 19, 25, 26
glabriflora, 22, 42
Griffithii, 20, 32
heterostemona, 21, 33
hyssopifolia, 19, 28
integrifolia, 21, 34
var. acwminatissima, 35
lasiantha, 20, 29
macrophylla, 22, 39
" var. lasipilosa, 40
microcarpa, 22, 38
mollis, 20, 28
moluccana, 40, 41
" var. pilosiuscula, 42
muscicola, 20, 31
" Nidularia, 21, 37
obliqua, 34
pullida, 19, 27
paradoxa, 22, 40, 41
., populifolia, 19, 26
* " repens, 20, 30
* ", rudis, 20, 27
* " saxosa, 20, 31
- " succulenta, 20, 30
- ", suffruticosa, 20, 29
" tenuifolia, 19, 24
"" .". var. hirsuta, 25
Soneriles, 2
Sonerilopsis, 21
Sophora, 176 robusta, 179
Spalgis, 247
epius, 188, 234
Spatula clypeata, 142
Speocarcinus, 292
Sphenocercus sphenurus, 186, 166
Spilornis cheela, 133, 166
Spizaëtus limnaëtus, 133
Spizinus canifrons, 112
Sporæginthus flavidiventris, 122
8tachyrhidopsis pyrrhops, 158
8tephegyne parvifolia, 204, 230
Sterculiacest, 195, 229, 265
Stoparola melanops, 118, 160
Streblus asper, 210, 216
8trigides, 131

Strie flammea, 131
Strobilanthes callosus, 207, 224, 225, 281, 266

Strobilina, 173

Sturnia malabarica, 116, 160
, nemoricola, 116
Sturnider, 116
Sturnopaster superciliaris, 117
Suastus gremius, 212, 218, 268, 269
Surendra quercetorum, 191, 201, 202, 241
Suya crinigera, 160
Sylviides, 114
Symbranchus, 449
Symphædra nais, 205, 230
Byrnium indrani, 131, 166
Tadorna cornuta, 148
Tagiades alica, 266
" atticus, 212, 266
" obscurus, 212, 266
Tajuria, 189, 247
сіррия, 189, 192, 209, 246
indra, 192, 209, 246
jehana, 246
longinus, 245, 246
Talicauda nyseus, 202, 289
Tamarindus indica, 201, 282, 250
Tapena hampsoni, 266
thwaitesi, 199, 200, 265, 266
Taractrocera ceramas, 213, 271
" mævius, 271
Tarucus plinius, 240
" telicanus, 198, 240
" theophrastus, 197, 240
Teinostachyum, 267
Telchinia violx, 204, 221
Telicota bambusic, 214, 271
Telphusider, 279
Tephrodornis pomdicerianus, 115
Teracolus, 234
" amata, 205, 252
" etrida, 193, 252
" eucharis, 194, 252, 253
" pallens, 252
Terias hecabe, 198, 20C, 201, 252
" læta, 25ะ
", libythæa, 201, 252
" silhetana, 200, 252
" venata, 252
Terminalia Bellerica, 202, 264, 266
" paniculata, 202, 237, 240, 244, 245, 247, 267
" tomentosa, 202, 244, 245, 247
Terpsiphone affinis, 118
" paradisi, 160
Tetranthera apetala, 259
Tetrapoda, 151
Tetrias, 294, 331, 335
Fischeri, 336
Thäduka multicaudata, 191, 210, 241
Thaumastoplas, 298
Thecla sassanides, 214, 878

Thereiceryx lineatus, 127
Thespesia Lampas, 195, 228, 229
Thriponas feddeni, 127
Thymipa, 219
". tabella, 219
Tiga javanensis, 126
Tiliacese, 168, 195, 229, 231, 265
Tinnunculus alaudarius, 135, 166
Tirumala limniace, 206, 216
melissa dravidarum, 216
" septentrionis, 206, 216
Totanus glareola, 139
" hypoleucus, 139
ochropus, 168
Toulichibia, 175, 176, 177, 179
Tragiu involucrata, 210, 221
" \quad Var. cannabina, 210, 221
Tragopan satyra, 167
Tragops prasinus, 124
Trema orientalis, 210, 222, 228, 229
Trembleya rhinanthera, 6
Treron nepulensis, 136
Trewia nudiflora, 210, 241, 243
Trichopus, 296, 400
litteratus, 401
Trigonoplas, 295, 385, 386, 387 $\begin{array}{ll}", & \text { truncata, 386 } \\ \text { unguiformis, } 387\end{array}$
Tritodynamia, 294
Trochalopterum erythrocephalum, 158
$\begin{array}{ll}", & \text { lineatum, } 158 \\ \text { ", } & \text { melanostigma, } 106\end{array}$
", phœniceum, 106
", variegatum, 158
Trogon ardens, 278
Trogonidet, 130
Troides minos, 208, 256
Tubicola, 294
Turdide, 119
Turdus viscivorus, 162
Turnicide, 138
Turnim pugnaw, 138
Turtur cambayensis, 136
" ferrago, 167
" orientalis, 136
" risorius, 167
suratensis, 167
Tylodiplas, 281, 295, 343, 373
" indica, 374
Tylophora carnosa, 216
tenuis, 206, 216
Tympanomerus, 295, 343, 371
, orientalis, 371
*Typhlocarcinodes, 281, 293, 818, 326
integrifrons, 327
Typhlocarcinus, 281, 293, 317, 321, 322, 324, 326, 327
integrifrons, 827
nudus, 322
rubidus, 322, 323
villosus, 322, 323

Index.

Uct, 297, 350
" acuta, 360
", annulipes, 354
cultrinana, 360
Dussumieri, 362
inversa, 356
lactea, 355
tetragona, 358
triangularis, 357
Udaspes folus, 211, 277
Unona discolor, 193, 257
Lawii, 193, 257, 258
Opupa indica, 129, 165
UPUPIDE, 129
Urocissa flavirostris, 157
" occipitalis, 104, 157
Oroloncha acuticauda, 162
," punctulata, 122, 162
" striata, 122
Orsus malayanus, 89, 90
" thibetanus, 89
" tibetanus, 89, 90
" torquatus, 89
Urtica parviflora, 215, 278
Urticacek, 210, 215, 216, 222, 224, 228, 229, 232, 241, 278, 281
Utica, 296
Vanessa, 231
" cardui, 198, 205, 215, 231, 277
" caschmirensis, 215, 278
" wanthomelas, 215, 278
Varuna, 280, 296, 389, 400, 402, 407, 437 " litterata, 401
Varunacea, 288
Varunine, 288, 296, 389, 400
Verbenacef, 207, 2:25, 245
Violacee, 194, 224
Virachola isocrates, 192, 201, 203, 204, 250
" perse, 192, 193, 204, 250
Vulturide, 132
Wagatea spicata, 200, 228, 229, 281, 232, 237, 239, 240, 244, 245, 248, 252
Waltheria indica, 195, 265
Wendlandia exserta, 230
Xanthasia, 294, 331, 340 murigera, 341
" murigera
", Whitei, 342
Xanthides, 282, 318
Xanthixus flavescens, 111
Xantholæma hiematocephala, 127
Xenophthalminat, 288, 294, 332
Xenophthalmodes, 293, 317, 323 mosbii, 324
Xenophthalmus, 294, 332

[^64]Xylanche. 489
Xylia dolabriformis, 201, 229, 235, 239, 240, 244, 245, 247, 250, 265
Ypthima baldus, 213, 218
" ceulonica, 219
" husbneri, 213, 219
" philomela, 219
" tabella, 219
Zanthosylum Rhetsa, 196, 258, 259
Zea mais, 273
,"Mays, 213, 273
Zehneria umbellata, 204, 230 •
Zeltus etolus, 246
Zesius, 190
" chrysomallus, 189, '190, 191, 201, 202, 203, 206, 208, 209, 244

Zirspa todarn, 192, 201, 202, 247
Ziptes saitis, 214, 219
Zisa gaika, 206. 236
lysimon, 198, 236
otis, 198, 246
Zїphus Jujubn, 197, 229, 240, 245
" rugosa, 190, 187, 229, 240, 241, 245, 249, 250
" Xylopyrus, 197, 229, 240, 249
Siraphetus og!!gia, 271
Sothera monticola, 162
grnia diphylla, 198, 231, 234286
beterops, 109
" palpebrosa, 158
" simplex, 109

[^0]: 1900.] W. Irvine-Jangnamah of Farrukhsiyar and Jahandār Shāh.45
 "Groups of valtures whirl over their heads, this is very unlucky ;
 "The soldiers in their dreams thought they fled all the night.
 "With their heads all full of portents and evil omens,
 "They speedily reached Agrah, halted at Samūgarh;
 "There came 'Izzu-d-din and all the runaways,
 "As to the hardships of the battle they invented many fables.
 "Angrily spoke Mu'izza-d-din;-'I will now pay out the Sayyids,
 "' When I have overcome the enemy, then I shall trinmph over the Bärhah,
 "' All the trouble is their doing, rancour appeared in their hearts,
 "' I will fight them in every way and try conclusions with them.
 "' Sādāt Kbān, acting out of spite, obeys his kinsman's word,
 "' Farzand Khān, his son, galloped in front of all the army,
 " 'The man called Şamṣāmu-d-daulah, his sword I will splinter ;
 "' In battle-field against me who will now venture to stand?
 "، At first Chabile Rām attended 'Izza-d-din's court,
 " "Then went off to the other side, the wretch, and deceived me,
 "'Also 'Ali Asghar Khän came, then marched away to the others,
 "'Thought lightly of Ma'izzu-d-din. Behold their hearts'!
 "Saying this he paraded his army, there were five lakhs of horsemen,
 "When naming lakks, two lords of elephants count as many thousands,
 "Then he discharged his cannon, the sky was hidden by smoke,
 " Earth's axis yielded, Meru was rent, such was the strength of this army."
 Thus wrote Siroman Dās Räe, ordered it to be carried quickly thither;
 The letter-carrier reached the audience-hall of Qutbn-l-malk,
 The contents were read aloud clearly by Şāhib Rām, Māthur;
 Hearing it his eyes reddened, his mind was overcast with rage.
 Laaghing spoke 'Abdullāh Kh̄̄n, "That king is very ag. gressive,
 "If I now get the anspicious order of the king of kings,
 " Farrakhsiyar's good fortune and God's grace being inseparable,
 810 "This vory day I rush to battle and break the strength of Ma'izza-d-din's arm."

[^1]: 1 Edited in this Journal, Vol. XLIV, for 1875, Part I, pp. 1-15, with two faosimile Plates. Another copper-plate of Lakṣmanasena has been discovered last year at Madhainagar, near Serajganj, in the Pabna District. It is, however, yet medited.

[^2]: 1900.] A. K. Maitra-Copper-plate Inscription of Laksmanasena.65
 (1. 49,) karmmãṇan niyatam svargga-gāminan il Sva-dattām paradattām=$=\bar{a}$ yo hareta va-
 (l. 50,) sundharāmlsa viṣţhāyā̀ krmir=bhūtvā pitrbhis=saha pacyaten Asphotayanti
 (l. 51,) pitaro valgayanti pitāmahāḥ l bhūmi-dātā kule jātas=sa nas= trātā bhavi-
 (l. 52,) syatillitil kamala-dal-āmvu(mbu)-vindu-lolām Çriyam= anucintya manuşya-jivitam ca |
 (l. 53,) sakalam=idam=ud̄̄hrtam ca vuddhā(buddhvā) na hi puruşaih para-kirttnyo vilo-
 hikam |
 (l.55,) Raghudevaçāsane skrta dūtam bhū-map̣ḍali-va(ba)labhit I
 (1. 56,) Sam 3 Bhādra-dine 9 mahāsām ni Y çrini 8 ॥

 1 Metre: Puppitāgrā.
 8 Metre: Aryá.
 ${ }^{8}$ Mahäsaìn ni probably is an abbreviation for mahäsämidhivigrahikena nibaddham. The last two syllables perhaps are the king's endorsement of the docoment.

[^3]: ${ }^{1}$ The "Munholee" of the Indian Atlas, sheet No. 119, 6 milos month of Deokot ; Long. $88^{\circ} 35^{\prime}$ E. ; Lat. $25^{\circ} 19^{\prime}$ N.

[^4]: 1 Metre Sragdharā.

[^5]: 1 Metre Mālinī.
 2 The aksara da has been added later; it looks rather like the avagraha sign.
 8 Metre Q̧ikharini. Read Tyajan dosäsangam with the Amgaohi plate.
 4 Read guṇ-ägràmyah; the Amgachi plate here reads hata-dhväntah.
 b Metre Çārdūlavikrị̄ita.
 6 Read caturo $=$ dhikam ca Haritah with the Amgachi plate.
 7 Metre Upajäti,
 8 Metre Çārdülavikrị̣ita; and of the next verse.
 9 Read sa-sarciv-äyudhän. 10 Metre Vasantatilakā.

[^6]: 1 In view of the frequent appearance of the name 'Lorik' in connection with Buddhist places and the posaible connection of a part of that hero's legendary history with Buddha, I here note that it is remarkable to find his father's name given as Burhkubbha, 'the old hanchback.' Has this any connection with ' Kanyäknbja'? The Ahirs who sing of Lorik are-Kananjiā Gwīlās. Lorik is olearly the younger (lahura) brother of Bauru, 'the dark one' (Sanvala).

[^7]: 1 The country of the roarto mentioned by Meganthenes.

[^8]: 1 A modern shrine built by the late Maharajah of Benares, bat the place was known as Asni long before. It may be that Asanga and his brother were remem. bered here as "The pair of brothers."

[^9]: 1 I see no reason to suppose that the Vatsa country is not the Kingdom of Kosambi.

[^10]: 1 There are extensive rains at Sikandarpar and close by we meet with Rahilapāli, which reminds us of Rāhula and the old Brahman. This place with reference to Sewan as Kusinara fits in with the place visited by Hwen Thsang on his way to Benares.

[^11]: I Read-matinäm. 2 I am unable to make ont the meaning of this word.
 8 Read sattva. Originally written parameçuarah.
 6 Read anyämç.
 6 Read padāṁç $=c a$.

[^12]: 1 In Bengal the Corypha umbr. is called Tedel, while the Borassus fl. is called Täl, and the proportion of the two palms is abont $1: 1000$. The correct name of the Borassus; as Dr. Prain, the Superintendent of the Rosal Botanic Gardens in Sibpur, informs me, is not fabelliformis, as usually given, bat flabellifer, this being the name given to the palm by Linacues who first deterwined it. There is every J. I. 13

[^13]: reason to believe that C. Taliera and C. umbraculifera are identioal. I nuderstand that Dr. Prain is preparing a monograph on the subject of these palms.

 2 I should add, however, that, as I nnderstand, more recent enquiries, made by Dr. Prain seem to render it donbtful whether even the Corypha umbr. grows wild anywhere in India or Ceylon. A very puzzling question then arises as to the real original home of that palm.

[^14]: 3 The complete natural segment, of course, measured 6 inches across. Similarly the widest complete Borassus segment measures 4 inches across the widest point.

[^15]: 4 Another clear instance of an error is in the record of No. 86 (Fifth Report, p. 136). This MS., dated 1241 A.D., is said to be of palm-leaf and to measure 16×4 inches. This width of 4 inches, for a palm-leaf MS., is an impossibility; it would indicate a natural segment of the width of at least 8 inches !! Prof. Bhandarkar, whom I consulted, writes to me: "There must be some mistake about the breadth of the leaves of No 86. I hnve seen the MSS. in the Deccan College and a good many at Pātän, perhnps the same as those catalogned by Dr. Peterson, but I do not remember having seen any leaves of that breadth. Dr. Peterson's cataloguing work was done by clerks and agents, and it is not unlikely that it was not done with the scrnpulous care of the scientific scholar." The measures would auit a paper MS. ; and that possibly is the solution of the error. There is a similar error in Bendall's Catalogne of the Cambridge MSS. Mere Add. 1633 is described as a palm-leaf MS. of the extraordinary breadth of 5 inches. It is, however, a Paper MS., as I am informed by Professor Cowell, who, at my request, very kindly inspected the manascript.

[^16]: A. F. R. Hoernle-Epigraphical Note on Palm-leaf, etc. [No. 2,

[^17]: 8 The description of this mannscript in the "Notices" is wrong. It is said to be dated " L. S. 431-4.D. 1537," bat at the same time it is desaribed as "fresh" in appearance. The fact is, the date which is in numeral words has been wrongly read. Ambudhi means "seven"; and the date is Lakg. $731=$ A.D. 1886. Unfortanately the manasoript is missing from the Calcutta colleotion; I have not been able to see it. I may here note that though in the older asage "ooean" signifies "four," in the more modern and in the present asage it means "seven." The Gabda-kalpa-druma gives both meanings.

 9 "Peterson8" and "Peterson"" in the References of Table III mean Professor Peterson's Third Report, 1884-86 (Extra Number in the Journal, Bombay Branch of the Royal Asiatic Society), and his Fifth Report, 1892-95, reapectively. "Kielhorn " means Professor Kielhorn's Report for 1880.81.

[^18]: 16 Exceptionally, and for a very limited olass of certain religious books, palmleaf is said to be still used in Bengal.

 17 The Calcutta Sanskrit College, in its Library Catalogne, professes to possess extraordinarily old paper manuscripts. No. 553 in Vol. I is said to be dated in 1017 A.D. or Sam. 1073 ; No. 371 in 1059 A.D. or Sam. 1115, No. 122 in Vol. II. in 1178 A.D. or Sam. 1234; No. 582 in Vol. I. in 1212 A.D. or Bam.

[^19]: 19 In the quoted passage it seems as if Alberani were speaking of the size of the natural leaves of the palm. Obviously this is not correct; for the size of the segment of the nataral leaf of either palm, whether Corypha or Borassus, is mnch greater. Possibly the translation may be at fault. Anyhow, Alberuni is speaking of the size of the prepared leaf.

[^20]: 2l The Bower MS. contains several distinct works, written on leaves of two distinct aizes, $11 \frac{1}{4} \times 2 \frac{1}{\prime \prime}^{\prime \prime}$ and $9 \times 2^{\prime \prime}$, bat both imitating the Corypha leaf.

[^21]: ${ }^{2}$ There are a few very old palm-leaf manusoripts, but they all come from Western India; at least there is no reason to assume any other place of origin for them. They are enamerated in Table I, Nos. 1-5. No. 5 is dated by Mr. Bendall in the Harsa era, and this might seem to saggest the "Centre" of Northern India as its place of origin. But, in the first place, the date may be, and as I believe is, more probably, referable to the Gapta era, in which case the date of the manascript is A.D. 571-2. In the second place, considering the wide extension of the Harsa empire, even a Harsa date is not incompatible with a Western Indian origin which on general grounds is far more probable.

[^22]: ${ }^{23}$ See my paper in the Journal, A.S.B., Vol. LXVI, pp. 257, 258.
 24 'This view is confirmed by the circnmstance that the leaves of some of the Weber and Macartney MSS. are numbered on their obverses. This, as the late Professor Bühler has pointed oat (see Vienna Oriental Journal, Vol. VII, p. 261), is a custom of Southern India. In Northern India the nambering is on the reverses. We thus seem here to come across a carious indication regarding the particular part of India from which the Buddhist propaganda proceeded to Eastern Tarkistan. We should have to look for it in South-western India.

[^23]: ${ }^{1}$ Elphinstone's History of India, Ed. 1874, Appendix, p. 755.

[^24]: 1 According to the Mādala Pāīji or the Shronicles of the temple of Jagan. nätha, the king ascended the throno at Camp Krttiväsa (Bhnvanēqvara) on Wednesday, Kakarã 2, Ģa 4; and died on the banks of the Krana-Vēnyà river (the $K_{\text {Kspla }}$) on Panssa Kr. 3, Tuesday. Neither of the dates comes out correct with the week day mentioned.

[^25]: 1 There is an inscription of probnbly this King in the Gri-Kürmam temple (11th pillar, east face) which parports to be dated in 1324 Gaka or 1402-3 A.D. (No. 299, Dr. Hultzsch's Ep. Rep. 1895-f, p. 20). Bnt I have not got the week day and the correct figures yet. Hence it is not taken into cousideration.

[^26]: 1 Ep. Ind., Vol. III, p. 152 ; Ep. Ind., Vol. IV, p. 12, " Viry-odagramin Turupkam

 2 Caitanya-maygala alias Bhägavata, Antya Khaṇda, 2nd Adhyāya, pp. 772, 779-80; 4th Adhyāyr, pp. 865, 868.

[^27]: 1 In the other unpablished inscription of Nayapäla Dova's time, the year is distinctly given as fifteen "Saìvụtee taras =aiva pañca-daçame rajyasya samvatsarè" (1. 14).

[^28]: 1 The name of the king has been given in pp. 2 and 11 as Mahipäla, apparently by mistake.

 8 "In 1042 A.D., the famous Atisha, a native of Bengal, who is known in Tibet es Jovo-rje or Jovo-rtishe, also came there." Rockhill's Life of Buddha, p. 227.

[^29]: 4 Metre of first pāda Rathoddhatã, the rest Svāgatā.

 5 Metre Jagati.
 6 Metre Akşarā vati.
 7 Metre Vasantatilakā.

[^30]: 1 Metre Q̧ārdūlavikrị̣ita. 8 Metre Anaştnbh.
 8 Metre Svägatā. 4 Metre Upajāti.

[^31]: This resembles M. Horsfieldii, Miq.,-a species Prom Java and Borneo-which however has 5 -merons flowers, obovate petals and leaves of thinner texture. According to Scortechini the petals are waxy white tinged with red and the stamens are yellow.

 Var, latifolia. Leaves broadly elliptic, shortly acuminate, the base cuneate, 2.5 to 3.75 in . long and 1.5 to 2 in . broad.

 Perak; King's Collector 8917; Wray 268.
 4. Mepmilla vemubta, King, n. sp. Epiphytal, 2 to 4 feet long, glabrons; branches stout, with large, scattered tubercles, glabrous. Leaves large, opposite, thinly coriaceous, sessile, elliptic, shortly acuminate, narrowed to the base, boldly 3 -nerved above the base with often a faint, small, basal, marginal pair ; length 6 to 9 in.; breadth 2.75 to 4 in. Oymes mach shorter than the leaves, laxly umbellate, axillary or from the axils of fallen leaves, about 6 -flowered; the pedicels slender, bibracteolate at the base. Flowers ncarly 1 in. long. Calyxtube campanulate, 35 in . long, with a narrow, obscurely 4-toothed limb.

[^32]: * For this proof I am indebted to my nephew, Bubu Benodebilari Datt of the Sanskrit Collego, who has given me much assistance in the composition of this paper. P.D.

[^33]: * The actual heights on this mountain, which has a double cap, are Loi-San-Pa 8002 ft ., Loi-Sang the northern rocky peak 8129 ft above sea-level. (H.N.T.).

[^34]: * Query. Was this specimen procured in the hills to the West of the Fort Stedman lake? If so the Kalaw hills ron out in that direction.

[^35]: - Harpactes, Swainson, 1837, is pre-occupied by Harpactes, Templeton, 1834, used for a genus of Arachnida.

[^36]: * This Dack is not given in the Fann. Brit. Ind., Birds, bat is mentioned in part ii, p. 148, of the second part of Mr. Engene W. Oates' " \mathbf{A} Manual of the Game Birds of India" (1899), and is described in the Cat. Birds B. M., vol. xxvii, p. 211, n. 13 (1895). Mr. Oates calls this species the Chinese Grey Duck, and proposes for it and for two other species the new generic name of Polionetta. It has been previonsly recorded from Indian limits from Kentung in the Shan States in the "Asian" Newspaper (10th January, 1899), according to Mr. Oates. [Ed.].

[^37]: - I have dealt with the question of the type of G. andersoni of Messrs. Elliot, Blanford, and Ogilvie-Grant in the Ibis (1899, p. 331), and photographs of this are now in the British Museam. The G. andersoni of Mr. Oates' work is the G. davisoni of the "Fauna" and the "Catalogue." [F.F.]
 J. II. 19

[^38]: * Recte Hypolimnas.

[^39]: 1 J.A.S.B. Ixvi. 2, 146 and 467 (1897).
 ${ }^{2}$ Index Kewensis ii. 367.
 ${ }^{8}$ Adans. Fam. ii. 326 (1763).

 - Jackson in Trans. Linn. Boc. x. 360 (1811).

 6 Hooker and Arnott, Bot. Beech. Voy. 183, t. 88 (1838)
 6 Miquel, Flor. Ind. Bat. Suppl. 302 (1860).
 7 Kurz, J.A.S.B. xlii. 2.70 (1878).
 8 DeCandolle, Prodr, ii. 98 (1825).
 9 Loureiro, Flor. Coohin-Ohin. 260 (1790).
 10 Miquel, Flor. Ind. Bat. Suppl. 294 (1860).

[^40]: * Asteracantha is given by Hooker as a subgenns of Hygrophila, and longifolia Nees, as a synonym of Hygrophila spinosa, T. Anders,

[^41]: - This fcod.plant has been wrongly identified-there is no such species-as Dalbergia racemosa, in the secoud Kanara paper, p. 251.

[^42]: * Pyrameis cardui of previous papers. The types of both Vanessa nnd Pyrameis is the Papilio atulanta of Linnæas. Vanessa is the older name of the two. Pyrameis therefore becomes a synonym of Vanessa.
 \dagger In Lep. Ind., vol. iv, p. 155 (1000), Dr. F. Moore has named the Doleschallic from N.-E. and S. India, Ceglon and Burma-D. indica. He restricts D. polibete to the Malayan Islands, Amboina, Waigion and Batchian.

[^43]: * Dr. A. G. Butler in Ann. and Mag. of Nat. Hist., seventh series, vol. v, p. 61, n. 23 (1900), records Plebeius trochilus, Freyer, from Nyasaland, noting that "According to de Nicéville this is a Chilades." In this I followed Dr. F. Moore, who placed the Lyciena putii of Kollar, which is a synonym of Lycæna trochslus, Freyer, in the genns Chilades. I do not know what the type of Plebeius is.

[^44]: * This plant in the second Kanara paper, p. 382, appears under the name of Lagerstramia microcarpa, Wight, which is giren by Sir J. D. Hooker as a synonym of L. lanceolatu.

[^45]: * This plant appears in the first Kanara paper, p. 360, under its synonymic name Cassia sumatrana, Roxb.

[^46]: * In the first Saniars paper, p_{0} 868, this plant is given nnder its synonymic name Gualteria [reote Guatteria] longifolia, Wall.

[^47]: * In the first Kanara pnper, p. 367, one of the food-plants of this butterfly is given as Garcinia Xanthochymus, Hook. f. (Guttijere), bat Mr. Bell considera this record to be incorreot.

[^48]: * In the first Kanara paper, p. 369, this plant is mentioned under Tetranthera apetala, Dalz. and Gibs., which is given by Sir J. Hooker as a synonym of Litsaa tomentosa, Herb.

[^49]: 192. Hasora (Hurata) butleri, Aurivillius.

 Derris scandens, Benth. (Leguminosm).

[^50]: * In the second Kanara paper, pp. 42, 44, the food-plant of this species is given at Teinostachyum. It shoald be Ochlandra.
 + In the second Kanara list, p. 48, Calames Rotang, Linn. (Palmeex), is given as the food-plant of this apecien, but Mr. Bell idforms me that this cane is not found in the dibtrict, though Sir J. Hpaker gives it from the Deccan Poninaula and Ceylon.

[^51]: PHYSICS. C.

 Dutt, Pronothonath.-Experimental measurement of the velocity of sound from observations in a railway train. Journ. As. Soc. Bengal, LXIX, Pt. ii, 1900, pp. 96-97.
 Velocity of sound.
 Measurement of, from observations in a railway train.

[^52]: Resembles Hexapus sexpus, De Haan, with a specimen of which I have compared it, bat differs in numerons important characters.

[^53]: 51. Gelasimus triangularis, A. M. Edw.

 Gelasimus triangularis, A. Milne Edwards, Nouv. Archiv. du Mag. IX. 187, p. 275 : Kingeley, Proc. Ac. Nat. Sci. Philad. 1880, p. 150 : de Man, Journ. Linn. Soo., Zool., XXII. 1887-88, p. 118, pl. viii. figs. 8-11, and Notes Leyden Mus. XIII. 1891, p. 28, and in Weber's Zool. Ergebn. Niederl. Ost. Ind. 1I. 1892, p. 307 : and Zool, Jahrb., Syst., VIII. 1894-95, p. 577 : J. R. Henderson, Trans. Linn. Boc., Zool., (2) V. 1893, p. 388.

[^54]: - I asamme that Herbat need tetragonon as a noun subetantise in apposition to Cancer : it may therefare continue in apposition to Gelasimos ueed as a substantive.

[^55]: The name Tympanomerus is a most unfortunate one, since the "tympana," compared with those of Dotilla and Scopimera, are ill-defined and inconspicnons.

[^56]: Grapsus, Kingsley, Proc. Ac. Nat. Sci. Philad. 1880, pp. 188 and 192 : Miers, Challenger Brachyura, p. 254.

 Goniopsis, De Haan, Faun. Japon. Crust. p. 33.

[^57]: Very olosely related to P. spinicarpus, Ortm., and to P. Polleni and affinis, de M., if these species are distinct.

[^58]: *For literature on the subject, see Journal, Asiatic Society, 1896, Pt. ii, p. 1, and Tranaactions, Chem. Soc. for 1897, p. 338.

[^59]: * Proc. Chem. Soc. 1896, p. 218.
 + Ber. Deut. Ohem. Ges., V, pp. 399, 514.

[^60]: * Pharmacentical Joarnal, 3rd Sories, Vol. XV, p. 673.

[^61]: * "Es gelang nns unter keinen Umständen das ganze Jodäthyl in die Reaction zu verwickeln, sondern stets war das bei der Rectification zuerst übergehende Produkt stark jodhältig. Wir haben auf jede weise versucht, das Jodäthyl voll ständig anszabeaten, doch immer vergeblich." (Loc. cit., p. 402.)
 \dagger The behaviour of Mercurons Nitrite in this respect also resembles that of Silver Nitrite. Cf. Divers and Schimidzu "Action of heat apon Silver Nitrite, air being excluded"-(Trans. Chem. Soc. Journ., 47, 634), where it is shown that nitric oxide is one of the produots of decomposition.

[^62]: § The Original Memoir is not available here. I am quoting from Watt'a Diot. of Ohem., New Ed. See also Abs. Ohem. Soc. Joarn., Vol, LVI, 1050.

[^63]: * Compt. Rend. 76, p. 1607.

[^64]: " obscurus, 332, 333
 ", pinnoteroides, 332
 " pinnotheroides, 332

